Rare Earth Elements (REEs) Adsorption and Detoxification Mechanisms in Cell Wall Polysaccharides of Phytolacca americana L.
Abstract
:1. Introduction
2. Results
2.1. REEs Accumulation in Various Fractions of Root and Leaf Cell Walls of P. americana
2.2. REEs Fractionation in Different Fractions of the Cell Wall of P. americana
2.3. Time-Dependent Adsorption Kinetics of REEs on the Cell Wall of P. americana
2.4. Analysis of FTIR Spectroscopy for the Cell Wall of P. americana
2.5. Effect of REEs on the Total Sugar Content in Cell Wall Components of P. americana
2.6. Effect of REEs on the Galacturonic Acid Content in Cell Wall Components of P. americana
3. Discussion
3.1. The Role of Cell Wall Polysaccharides of P. americana in REEs Adsorption
3.2. Fractionation of REEs in Different Fractions in the Cell Wall of P. americana
3.3. FTIR Analysis of Cell Wall in P. americana
3.4. The Changes of Polysaccharides to REEs in the Cell Wall of P. americana
4. Materials and Methods
4.1. Seed Collection and Plant Cultivation
4.2. Plant Treatment and Cell Wall Extraction
4.3. Extraction and Analysis of Cell Wall Polysaccharides
4.4. Time-Dependent Adsorption Kinetics of REEs by Cell Walls
4.5. Fourier Transform Infrared (FTIR) Spectra Measurements
4.6. Determination of Cell Wall Polysaccharides
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, Z.; Hong, F.; Yin, M.; Li, H.; Hu, F.; Zhao, G.; Wong, J.W. Structural differences between light and heavy rare earth element binding chlorophylls in naturally grown fern: Dicranopteris linearis. Biol. Trace Elem. Res. 2005, 106, 279–297. [Google Scholar] [CrossRef]
- Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 2019, 10, 1285–1303. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Xia, J.L.; Yin, D.D.; Luo, M.; Yan, C.H.; Du, Y.P. Rare earth incorporated electrode materials for advanced energy storage. Coord. Chem. Rev. 2019, 390, 32–49. [Google Scholar] [CrossRef]
- Mancheri, N.A. Chinese monopoly in rare earth elements: Supply-demand and industrial applications. China Rep. 2012, 48, 449–468. [Google Scholar] [CrossRef]
- Liu, D.; Wang, X.; Lin, Y.; Chen, Z.; Xu, H.; Wang, L. The effects of cerium on the growth and some antioxidant metabolisms in rice seedlings. Environ. Sci. Pollut. Res. 2012, 19, 3282–3291. [Google Scholar] [CrossRef] [PubMed]
- Chao, Y.Q.; Liu, W.S.; Chen, Y.M.; Chen, W.H.; Zhao, L.H.; Ding, Q.B.; Wang, S.Z.; Tang, Y.T.; Zhang, T.; Qiu, R.L. Structure, variation, and Co-occurrence of soil microbial communities in abandoned sites of a rare earth elements mine. Environ. Sci. Technol. 2016, 50, 11481–11490. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.S.; Guo, M.N.; Liu, C.; Yuan, M.; Chen, X.T.; Huot, H.; Zhao, C.M.; Tang, Y.T.; Morel, J.L.; Qiu, R.L. Water, sediment and agricultural soil contamination from an ion-adsorption rare earth mining area. Chemosphere 2019, 216, 75–83. [Google Scholar] [CrossRef]
- Pallares, R.M.; Faulkner, D.; An, D.D.; Hebert, S.; Loguinov, A.; Proctor, M.; Villalobos, J.A.; Bjornstad, K.A.; Rosen, C.J.; Vulpe, C.; et al. Genome-wide toxicogenomic study of the lanthanides sheds light on the selective toxicity mechanisms associated with critical materials. Proc. Natl. Acad. Sci. USA 2021, 118, e2025952118. [Google Scholar] [CrossRef]
- Zhuang, M.Q.; Zhao, J.S.; Li, S.Y.; Liu, D.R.; Wang, K.B.; Xiao, P.R.; Yu, L.L.; Jiang, Y.; Song, J.; Zhou, J.Y.; et al. Concentrations and health risk assessment of rare earth elements in vegetables from mining area in Shandong, China. Chemosphere 2017, 168, 578–582. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, Y.B.; Zhu, Y.G.; Tang, Z.; McGrath, S.P. Soil contamination in china: Current status and mitigation strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef]
- van der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Chaney, R.L.; Anderson, C.W.N.; Meech, J.A.; Erskine, P.D.; Simonnot, M.O.; Vaughan, J.; Morel, J.L.; et al. Agromining: Farming for metals in the future? Environ. Sci. Technol. 2015, 49, 4773–4780. [Google Scholar] [CrossRef] [PubMed]
- Grosjean, N.; Le Jean, M.; Berthelot, C.; Chalot, M.; Gross, E.M.; Blaudez, D. Accumulation and fractionation of rare earth elements are conserved traits in the Phytolacca genus. Sci. Rep. 2019, 9, 18458. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.S.; Wei, Z.G.; Tao, Y.; Wan, S.K.; Yang, Y.T.; Cao, X.D.; Zhao, G.W. Distribution of rare earth elements and structure characterization of chlorophyll-lanthanum in a natural plant fern Dicranopteris dichotoma. Acta Bot. Sin. 1999, 41, 851–854. [Google Scholar]
- Russell, A.E.; Raich, J.W.; Vitousek, P.M. The ecology of the climbing fern Dicranopteris linearis on windward Mauna Loa, Hawaii. J. Ecol. 1998, 86, 765–779. [Google Scholar] [CrossRef]
- Millero, F.J. Stability constants for the formation of rare-earth inorganic complexes as a function of ionic strength. Geochim. Cosmochim. Acta 1992, 56, 3123–3132. [Google Scholar] [CrossRef]
- Wu, J.L.; Chen, A.Q.; Peng, S.L.; Wei, Z.G.; Liu, G.C. Identification and application of amino acids as chelators in phytoremediation of rare earth elements lanthanum and yttrium. Plant Soil 2013, 373, 329–338. [Google Scholar] [CrossRef]
- Yuan, M.; Guo, M.N.; Liu, W.S.; Liu, C.; van der Ent, A.; Morel, J.L.; Huot, H.; Zhao, W.Y.; Wei, X.G.; Qiu, R.L.; et al. The accumulation and fractionation of rare earth elements in hydroponically grown Phytolacca americana L. Plant Soil 2017, 421, 67–82. [Google Scholar] [CrossRef]
- Liu, T.; Shen, C.; Wang, Y.; Huang, C.; Shi, J. New insights into regulation of proteome and polysaccharide in cell wall of Elsholtzia splendens in response to Copper stress. PLoS ONE 2014, 9, e109573. [Google Scholar] [CrossRef]
- Parrotta, L.; Guerriero, G.; Sergeant, K.; Cal, G.; Hausman, J.F. Target or barrier? The cell wall of early- and later-diverging plants vs cadmium toxicity: Differences in the response mechanisms. Front. Plant Sci. 2015, 6, 133. [Google Scholar] [CrossRef]
- Andrade, L.R.; Leal, R.N.; Noseda, M.; Duarte, M.E.R.; Pereira, M.S.; Mourao, P.A.S.; Farina, M.; Amado, G.M. Brown algae overproduce cell wall polysaccharides as a protection mechanism against the heavy metal toxicity. Mar. Pollut. Bull. 2010, 60, 1482–1488. [Google Scholar] [CrossRef]
- Yuan, Y.; Imtiaz, M.; Rizwan, M.; Dai, Z.H.; Hossain, M.M.; Zhang, Y.H.; Huang, H.L.; Tu, S.X. The role and its transcriptome mechanisms of cell wall polysaccharides in vanadium detoxication of rice. J. Hazard. Mater. 2022, 425, 127966. [Google Scholar] [CrossRef] [PubMed]
- Krzeslowska, M. The cell wall in plant cell response to trace metals: Polysaccharide remodeling and its role in defense strategy. Acta Physiol. Plant. 2011, 33, 35–51. [Google Scholar] [CrossRef]
- Yu, X.F.; Yang, Z.H.; Xu, Y.H.; Wang, Z.W.; Fan, C.Y.; Zeng, X.X.; Liu, Y.J.; Lei, T.; Jiang, M.Y.; Li, J.N.; et al. Effect of chromium stress on metal accumulation and cell wall fractions in Cosmos bipinnatus. Chemosphere 2023, 315, 137677. [Google Scholar] [CrossRef] [PubMed]
- Nyquist, J.; Greger, M. Uptake of Zn, Cu, and Cd in metal loaded Elodea canadensis. Environ. Exp. Bot. 2007, 60, 219–226. [Google Scholar] [CrossRef]
- Zheng, S.J.; Lin, X.; Yang, J.; Liu, Q.; Tang, C. The kinetics of aluminum adsorption and desorption by root cell walls of an aluminum resistant wheat (Triticum aestivum L.) cultivar. Plant Soil 2004, 261, 85–90. [Google Scholar] [CrossRef]
- Colzi, I.; Arnetoli, M.; Gallo, A.; Doumett, S.; Del Bubba, M.; Pignattelli, S.; Gabbrielli, R.; Gonnelli, C. Copper tolerance strategies involving the root cell wall pectins in Silene paradoxa L. Environ. Exp. Bot. 2012, 78, 91–98. [Google Scholar] [CrossRef]
- Xiong, J.; An, L.; Lu, H.; Zhu, C. Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta 2009, 230, 755–765. [Google Scholar] [CrossRef]
- Shi, Y.-Z.; Zhu, X.-F.; Wan, J.-X.; Li, G.-X.; Zheng, S.-J. Glucose alleviates cadmium toxicity by increasing cadmium fixation in root cell wall and sequestration into vacuole in Arabidopsis. J. Integr. Plant Biol. 2015, 57, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Cai, H.; He, C.; Zhang, W.; Wang, L. A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytol. 2015, 206, 1063–1074. [Google Scholar] [CrossRef]
- Yu, H.Y.; Wu, Y.; Huang, H.G.; Zhan, J.; Wang, K.J.; Li, T.X. The predominant role of pectin in binding Cd in the root cell wall of a high Cd accumulating rice line (Oryza sativa L.). Ecotoxicol. Environ. Saf. 2020, 206, 111210. [Google Scholar] [CrossRef]
- Ren, C.; Qi, Y.B.; Huang, G.Y.; Yao, S.Y.; You, J.W.; Hu, H.Q. Contributions of root cell wall polysaccharides to Cu sequestration in castor (Ricinus communis L.) exposed to different Cu stresses. J. Environ. Sci. 2020, 88, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H. Cell biology of aluminum toxicity and tolerance in higher plants. Int. Rev. Cytol. 2000, 200, 1–46. [Google Scholar] [CrossRef]
- Dai, M.Y.; Liu, W.W.; Hong, H.L.; Lu, H.L.; Liu, J.C.; Jia, H.; Yan, C.L. Exogenous phosphorus enhances cadmium tolerance by affecting cell wall polysaccharides in two mangrove seedlings Avicennia marina (Forsk.) Vierh and Kandelia obovata (S., L.) Yong differing in cadmium accumulation. Mar. Pollut. Bull. 2018, 126, 86–92. [Google Scholar] [CrossRef]
- Yang, X.; Lin, R.K.; Zhang, W.Y.; Xu, Y.K.; Wei, X.; Zhuo, C.; Qin, J.H.; Li, H.S. Comparison of Cd subcellular distribution and Cd detoxification between low/high Cd-accumulative rice cultivars and sea rice. Ecotoxicol. Environ. Saf. 2019, 185, 109698. [Google Scholar] [CrossRef]
- Spain, O.; Plohn, M.; Funk, C. The cell wall of green microalgae and its role in heavy metal removal. Physiol. Plant. 2021, 173, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.L.; Wang, X.H.; Wei, T.; Zhou, R.; Muhammad, H.; Hua, L.; Ren, X.H.; Guo, J.; Ding, Y.Z. Accumulation and fixation of Cd by tomato cell wall pectin under Cd stress. Environ. Exp. Bot. 2019, 167, 103829. [Google Scholar] [CrossRef]
- Shan, X.Q.; Wang, H.I.; Zhang, S.Z.; Zhou, H.F.; Zheng, Y.; Yu, H.; Wen, B. Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Sci. 2003, 165, 1343–1353. [Google Scholar] [CrossRef]
- Wei, Z.G.; Hong, F.H.; Yin, M.; Li, H.X.; Hu, F.; Zhao, G.W.; WoonchungWong, J. Subcellular and molecular localization of rare earth elements and structural characterization of yttrium bound chlorophyll a in naturally grown fern Dicranopteris dichotoma. Microchem. J. 2005, 80, 1–8. [Google Scholar] [CrossRef]
- Lai, Y.; Wang, Q.; Yang, L.; Huang, B. Subcellular distribution of rare earth elements and characterization of their binding species in a newly discovered hyperaccumulator Pronephrium simplex. Talanta 2006, 70, 26–31. [Google Scholar] [CrossRef]
- Wang, X.; Liu, D.W. Integration of cerium chemical forms and subcellular distribution to understand cerium tolerance mechanism in the rice seedlings. Environ. Sci. Pollut. Res. 2017, 24, 16336–16343. [Google Scholar] [CrossRef]
- Wang, P.; Yang, B.; Wan, H.; Fang, X.; Yang, C. The differences of cell wall in roots between two contrasting soybean cultivars exposed to cadmium at young seedlings. Environ. Sci. Pollut. Res. 2018, 25, 29705–29714. [Google Scholar] [CrossRef]
- Wang, L.; Li, R.; Yan, X.; Liang, X.; Sun, Y.; Xu, Y. Pivotal role for root cell wall polysaccharides in cultivar-dependent cadmium accumulation in Brassica chinensis L. Ecotoxicol. Environ. Saf. 2020, 194, 110369. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.Y.; Liu, Y.K.; Zhang, R.; Luo, J.P.; Song, Y.C.; Li, J.X.; Wu, K.R.; Peng, L.C.; Liu, Y.Y.; Du, Y.L.; et al. Hemicellulose modification promotes cadmium hyperaccumulation by decreasing its retention on roots in Sedum alfredii. Plant Soil 2020, 447, 241–255. [Google Scholar] [CrossRef]
- Ma, Y.S.; Jie, H.D.; Tang, Y.Y.; Xing, H.C.; Jie, Y.C. The role of hemicellulose in cadmium tolerance in ramie (Boehmeria nivea (l.) gaud.). Plants-Basel 2022, 11, 1941. [Google Scholar] [CrossRef]
- Zhu, X.F.; Lei, G.J.; Jiang, T.; Liu, Y.; Li, G.X.; Zheng, S.J. Cell wall polysaccharides are involved in P-deficiency-induced Cd exclusion in Arabidopsis thaliana. Planta 2012, 236, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Jaskulak, M.; Grobelak, A. Cadmium Phytotoxicity-Biomarkers; Academic Press Ltd.: Cambridge, MA, USA; Elsevier Science Ltd.: London, UK, 2019; pp. 177–191. [Google Scholar] [CrossRef]
- Loix, C.; Huybrechts, M.; Vangronsveld, J.; Gielen, M.; Keunen, E.; Cuypers, A. Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front. Plant Sci. 2017, 8, 1867. [Google Scholar] [CrossRef]
- Amos, R.A.; Mohnen, D. Critical review of plant cell wall matrix polysaccharide glycosyltransferase activities verified by heterologous protein expression. Front. Plant Sci. 2019, 10, 915. [Google Scholar] [CrossRef]
- Peng, J.S.; Wang, Y.J.; Ding, G.; Ma, H.L.; Zhang, Y.J.; Gong, J.M. A pivotal role of cell wall in cadmium accumulation in the crassulaceae hyperaccumulator Sedum plumbizincicola. Mol. Plant 2017, 10, 771–774. [Google Scholar] [CrossRef]
- Li, D.Q.; Shu, Z.F.; Ye, X.L.; Zhu, J.J.; Pan, J.T.; Wang, W.D.; Chang, P.P.; Cui, C.L.; Shen, J.Z.; Fang, W.P.; et al. Cell wall pectin methyl-esterification and organic acids of root tips involve in aluminum tolerance in Camellia sinensis. Plant Physiol. Biochem. 2017, 119, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Meychik, N.R.; Nikolaeva, Y.I.; Nikushin, O.V.; Kushunina, M.A. The effect of polymetallic pollution on ion-exchange properties of barley root and shoot cell walls. Dokl. Biochem. Biophys. 2021, 501, 415–418. [Google Scholar] [CrossRef]
- Zhang, J.; Qian, Y.; Chen, Z.; Amee, M.; Niu, H.; Du, D.; Yao, J.; Chen, K.; Chen, L.; Sun, J. Lead-induced oxidative stress triggers root cell wall remodeling and increases lead absorption through esterification of cell wall polysaccharide. J. Hazard. Mater. 2020, 385, 121524. [Google Scholar] [CrossRef]
- Paynel, F.; Schaumann, A.; Arkoun, M.; Douchiche, O.; Morvan, C. Temporal regulation of cell-wall pectin methylesterase and peroxidase isoforms in cadmium-treated flax hypocotyl. Ann. Bot. 2009, 104, 1363–1372. [Google Scholar] [CrossRef]
- Li, T.Q.; Tao, Q.; Shohag, M.J.I.; Yang, X.E.; Sparks, D.L.; Liang, Y.C. Root cell wall polysaccharides are involved in cadmium hyperaccumulation in Sedum alfredii. Plant Soil 2015, 389, 387–399. [Google Scholar] [CrossRef]
- Fan, C.H.; Gao, Y.L.; Du, B. Response of ftir and raman spectra on cell wall of Calendula Officinalis seedlings roots to the Co-contamination stress of lead and cadmium in loess. Spectrosc. Spectral Anal. 2016, 36, 2076–2081. [Google Scholar] [CrossRef]
- Ducic, T.; Milenkovic, I.; Mutavdzic, D.; Nikolic, M.; de Yuso, M.V.M.; Vucinic, Z.; Algarra, M.; Radotic, K. Estimation of carbon dots amelioration of copper toxicity in maize studied by synchrotron radiation-FTIR. Colloids Surf. B 2021, 204, 111828. [Google Scholar] [CrossRef]
- Wojcik, M.; Vangronsveld, J.; D’Haen, J.; Tukiendorf, A. Cadmium tolerance in Thlaspi caerulescens-II. Localization of cadmium in Thlaspi caerulescens. Environ. Exp. Bot. 2005, 53, 163–171. [Google Scholar] [CrossRef]
- Xu, X.H.; Yang, J.J.; Zhao, X.Y.; Zhang, X.S.; Li, R.Y. Molecular binding mechanisms of manganese to the root cell wall of Phytolacca americana L. using multiple spectroscopic techniques. J. Hazard. Mater. 2015, 296, 185–191. [Google Scholar] [CrossRef]
- Deng, P.Y.; Liu, W.; Zeng, B.Q.; Qiu, Y.K.; Li, L.S. Sorption of heavy metals from aqueous solution by dehydrated powders of aquatic plants. Int. J. Environ. Sci. Technol. 2013, 10, 559–566. [Google Scholar] [CrossRef]
- Zhang, X.B.; Wang, L.H.; Zhou, Q. Roles of horseradish peroxidase in response to Terbium stress. Biol. Trace Elem. Res. 2014, 161, 130–135. [Google Scholar] [CrossRef]
- Farghaly, F.A.; Hamada, A.M.; Radi, A.A. Phyto-remedial of excessive copper and evaluation of its impact on the metabolic activity of Zea mays. Cereal Res. Commun. 2022, 50, 973–985. [Google Scholar] [CrossRef]
- Yang, X.Z.; Gan, Q.Q.; Sun, X.C.; Wu, S.W.; Tan, Q.L.; Hu, C.X. Effects of Molybdenum on Cell Wall Component of Wheat Leaf Under Different Growth Stages. J. Soil Sci. Plant Nutr. 2021, 21, 587–595. [Google Scholar] [CrossRef]
- Qiu, H.; Zhang, M.; Zou, D.W.; Song, S.Y.; Wan, Y.; An, S.Q.; Leng, X. Molecular distribution and toxicity assessment of yttrium in Elodea canadensis. Mar. Freshwater Res. 2018, 69, 690–699. [Google Scholar] [CrossRef]
- Chen, G.; Liu, Y.; Wang, R.; Zhang, J.; Owens, G. Cadmium adsorption by willow root: The role of cell walls and their subfractions. Environ. Sci. Pollut. Res. Int. 2013, 20, 5665–5672. [Google Scholar] [CrossRef] [PubMed]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
Number | Functional Group | Root Cell Wall | Leaf Cell Wall | ||||
---|---|---|---|---|---|---|---|
Before | After | Before | After | ||||
Wavenumber (cm−1) | Wavenumber (cm−1) | Offset (cm−1) | Wavenumber (cm−1) | Wavenumber (cm−1) | Offset (cm−1) | ||
1 | C-C/ C-O | 1073 | 1061 | −12 | 1049 | 1043 | −6 |
2 | C-C/ C-O | - | - | - | 1155 | 1155 | 0 |
3 | C-O-S/C-O /C-O-P | 1252 | 1245 | −7 | 1247 | 1247 | 0 |
4 | C-O | 1321 | 1319 | −2 | 1321 | 1311 | −10 |
5 | C-N | 1647 | 1645 | −2 | 1647 | 1645 | −2 |
6 | -CH3 /=CH2/O-H | 2929 | 2929 | 0 | 2927 | 2927 | 0 |
7 | -OH/ -NH | 3448 | 3419 | −29 | 3421 | 3450 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Chen, K.; Lei, S.; Gao, Y.; Yan, S.; Yuan, M. Rare Earth Elements (REEs) Adsorption and Detoxification Mechanisms in Cell Wall Polysaccharides of Phytolacca americana L. Plants 2023, 12, 1981. https://doi.org/10.3390/plants12101981
Guo Y, Chen K, Lei S, Gao Y, Yan S, Yuan M. Rare Earth Elements (REEs) Adsorption and Detoxification Mechanisms in Cell Wall Polysaccharides of Phytolacca americana L. Plants. 2023; 12(10):1981. https://doi.org/10.3390/plants12101981
Chicago/Turabian StyleGuo, Yingying, Keyi Chen, Shihan Lei, Yuan Gao, Shengpeng Yan, and Ming Yuan. 2023. "Rare Earth Elements (REEs) Adsorption and Detoxification Mechanisms in Cell Wall Polysaccharides of Phytolacca americana L." Plants 12, no. 10: 1981. https://doi.org/10.3390/plants12101981
APA StyleGuo, Y., Chen, K., Lei, S., Gao, Y., Yan, S., & Yuan, M. (2023). Rare Earth Elements (REEs) Adsorption and Detoxification Mechanisms in Cell Wall Polysaccharides of Phytolacca americana L. Plants, 12(10), 1981. https://doi.org/10.3390/plants12101981