Soluble Carbohydrates in Several Transylvanian Potato Cultivars
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Chemicals and Standards
4.3. Sampling and Extraction
4.4. Solid Phase Extraction (SPE)
4.5. HPLC Analysis
4.6. The Dry Matter Content
4.7. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Upadhyaya, C.P.; Bagri, D.S. Biotechnological Approaches for Nutritional Improvement in Potato (Solanum tuberosum L.). In Genome Engineering for Crop Improvement; Upadhyaya, S.K., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2021; pp. 253–280. [Google Scholar] [CrossRef]
- Ezekiel, R.; Singh, N.; Sharma, S.; Kaur, A. Beneficial Phytochemicals in Potato—A Review. Food Res. Int. 2013, 50, 487–496. [Google Scholar] [CrossRef]
- Leonel, M.; Do Carmo, E.L.; Fernandes, A.M.; Soratto, R.P.; Ebúrneo, J.A.M.; Garcia, É.L.; Dos Santos, T.P.R. Chemical Composition of Potato Tubers: The Effect of Cultivars and Growth Conditions. J. Food Sci. Technol. 2017, 54, 2372–2378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Love, S.L.; Pavek, J.J. Positioning the Potato as a Primary Food Source of Vitamin C. Am. J. Potato Res. 2008, 85, 277–285. [Google Scholar] [CrossRef]
- USDA. FoodData Central. 2022. Available online: https://fdc.nal.usda.gov/ (accessed on 24 September 2022).
- Camire, M.E.; Kubow, S.; Donnelly, D.J. Potatoes and Human Health. Crit. Rev. Food Sci. Nutr. 2009, 49, 823–840. [Google Scholar] [CrossRef] [PubMed]
- Visvanathan, R.; Jayathilake, C.; Chaminda Jayawardana, B.; Liyanage, R. Health-Beneficial Properties of Potato and Compounds of Interest. J. Sci. Food Agric. 2016, 96, 4850–4860. [Google Scholar] [CrossRef] [PubMed]
- Duarte-Delgado, D.; Ñústez-López, C.E.; Narváez-Cuenca, C.E.; Restrepo-Sánchez, L.P.; Melo, S.E.; Sarmiento, F.; Kushalappa, A.C.; Mosquera-Vásquez, T. Natural Variation of Sucrose, Glucose and Fructose Contents in Colombian Genotypes of Solanum tuberosum Group Phureja at Harvest. J. Sci. Food Agric. 2016, 96, 4288–4294. [Google Scholar] [CrossRef] [Green Version]
- Duarte-Delgado, D.; Narváez-Cuenca, C.E.; Restrepo-Sánchez, L.P.; Kushalappa, A.; Mosquera-Vásquez, T. Development and Validation of a Liquid Chromatographic Method to Quantify Sucrose, Glucose, and Fructose in Tubers of Solanum tuberosum Group Phureja. J. Chromatog. B 2015, 975, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Elmore, J.S.; Mottram, D.S.; Muttucumaru, N.; Dodson, A.T.; Parry, M.A.J.; Halford, N.G. Changes in Free Amino Acids and Sugars in Potatoes Due to Sulfate Fertilization and the Effect on Acrylamide Formation. J. Agric. Food Chem. 2007, 55, 5363–5366. [Google Scholar] [CrossRef]
- Okeyo, J.A.; Kushad, M.M. Composition of Four Potato Cultivars in Relation to Cold Storage and Reconditioning. HortTechnology 1995, 5, 250–253. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Ioannides, I.M.; Gerasopoulos, D.; Siomos, A.S. Storage Profiles and Processing Potential of Four Potato (Solanum tuberosum L.) Cultivars Under Three Storage Temperature Regimes. J. Food Agric. Environ. 2009, 7, 31–37. [Google Scholar]
- Wilson, A.M.; Work, T.M.; Bushway, A.A.; Bushway, R.J. HPLC Determination of Fructose, Glucose, and Sucrose in Potatoes. J. Food Sci. 1981, 46, 300–301. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, B.P.; Kumar, P. An Overview of the Factors Affecting Sugar Content of Potatoes. Ann. Appl. Biol. 2004, 145, 247–256. [Google Scholar] [CrossRef]
- Matsuura-Endo, C.; Kobayashi, A.; Noda, T.; Takigawa, S.; Yamauchi, H.; Mori, M. Changes in Sugar Content and Activity of Vacuolar Acid Invertase During Low-Temperature Storage of Potato Tubers from Six Japanese Cultivars. J. Plant Res. 2004, 117, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Selem, E.; Hassan, A.A.; Awad, M.F.; Mansour, E.; Desoky, E.S.M. Impact of Exogenously Sprayed Antioxidants on Physio-Biochemical, Agronomic, and Quality Parameters of Potato in Salt-Affected Soil. Plants 2022, 11, 210. [Google Scholar] [CrossRef]
- Brown, J.; Mackay, G.R.; Bain, H.; Griffith, D.W.; Allison, M.J. The Processing Potential of Tubers of the Cultivated Potato, Solanum tuberosum L., after Storage at Low Temperatures. 2. Sugar concentration. Potato Res. 1990, 33, 219–227. [Google Scholar] [CrossRef]
- Pereira, A.D.S.; Tai, G.C.C.; Yada, R.Y.; Coffin, R.H.; Souza-Machado, V. Potential for Improvement by Selection for Reducing Sugar Content after Cold Storage for Three Potato Populations. Theor. Appl. Genet. 1994, 88, 678–684. [Google Scholar] [CrossRef]
- Zhang, H.; Hou, J.; Liu, J.; Zhang, J.; Song, B.; Xie, C. The Roles of Starch Metabolic Pathways in the Cold-Induced Sweetening Process in Potatoes. Starch 2017, 69, 1600194. [Google Scholar] [CrossRef]
- Mackay, G.R.; Brown, J.; Torrance, C.J.W. The Processing Potential of Tubers of the Cultivated Potato, Solanum tuberosum L., After Storage at Low Temperature. 1. Fry Colour. Potato Res. 1990, 33, 211–218. [Google Scholar] [CrossRef]
- Xiong, X.; Tai, G.C.C.; Seabrook, J.E.A. Effectiveness of Selection for Quality Traits During the Early Stage in the Potato Breeding Population. Plant Breed. 2002, 121, 441–444. [Google Scholar] [CrossRef]
- Martinez, E.; Rodriguez, J.A.; Mondragon, A.C.; Lorenzo, J.M.; Santos, E.M. Influence of Potato Crisps Processing Parameters on Acrylamide Formation and Bioaccesibility. Molecules 2019, 24, 3827. [Google Scholar] [CrossRef]
- Morales, F.; Capuano, E.; Fogliano, V. Mitigation Strategies to Reduce Acrylamide Formation in Fried Potato Products. Ann. N. Y. Acad. Sci. 2008, 1126, 89–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinci, R.M.; Mestdagh, F.; De Meulenaer, B. Acrylamide Formation in Fried Potato Products–Present and Future, a Critical Review on Mitigation Strategies. Food Chem. 2012, 133, 1138–1154. [Google Scholar] [CrossRef]
- Vivanti, V.; Finotti, E.; Friedman, M. Level of Acrylamide Precursors Asparagine, Fructose, Glucose and Sucrose in Potatoes Sold at Retail in Italy and in the United States. J. Food Sci. 2006, 71, C81–C85. [Google Scholar] [CrossRef]
- Friedman, M. Acrylamide: Inhibition of Formation in Processed Food and Mitigation of Toxicity in Cells, Animals and Humans. Food Funct. 2015, 6, 1752–1772. [Google Scholar] [CrossRef]
- Lim, P.; Jinap, S.; Sanny, M.; Tan, C.; Khatib, A. The Influence of Deep Frying Using Various Vegetable Oils on Acrylamide Formation in Sweet Potato (Ipomoea batatas L., Lam) Chips. J. Food Sci. 2014, 79, T115–T121. [Google Scholar] [CrossRef]
- McCann, L.C.; Bethke, P.C.; Simon, P.W. Extensive Variation in Fried Chip Color and Tuber Composition in Cold-Stored Tubers of Wild Potato (Solanum) Germplasm. J. Agric. Food Chem. 2010, 58, 2368–2376. [Google Scholar] [CrossRef]
- Zhu, F.; Cai, Y.-Z.; Ke, J.; Corke, H. Compositions of Phenolic Compounds, Amino Acids and Reducing Sugars in Commercial Potato Varieties and Their Effects on Acrylamide Formation. J. Sci. Food Agric. 2010, 90, 2254–2262. [Google Scholar] [CrossRef]
- Amjad, A.; Javed, M.S.; Hameed, A.; Hussain, M.; Ismail, A. Changes in Sugar Contents and Invertase Activity During Low Temperature Storage of Various Chipping Potato Cultivars. Food Sci. Technol. 2019, 40, 340–345. [Google Scholar] [CrossRef] [Green Version]
- Georgelis, N.; Fencil, K.; Richael, C.M. Validation of a Rapid and Sensitive HPLC/MS Method for Measuring Sucrose, Fructose and Glucose in Plant Tissues. Food Chem. 2018, 262, 191–198. [Google Scholar] [CrossRef]
- Weiß, K.; Alt, M. Determination of Single Sugars, Including Inulin, in Plants and Feed Materials by High-Performance Liquid Chromatography and Refraction Index Detection. Fermentation 2017, 3, 36. [Google Scholar] [CrossRef]
- Herrero, M.; Cifuentes, A.; Ibáñez, E.; del Castillo, M.D. Advanced Analysis of Carbohydrates in Foods. In Methods of Analysis of Food Components and Additives; Otles, S., Ed.; CRC Press: Boca Raton, FL, USA, 2011; Volume 2, pp. 135–159. [Google Scholar] [CrossRef]
- Molnár-Perl, I. Role of Chromatography in the Analysis of Sugars, Carboxylic Acids and Amino Acids in food. J. Chromatogr. A 2000, 891, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Davies, H.V. Rapid Determination of Glucose, Fructose and Sucrose in Potato Tubers by Capillary Gas Chromatography. Potato Res. 1988, 31, 569–572. [Google Scholar] [CrossRef]
- Varns, J.L.; Shaw, R. An Internal Standard for Rapid Analysis of Potato Sugars by Gas Chromatography. Potato Res. 1973, 16, 183–187. [Google Scholar] [CrossRef]
- Karkacier, M.; Erbas, M.; Uslu, M.K.; Aksu, M. Comparison of Different Extraction and Detection Methods for Sugars Using Amino-Bonded Phase HPLC. J. Chromatogr. Sci. 2003, 41, 331–333. [Google Scholar] [CrossRef]
- Hernández, J.L.; González-Castro, M.J.; Alba, I.N.; de la Cruz Garcia, C. High-Performance Liquid Chromatographic Determination of Mono-and Oligosaccharides in Vegetables with Evaporative Light-Scattering Detection and Refractive Index detection. J. Chromatogr. Sci. 1998, 36, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Jalaludin, I.; Kim, J. Comparison of Ultraviolet and Refractive Index Detections in the HPLC Analysis of Sugars. Food Chem. 2021, 365, 130514. [Google Scholar] [CrossRef]
- Condezo-Hoyos, L.; Pérez-López, E.; Rupérez, P. Improved Evaporative Light Scattering Detection for Carbohydrate Analysis. Food Chem. 2015, 180, 265–271. [Google Scholar] [CrossRef]
- Dvořáčková, E.; Šnóblová, M.; Hrdlička, P. Carbohydrate Analysis: From Sample Preparation to HPLC on Different Stationary Phases Coupled with Evaporative Light-Scattering Detection. J. Sep. Sci. 2014, 37, 323–337. [Google Scholar] [CrossRef]
- Young, C.S. Evaporative Light Scattering Detection Methodology for Carbohydrate Analysis by HPLC. Cereal Foods World 2002, 47, 14–16. [Google Scholar] [CrossRef]
- Corradini, C.; Lantano, C.; Cavazza, A. Innovative Analytical Tools to Characterize Prebiotic Carbohydrates of Functional Food Interest. Anal. Bioanal. Chem. 2013, 405, 4591–4605. [Google Scholar] [CrossRef]
- Mechelke, M.; Herlet, J.; Benz, J.P.; Schwarz, W.H.; Zverlov, V.V.; Liebl, W.; Kornberger, P. HPAEC-PAD for Oligosaccharide Analysis-Novel Insights Into Analyte Sensitivity and Response Stability. Anal. Bioanal. Chem. 2017, 409, 7169–7181. [Google Scholar] [CrossRef] [PubMed]
- Barzen-Hanson, K.A.; Wilkes, R.A.; Aristilde, L. Quantitation of Carbohydrate Monomers and Dimers by Liquid Chromatography Coupled with High-Resolution Mass Spectrometry. Carbohydr. Res. 2018, 468, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Salman, M.; Abdel-Hameed, E.S.S.; Bazaid, S.A.; Al-Shamrani, M.G.; Mohamed, F.A. Liquid Chromatography-Mass Spectrometry (LC-MS) Method for the Determination of Sugars in Fresh Pomegranate Fruit Juices. Der Pharma Chem. 2014, 6, 320–333. [Google Scholar]
- Martínez Montero, C.; Dodero, R.; Guillén Sánchez, D.A.; Barroso, C.G. Analysis of Low Molecular Weight Carbohydrates in Food and Beverages: A Review. Chromatographia 2004, 59, 15–30. [Google Scholar] [CrossRef]
- Guignard, C.; Jouve, L.; Bogéat-Triboulot, M.B.; Dreyer, E.; Hausman, J.F.; Hoffmann, L. Analysis of Carbohydrates in Plants by High-Performance Anion-Exchange Chromatography Coupled with Electrospray Mass Spectrometry. J. Chromatogr. A 2005, 1085, 137–142. [Google Scholar] [CrossRef]
- Lamb, J.D.; Myers, G.S.; Edge, N. Ion Chromatographic Analysis of Glucose, Fructose and Sucrose Concentrations in Raw and Processed Vegetables. J. Chromatogr. Sci. 1993, 31, 353–357. [Google Scholar] [CrossRef]
- Suksom, W.; Wannachai, W.; Boonchiangma, S.; Chanthai, S.; Srijaranai, S. Ion Chromatographic Analysis of Monosaccharides and Disaccharides in Raw Sugar. Chromatographia 2015, 78, 873–879. [Google Scholar] [CrossRef]
- Mantovani, V.; Galeotti, F.; Maccari, F.; Volpi, N. Recent Advances in Capillary Electrophoresis Separation of Monosaccharides, Oligosaccharides and Polysaccharides. Electrophoresis 2018, 39, 179–189. [Google Scholar] [CrossRef]
- Zhou, D.D.; Zhang, Q.; Li, S.P.; Yang, F.Q. Capillary Electrophoresis in Phytochemical Analysis (2014–2017). Sep. Sci. Plus 2018, 1, 676–701. [Google Scholar] [CrossRef]
- Xu, W.; Liang, L.; Zhu, M. Determination of Sugars in Molasses by HPLC Following Solid-Phase Extraction. Int. J. Food Prop. 2015, 18, 547–557. [Google Scholar] [CrossRef]
- Ayvaz, H.; Santos, A.M.; Moyseenko, J.; Kleinhenz, M.; Rodriguez-Saona, L.E. Application of a Portable Infrared Instrument for Simultaneous Analysis of Sugars, Asparagine and Glutamine Levels in Raw Potato Tubers. Plant Foods Hum. Nutr. 2015, 70, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Y.; Zhang, H.; Miao, Y.; Asakura, M. Nondestructive Determination of Sugar Content in Potato Tubers Using Visible and Near Infrared Spectroscopy. Jpn. J. Food Eng. 2010, 11, 59–64. [Google Scholar] [CrossRef]
- Fernández-Ahumada, E.; Garrido-Varo, A.; Guerrero-Ginel, J.E.; Wubbels, A.; Van der Sluis, C.; Van der Meer, J.M. Understanding Factors Affecting Near Infrared Analysis of Potato Constituents. J. Near Infrared Spectrosc. 2006, 14, 27–35. [Google Scholar] [CrossRef]
- Haase, N.U. Rapid Estimation of Potato Tuber Quality by Near-Infrared Spectroscopy. Starch 2006, 58, 268–273. [Google Scholar] [CrossRef]
- Haase, N.U. Prediction of Potato Processing Quality by Near Infrared Reflectance Spectroscopy of Ground Raw Tubers. J. Near Infrared Spectrosc. 2011, 19, 37–45. [Google Scholar] [CrossRef]
- Lebot, V. Near Infrared Spectroscopy for Quality Evaluation of Root Crops: Practical Constraints, Preliminary Studies and Future Prospects. J. Root Crops 2012, 38, 3–14. [Google Scholar]
- Dale, M.F.B.; Bradshaw, J.E. Progress in Improving Processing Attributes in Potato. Trends Plant Sci. 2003, 8, 310–312. [Google Scholar] [CrossRef] [PubMed]
- Heltoft, P.; Wold, A.B.; Molteberg, E.L. Maturity Indicators for Prediction of Potato (Solanum tuberosum L.) Quality During Storage. Postharvest Biol. Technol. 2017, 129, 97–106. [Google Scholar] [CrossRef]
- Sowokinos, J.R. Biochemical and Molecular Control of Cold-induced Sweetening in Potatoes. Am. J. Potato Res. 2001, 78, 221–236. [Google Scholar] [CrossRef]
- Murniece, I.; Karklina, D.; Galoburda, R.; Sabovics, M. Reducing Sugar Content and Colour Intensity of Fried Latvian Potato Varieties. LLU Raksti 2010, 24, 20–30. [Google Scholar]
- Rodríguez Galdón, B.; Ríos Mesa, D.; Rodríguez Rodríguez, E.M.; Díaz Romero, C. Influence of the Cultivar on the Organic Acid and Sugar Composition of Potatoes. J. Sci. Food Agric. 2010, 90, 2301–2309. [Google Scholar] [CrossRef]
- Biedermann-Brem, S.; Noti, A.; Grob, K.; Imhof, D.; Bazzocco, D.; Pfefferle, A. How Much Reducing Sugar May Potatoes Contain to Avoid Excessive Acrylamide Formation During Roasting and Baking? Eur. Food Res. Technol. 2003, 217, 369–373. [Google Scholar] [CrossRef]
- Bozeşan, I.; Draica, C. Tâmpa: A New Potato Variety for Autumn-Winter Consumption. Sci. Pap. Ann. ICPC Braşov 2001, XXVIII, 9–18. [Google Scholar]
- Chiru, S. The “Roclas” Potato Variety. Sci. Pap. Ann. ICPC Braşov 1995, XXII, 33–38. [Google Scholar]
- Chiru, S. The “Rustic” Potato Variety. Sci. Pap. Ann. ICPC Braşov 1995, XXII, 38–43. [Google Scholar]
- INCDCSZ Patents—Patents from the National Institute of Research and Development for Potato and Sugar Beet Brasov, Romania. Available online: https://potato.ro/brevete-si-certificari/ (accessed on 25 May 2022).
- INCDCSZ Catalogue—Official Catalogue of Romanian Potato Varieties from the National Institute of Research and Development for Potato and Sugar Beet Brasov, Romania. Available online: http://www.potato.ro/_publicatii_files/soiuri/soiuri/Soiuri%20romanesti%20Eng.pdf (accessed on 25 May 2022).
- MN App.No. 122160—Macherey Nagel Application Database. Available online: https://chromaappdb.mn-net.com (accessed on 15 September 2022).
Cultivar | Fructose [mg/100 g] | Glucose [mg/100 g] | Sucrose [mg/100 g] | Dry Matter (DM) [%] | Reducing Carbohydrates [mg/100 g] | ||||
---|---|---|---|---|---|---|---|---|---|
Christian | 35.12 | ±1.73 c | 60.58 | ±2.96 c | 260.12 | ±13.04 b | 20.20 | ±1.20 a | 95.70 d |
Cumidava | 38.91 | ±1.68 c | 154.51 | ±7.61 b | 378.45 | ±18.91 a | 24.05 | ±1.43 a | 193.42 c |
Kronstadt | 25.60 | ±1.21 c | 63.83 | ±2.87 c | 249.83 | ±12.47 b | 21.40 | ±1.29 a | 89.43 d |
Riviera | 76.58 | ±3.75 a | 232.97 | ±11.45 a | 283.71 | ±14.11 b | 18.74 | ±1.05 b | 309.55 a |
Roclas | 25.43 | ±1.25 c | 73.58 | ±3.57 c | 255.61 | ±10.15 b | 22.94 | ±1.34 a | 99.01 d |
Rustic | 54.28 | ±2.61 b | 196.52 | ±9.71 a | 325.11 | ±15.96 a,b | 24.11 | ±1.25 a | 250.8 b |
Tampa | 34.81 | ±1.69 c | 167.92 | ±8.29 b | 350.29 | ±17.33 a | 22.56 | ±1.33 a | 202.73 c |
Zamolxis | 24.03 | ±1.21 c | 52.78 | ±2.54 c | 238.41 | ±11.83 b | 23.39 | ±1.35 a | 76.81 d |
Min | 24.03 | 52.78 | 238.41 | 18.74 | 76.81 | ||||
Max | 76.58 | 232.97 | 378.45 | 24.11 | 309.55 |
Fructose | Glucose | Sucrose | DM | |
---|---|---|---|---|
Fructose | 1 | |||
Glucose | 0.8748 | 1 | ||
Sucrose | 0.2933 | 0.6527 | 1 | |
DM | −0.4622 | −0.1181 | 0.4013 | 1 |
Cultivar | Fructose | Glucose | Sucrose | Reducing Carbohydrates | Total SCC |
---|---|---|---|---|---|
Christian | 0.17 c | 0.30 b | 1.29 b | 0.47 c | 1.76 c |
Cumidava | 0.16 c | 0.64 a | 1.57 a | 0.80 b | 2.38 b |
Kronstadt | 0.12 c | 0.30 b | 1.17 b,c | 0.42 c | 1.59 c |
Riviera | 0.41 a | 1.24 b | 1.51 a | 1.65 a | 3.17 a |
Roclas | 0.11 c | 0.32 b | 1.12 c | 0.43 c | 1.55 c |
Rustic | 0.23 b | 0.82 a | 1.35 a,b | 1.04 b | 2.39 b |
Tampa | 0.15 c | 0.74 a | 1.55 a | 0.90 b | 2.45 b |
Zamolxis | 0.10 c | 0.23 b | 1.02 c | 0.33 c | 1.35 c |
Min | 0.10 | 0.23 | 1.02 | 0.33 | 1.35 |
Max | 0.41 | 1.24 | 1.57 | 1.65 | 3.17 |
Carbohydrate | Calibration Range [mg/L) | Equation | R2 |
---|---|---|---|
Fructose | 22.04–551.03 | C = 0.012827 × A + 0.693289 | 0.99756 |
Glucose | 16.97–424.31 | C = 0.014052 × A + 2.871871 | 0.99893 |
Sucrose | 16.22–911.52 | C = 0.024985 × A + 2.252326 | 0.99581 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muntean, E.; Bărăscu, N. Soluble Carbohydrates in Several Transylvanian Potato Cultivars. Plants 2023, 12, 70. https://doi.org/10.3390/plants12010070
Muntean E, Bărăscu N. Soluble Carbohydrates in Several Transylvanian Potato Cultivars. Plants. 2023; 12(1):70. https://doi.org/10.3390/plants12010070
Chicago/Turabian StyleMuntean, Edward, and Nina Bărăscu. 2023. "Soluble Carbohydrates in Several Transylvanian Potato Cultivars" Plants 12, no. 1: 70. https://doi.org/10.3390/plants12010070
APA StyleMuntean, E., & Bărăscu, N. (2023). Soluble Carbohydrates in Several Transylvanian Potato Cultivars. Plants, 12(1), 70. https://doi.org/10.3390/plants12010070