Development of SNP Markers for Original Analysis and Germplasm Identification in Camellia sinensis
Abstract
:1. Introduction
2. Results
2.1. Diversification and Geographical Distribution of Tea Cultivars
2.2. Polymorphism and Location Distribution of 4115 SNP Loci
2.3. Core SNP Loci Selection and Analyses of Polymorphism
2.4. Development and Validation Marker Tools for the Identification of Germplasm and Parentage Verification
2.4.1. Identification of Germplasm and Construction of DNA Fingerprints
2.4.2. Parentage Verification
2.4.3. Analysis of the Phylogenetic Tree
3. Discussion
3.1. New Insights into the Origin and Domestication of Chinese Teas
3.2. Development of SNP Marker Tools: Identification of Germplasm, Parentage Verification, and Phylogenetic Analysis
3.2.1. Identification of Germplasm
3.2.2. Parentage Verification
3.2.3. Phylogenetic Analysis
4. Materials and Methods
4.1. Plant Materials
4.2. SNP Detection and Selection from the Genome
4.3. Core SNP Marker Selection
4.4. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, J.; Wang, Y.; Xie, Z.; Zhou, Y.; Zhang, Y.; Wan, X. The anti-obesity effects of green tea in human intervention and basic molecular studies. Eur. J. Clin. Nutr. 2014, 68, 1075–1087. [Google Scholar] [CrossRef] [Green Version]
- Ng, K.W.; Cao, Z.J.; Chen, H.B.; Zhao, Z.Z.; Zhu, L.; Yi, T. Oolong tea: A critical review of processing methods, chemical composition, health effects, and risk. Crit. Rev. Food Sci. Nutr. 2018, 58, 2957–2980. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; Cai, H.; Xiang, Y.B.; Li, H.; Lipworth, L.; Miller, N.L.; Zheng, W.; Shu, X.O.; Hsi, R.S. Green tea intake and risk of incident kidney stones: Prospective cohort studies in middle-aged and elderly Chinese individuals. Int. J. Urol. 2019, 26, 241–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drew, L. The growth of tea. Nature 2019, 566, S2–S4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shehasen, M.Z. Tea Plant (Camellia Sinensis) Breeding Mechanisms Role in Genetic Improvement and Production of Major Producing Countries. Int. J. Res. Stud. Sci. Eng. Technol. 2019, 6, 10–20. [Google Scholar]
- Tan, L.Q.; Wang, L.Y.; Xu, L.Y.; Wu, L.Y.; Peng, M.; Zhang, C.C.; Wei, K.; Bai, P.X.; Li, H.L.; Cheng, H.; et al. SSR-based genetic mapping and QTL analysis for timing of spring bud flush, young shoot color, and mature leaf size in tea plant (Camellia sinensis). Tree Genet. Genomes 2016, 12, 52. [Google Scholar] [CrossRef]
- Wei, C.; Yang, H.; Wang, S.; Zhao, J.; Liu, C.; Gao, L.; Xia, E.; Lu, Y.; Tai, Y.; She, G.; et al. Draft genome sequence of Camellia sinensis ar. sinensis provides insights into the evolution of the tea genome and tea quality. Proc. Natl. Acad. Sci. USA 2018, 115, E4151–E4158. [Google Scholar] [CrossRef] [Green Version]
- Xia, E.H.; Zhang, H.B.; Sheng, J.; Li, K.; Zhang, Q.J.; Kim, C.; Zhang, Y.; Liu, Y.; Zhu, T.; Li, W.; et al. The Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of Caffeine Biosynthesis. Mol. Plant 2017, 10, 866–877. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Liu, H.; Wu, A.; Hou, Y.; An, Y.; Wei, C. Construction of fingerprinting for tea plant (Camellia sinensis) accessions using new genomic SSR markers. Mol. Breed. 2017, 37, 93. [Google Scholar] [CrossRef]
- Tan, L.Q.; Peng, M.; Xu, L.Y.; Wang, L.Y.; Chen, S.X.; Zou, Y.; Qi, G.N.; Cheng, H. Fingerprinting 128 Chinese clonal tea cultivars using SSR markers provides new insights into their pedigree relationships. Tree Genet. Genomes 2015, 11, 90. [Google Scholar] [CrossRef]
- Waits, L.P.; Luikart, G.; Taberlet, P. Estimating the probability of identity among genotypes in natural populations: Cautions and guidelines. Mol. Ecol. 2001, 10, 249–256. [Google Scholar] [CrossRef]
- Yao, M.Z.; Ma, C.L.; Qiao, T.T.; Jin, J.Q.; Chen, L. Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers. Tree Genet. Genomes 2012, 8, 205–220. [Google Scholar] [CrossRef]
- Rafalski, A. Applications of single nucleotide polymorphisms in crop genetics. Curr. Opin. Plant Biol. 2002, 5, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Nasu, S.; Suzuki, J.; Ohta, R.; Hasegawa, K.; Yui, R.; Kitazawa, N.; Monna, L.; Minobe, Y. Search for and analysis of single nucleotide polymorphisms (SNPs) in rice (Oryza sativa, Oryza rufipogon) and establishment of SNP markers. DNA Res. 2002, 9, 163–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korir, N.K.; Han, J.; Shangguan, L.; Wang, C.; Kayesh, E.; Zhang, Y.; Fang, J. Plant variety and cultivar identification: Advances and prospects. Crit. Rev. Biotechnol. 2013, 33, 111–125. [Google Scholar] [CrossRef]
- Fang, W.P.; Meinhardt, L.W.; Tan, H.W.; Zhou, L.; Mischke, S.; Zhang, D. Varietal identification of tea (Camellia sinensis) using nanofluidic array of single nucleotide polymorphism (SNP) markers. Hortic. Res. 2014, 1, 14035. [Google Scholar] [CrossRef] [Green Version]
- Sim, S.C.; Robbins, M.D.; Chilcott, C.; Zhu, T.; Francis, D.M. Oligonucleotide array discovery of polymorphisms in cultivated tomato (Solanum lycopersicum L.) reveals patterns of SNP variation associated with breeding. BMC Genom. 2009, 10, 466. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.F.; Wei, Y.L.; Yuan, Y.; Yu, J.C.; Yuan, Z.Y.; Wang, W.S. Genetic diversity analysis and core collection construction of 221 cultivars (strains) of Litchi chinensis based on SNP molecular markers. J. Plant Resour. Environ. 2022, 31, 74–84. [Google Scholar]
- Fang, W.P.; Meinhardt, L.W.; Tan, H.; Zhou, L.; Mischke, S.; Wang, X.; Zhang, D. Identification of the varietal origin of processed loose-leaf tea based on analysis of a single leaf by SNP nanofluidic array. Crop J. 2016, 4, 304–312. [Google Scholar] [CrossRef] [Green Version]
- Wei, K.; Wang, X.; Hao, X.; Qian, Y.; Li, X.; Xu, L.; Ruan, L.; Wang, Y.; Zhang, Y.; Bai, P.; et al. Development of a genome-wide 200K SNP array and its application for high-density genetic mapping and origin analysis of Camellia sinensis. Plant Biotechnol. J. 2022, 20, 414–416. [Google Scholar] [CrossRef]
- Meegahakumbura, M.K.; Wambulwa, M.C.; Thapa, K.K.; Li, M.M.; Möller, M.; Xu, J.C.; Yang, J.B.; Liu, B.Y.; Ranjitkar, S.; Liu, J.; et al. Indications for Three Independent Domestication Events for the Tea Plant (Camellia sinensis (L.) O. Kuntze) and New Insights into the Origin of Tea Germplasm in China and India Revealed by Nuclear Microsatellites. PLoS ONE 2016, 11, E0155369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meegahakumbura, M.K.; Wambulwa, M.C.; Li, M.M.; Thapa, K.K.; Sun, Y.S.; Möller, M.; Xu, J.C.; Yang, J.B.; Liu, J.; Liu, B.Y.; et al. Domestication Origin and Breeding History of the Tea Plant (Camellia sinensis) in China and India Based on Nuclear Microsatellites and cpDNA Sequence Data. Front. Plant Sci. 2017, 8, 2270. [Google Scholar] [CrossRef] [PubMed]
- Xia, E.H.; Tong, W.; Hou, Y.; An, Y.L.; Chen, L.B.; Wu, Q.; Liu, Y.L.; Yu, J.; Li, F.D.; Li, R.P.; et al. The Reference Genome of Tea Plant and Resequencing of 81 Diverse Accessions Provide Insights into Its Genome Evolution and Adaptation. Mol. Plant 2020, 13, 1013–1026. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.Z.; Chen, L. Tea Germplasm and Breeding in China. In Global Tea Breeding: Achievements, Challenges and Perspectives; Springer: Berlin/Heidelberg, Germany, 2012; pp. 13–68. [Google Scholar]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error in creases success in paternity assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef]
- Wang, J.; Santure, A.W. Parentage and Sibship Inference from Multilocus Genotype Data Under Polygamy. Genetics 2009, 181, 1579–1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.J.; Liang, Y.R. Clonal Tea Cultivars in China; Shanghai Scientific and Technical Publishers: Shanghai, China, 2014. [Google Scholar]
- Zhang, Y.; Wang, L.; Wei, K.; Ruan, L.; Wu, L.; He, M.; Tong, H.; Cheng, H. Differential regulatory mechanisms of secondary metabolites revealed at different leaf positions in two related tea cultivars. Sci. Hortic. 2020, 272, 109579. [Google Scholar] [CrossRef]
- Chen, L.; Apostolides, Z.; Chen, Z. Global Tea Breeding: Achievements, Challenges and Perspectives; Advanced Topics in Science & Technology in China: Beijing, China, 2013. [Google Scholar]
- Xia, E.H.; Tong, W.; Wu, Q.; Wei, S.; Zhao, J.; Zhang, Z.Z.; Wei, C.L.; Wan, X.C. Tea plant genomics: Achievements, challenges and perspectives. Hortic. Res. 2020, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Wei, C.L.; Liu, H.W.; Wu, J.L.; Li, Z.G.; Zhang, L.; Jian, J.B.; Li, Y.Y.; Tai, Y.L.; Zhang, J.; et al. Genetic Divergence between Camellia sinensis and Its Wild Relatives Revealed via Genome-Wide SNPs from RAD Sequencing. PloS ONE 2016, 11, E0151424. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Q.K. Understanding of 6000-year-old human planted tea tree roots discovered in Tianluoshan Site. China Tea 2016, 2, 30–33. (In Chinese) [Google Scholar]
- Xu, X.; Liu, X.; Ge, S.; Jensen, J.D.; Hu, F.; Li, X.; Dong, Y.; Gutenkunst, R.N.; Fang, L.; Huang, L.; et al. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat. Biotechnol. 2011, 30, 105–111. [Google Scholar] [CrossRef]
- Kuang, M.; Wei, S.j.; Wang, Y.Q.; Zhou, D.Y.; Ma, L.; Fang, D.; Yang, W.-h.; Ma, Z.Y. Development of a core set of SNP markers for the identification of upland cotton cultivars in China. J. Integr. Agric. 2016, 15, 954–962. [Google Scholar] [CrossRef]
- Kim, M.; Jung, J.K.; Shim, E.J.; Chung, S.M.; Park, Y.; Lee, G.P.; Sim, S.C. Genome-wide SNP discovery and core marker sets for DNA barcoding and variety identification in commercial tomato cultivars. Sci. Hortic. 2021, 276, 109734. [Google Scholar] [CrossRef]
- Fan, X.J.; Yu, W.T.; Cai, C.P.; Lin, Y.; Wang, Z.H.; Fang, W.P.; Zhang, J.M.; Ye, N.X. Construction of Molecular ID for Tea Cultivars by Using of Singlenucleotide Polymorphism (SNP) Markers. Sci. Agric. Sin. 2021, 54, 1751–1772. [Google Scholar]
- Yang, T.; Miller, M.; Forgacs, D.; Derr, J.; Stothard, P. Development of SNP-Based Genomic Tools for the Canadian Bison Industry: Parentage Verification and Subspecies Composition. Front. Genet. 2020, 11, 585999. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.C.; Feng, H.; Chang, Y.X.; Ma, C.L.; Wang, L.Y.; Hao, X.Y.; Li, A.L.; Cheng, H.; Wang, L.; Cui, P.; et al. Population sequencing enhances understanding of tea plant evolution. Nat. Commun. 2020, 11, 4447. [Google Scholar] [CrossRef]
- Chen, J.D.; He, W.Z.; Chen, S.; Chen, Q.Y.; Ma, J.Q.; Jin, J.Q.; Ma, C.L.; Moon, D.G.; Ercisli, S.; Yao, M.Z.; et al. TeaGVD: A comprehensive database of genomic variations for uncovering the genetic architecture of metabolic traits in tea plants. Front. Plant Sci. 2022, 13, 1056891. [Google Scholar] [CrossRef]
- Liu, K.; Muse, S.V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef] [Green Version]
- Nei, M.; Tajima, F.; Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J. Mol. Evol. 1983, 19, 153–170. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.Q.; Liu, Q.L.; Zhou, B.; Yang, C.J.; Zou, X.; Yu, Y.Y.; Wang, Y.; Hu, J.-H.; Zou, Y.; Chen, S.-X.; et al. Paternity analysis using SSR markers reveals that the anthocyanin-rich tea cultivar ‘Ziyan’ is self-compatible. Sci. Hortic. 2019, 245, 258–262. [Google Scholar] [CrossRef]
Name of Marker | Chr | Position | Name of Marker | Chr | Position |
---|---|---|---|---|---|
1_SNP_1 | 1 | 20555681 | 1_SNP_9 | 9 | 97146833 |
2_SNP_1 | 1 | 203492932 | 2_SNP_9 | 9 | 14194449 |
3_SNP_1 | 1 | 42572356 | 3_SNP_9 | 9 | 33065116 |
1_SNP_2 | 2 | 79515402 | 1_SNP_10 | 10 | 120082494 |
2_SNP_2 | 2 | 38822259 | 2_SNP_10 | 10 | 162024357 |
3_SNP_2 | 2 | 68696654 | 3_SNP_10 | 10 | 14142424 |
1_SNP_3 | 3 | 21564028 | 1_SNP_11 | 11 | 103843763 |
2_SNP_3 | 3 | 160712162 | 2_SNP_11 | 11 | 120074865 |
3_SNP_3 | 3 | 134058046 | 3_SNP_11 | 11 | 115906813 |
1_SNP_4 | 4 | 96565277 | 1_SNP_12 | 12 | 157283886 |
2_SNP_4 | 4 | 14898710 | 2_SNP_12 | 12 | 84717331 |
3_SNP_4 | 4 | 170831355 | 3_SNP_12 | 12 | 119752353 |
1_SNP_5 | 5 | 3073649 | 1_SNP_13 | 13 | 110373506 |
2_SNP_5 | 5 | 12398569 | 2_SNP_13 | 13 | 68674252 |
3_SNP_5 | 5 | 56402023 | 3_SNP_13 | 13 | 103578624 |
1_SNP_6 | 6 | 178268444 | 1_SNP_14 | 14 | 33020570 |
2_SNP_6 | 6 | 28314239 | 2_SNP_14 | 14 | 52333124 |
3_SNP_6 | 6 | 78265333 | 3_SNP_14 | 14 | 102052966 |
1_SNP_7 | 7 | 175065396 | 1_SNP_15 | 15 | 85702925 |
2_SNP_7 | 7 | 28988576 | 2_SNP_15 | 15 | 108863635 |
3_SNP_7 | 7 | 47570898 | 3_SNP_15 | 15 | 102549019 |
1_SNP_8 | 8 | 42937619 | |||
2_SNP_8 | 8 | 117013679 | |||
3_SNP_8 | 8 | 43579005 |
Name of Marker | MAF | Na | Ne | I | Ho | PIC | PI |
---|---|---|---|---|---|---|---|
1_SNP_1 | 0.493 | 2.000 | 2.000 | 0.693 | 0.487 | 0.375 | 0.375 |
2_SNP_1 | 0.468 | 2.000 | 1.991 | 0.691 | 0.556 | 0.375 | 0.375 |
3_SNP_1 | 0.458 | 2.000 | 1.991 | 0.691 | 0.299 | 0.374 | 0.376 |
1_SNP_2 | 0.489 | 2.000 | 2.000 | 0.693 | 0.470 | 0.375 | 0.375 |
2_SNP_2 | 0.486 | 2.000 | 1.993 | 0.691 | 0.393 | 0.374 | 0.376 |
3_SNP_2 | 0.458 | 2.000 | 1.979 | 0.688 | 0.504 | 0.372 | 0.378 |
1_SNP_3 | 0.482 | 2.000 | 1.998 | 0.693 | 0.470 | 0.375 | 0.375 |
2_SNP_3 | 0.475 | 2.000 | 1.976 | 0.687 | 0.427 | 0.375 | 0.375 |
3_SNP_3 | 0.472 | 2.000 | 1.995 | 0.692 | 0.538 | 0.374 | 0.376 |
1_SNP_4 | 0.500 | 2.000 | 1.999 | 0.693 | 0.487 | 0.375 | 0.375 |
2_SNP_4 | 0.493 | 2.000 | 1.999 | 0.693 | 0.402 | 0.375 | 0.375 |
3_SNP_4 | 0.461 | 2.000 | 1.954 | 0.681 | 0.350 | 0.369 | 0.381 |
1_SNP_5 | 0.486 | 2.000 | 1.999 | 0.693 | 0.453 | 0.375 | 0.375 |
2_SNP_5 | 0.458 | 2.000 | 1.932 | 0.675 | 0.487 | 0.371 | 0.379 |
3_SNP_5 | 0.458 | 2.000 | 1.995 | 0.692 | 0.487 | 0.374 | 0.376 |
1_SNP_6 | 0.475 | 2.000 | 1.996 | 0.692 | 0.462 | 0.372 | 0.378 |
2_SNP_6 | 0.472 | 2.000 | 1.998 | 0.693 | 0.402 | 0.375 | 0.375 |
3_SNP_6 | 0.468 | 2.000 | 1.954 | 0.681 | 0.470 | 0.369 | 0.381 |
1_SNP_7 | 0.482 | 2.000 | 1.985 | 0.689 | 0.436 | 0.373 | 0.377 |
2_SNP_7 | 0.454 | 2.000 | 1.993 | 0.691 | 0.444 | 0.371 | 0.379 |
3_SNP_7 | 0.447 | 2.000 | 1.954 | 0.681 | 0.436 | 0.369 | 0.381 |
1_SNP_8 | 0.489 | 2.000 | 1.993 | 0.691 | 0.393 | 0.374 | 0.376 |
2_SNP_8 | 0.486 | 2.000 | 1.993 | 0.691 | 0.444 | 0.374 | 0.376 |
3_SNP_8 | 0.479 | 2.000 | 1.993 | 0.691 | 0.530 | 0.374 | 0.376 |
1_SNP_9 | 0.496 | 2.000 | 1.999 | 0.693 | 0.436 | 0.375 | 0.375 |
2_SNP_9 | 0.486 | 2.000 | 1.999 | 0.693 | 0.479 | 0.375 | 0.375 |
3_SNP_9 | 0.486 | 2.000 | 1.995 | 0.692 | 0.470 | 0.374 | 0.376 |
1_SNP_10 | 0.493 | 2.000 | 1.999 | 0.693 | 0.427 | 0.375 | 0.375 |
2_SNP_10 | 0.486 | 2.000 | 1.998 | 0.693 | 0.521 | 0.375 | 0.375 |
3_SNP_10 | 0.482 | 2.000 | 1.996 | 0.692 | 0.479 | 0.375 | 0.375 |
1_SNP_11 | 0.496 | 2.000 | 1.995 | 0.692 | 0.590 | 0.374 | 0.376 |
2_SNP_11 | 0.482 | 2.000 | 1.985 | 0.689 | 0.590 | 0.373 | 0.377 |
3_SNP_11 | 0.454 | 2.000 | 1.995 | 0.692 | 0.453 | 0.374 | 0.376 |
1_SNP_12 | 0.465 | 2.000 | 1.999 | 0.693 | 0.419 | 0.374 | 0.376 |
2_SNP_12 | 0.447 | 2.000 | 1.998 | 0.693 | 0.402 | 0.374 | 0.376 |
3_SNP_12 | 0.466 | 2.000 | 1.993 | 0.691 | 0.444 | 0.374 | 0.376 |
1_SNP_13 | 0.461 | 2.000 | 1.972 | 0.686 | 0.521 | 0.375 | 0.375 |
2_SNP_13 | 0.458 | 2.000 | 1.972 | 0.686 | 0.453 | 0.366 | 0.384 |
3_SNP_13 | 0.447 | 2.000 | 1.963 | 0.684 | 0.453 | 0.370 | 0.380 |
1_SNP_14 | 0.486 | 2.000 | 1.998 | 0.693 | 0.556 | 0.375 | 0.375 |
2_SNP_14 | 0.482 | 2.000 | 1.999 | 0.693 | 0.453 | 0.375 | 0.375 |
3_SNP_14 | 0.472 | 2.000 | 2.000 | 0.693 | 0.462 | 0.375 | 0.375 |
1_SNP_15 | 0.482 | 2.000 | 1.995 | 0.692 | 0.436 | 0.374 | 0.376 |
2_SNP_15 | 0.482 | 2.000 | 1.998 | 0.693 | 0.538 | 0.375 | 0.375 |
3_SNP_15 | 0.472 | 2.000 | 1.999 | 0.693 | 0.470 | 0.375 | 0.375 |
Mean | 0.475 | 2.000 | 1.989 | 0.690 | 0.464 | 0.374 | 0.376 |
Offspring 1 | Parenta 1 | Pair Loci Mismatching | Pair LOD Scoreb | Candidate Father ID | Pair Loci Mismatching | Pair LOD Score 2 | Known/New 3 |
---|---|---|---|---|---|---|---|
Huangmeigui | Huangdan | 0 | 9.95 * | -- | Known | ||
Chungui | Huangdan | 0 | 8.75 * | -- | Known | ||
Mingke 1 | Huangdan | 0 | 13.5 * | Tieguanyin | 0 | 13.53 * | Known |
Benshan | Tieguanyin | 0 | 14.3 * | -- | New | ||
Xingrencha | Tieguanyin | 0 | 8.58 * | -- | New | ||
Zhongming 7 | Zhongcha 108 | 0 | 6.2 * | Longjing 43 | 5 | −13.32 | Known |
Shuchazao | Longjing 43 | 0 | 11 * | -- | Known | ||
Zhongcha 108 | Longjing 43 | 0 | 10.4 * | -- | Known | ||
Foxiang 3 | Changye Baihao | 0 | 10.2 * | -- | Known | ||
Aifeng | Yungui | 0 | 19.4 * | -- | New |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Xun, H.; Aktar, S.; Zhang, R.; Wu, L.; Ni, D.; Wei, K.; Wang, L. Development of SNP Markers for Original Analysis and Germplasm Identification in Camellia sinensis. Plants 2023, 12, 162. https://doi.org/10.3390/plants12010162
Wang L, Xun H, Aktar S, Zhang R, Wu L, Ni D, Wei K, Wang L. Development of SNP Markers for Original Analysis and Germplasm Identification in Camellia sinensis. Plants. 2023; 12(1):162. https://doi.org/10.3390/plants12010162
Chicago/Turabian StyleWang, Liubin, Hanshuo Xun, Shirin Aktar, Rui Zhang, Liyun Wu, Dejiang Ni, Kang Wei, and Liyuan Wang. 2023. "Development of SNP Markers for Original Analysis and Germplasm Identification in Camellia sinensis" Plants 12, no. 1: 162. https://doi.org/10.3390/plants12010162
APA StyleWang, L., Xun, H., Aktar, S., Zhang, R., Wu, L., Ni, D., Wei, K., & Wang, L. (2023). Development of SNP Markers for Original Analysis and Germplasm Identification in Camellia sinensis. Plants, 12(1), 162. https://doi.org/10.3390/plants12010162