The Cryopreservation of Medicinal and Ornamental Geophytes: Application and Challenges
Abstract
:1. Introduction
2. History, Principles, and Fundamentals of Cryopreservation
2.1. Vitrification
- (i)
- Pretreatment of explants: this step is important because it contributes to the dehydration tolerance of plants. It consists, generally, of explants’ treatment with a solution containing a high sucrose concentration for a short period (20–30 min): a loading solution (LS) [17].
- (ii)
- Dehydration with complex mixtures of cryoprotectants, such as plant vitrification solutions (PVS2, PVS3). The most commonly employed mixture in cryopreservation is the PVS2 developed by Sakai et al. [19], which consists of 30% (w/v) glycerol, 15% (w/v) ethylene glycol, 15% (w/v) dimethyl sulfoxide (DMSO), and 0.4 M sucrose. Its exposure time to the explant can be a critical parameter in determining the possible toxic effect of the solution. The treatment period can vary (from 20 min to 200 min or more) depending on the type, size, and susceptibility of the explant. Moreover, most cryopreservation studies report that performing osmodehydration at 0 °C instead of 25 °C reduces the toxicity of PVS2 [7].
- (iii)
- Rapid cooling by direct immersion in LN in order to promote the vitrification of internal solutes.
- (iv)
- Rapid thawing of cryopreserved samples in a water bath at 40 °C for 1 min to 3 min. This step has to be completed very quickly to avoid devitrification, which would lead to ice crystal formation.
- (v)
- Unloading treatment with a liquid medium containing 1.2 M sucrose or sorbitol (washing solution: ULS) is employed to remove the vitrification solution progressively and wash the cryopreserved explants.
2.2. Encapsulation–Dehydration and Encapsulation–Vitrification
2.3. Droplet Vitrification
2.4. V- and D-Cryoplate
2.5. Cryo-Mesh
3. Application of Cryopreservation to Some Medicinal and Ornamental Bulbous Plants
3.1. Amaryllidaceae
3.2. Aracaceae
3.3. Asparagaceae Family
3.4. Asteraceae Family
3.5. Basellaceae Family
3.6. Berberidaceae Family
3.7. Colchicaceae Family
3.8. Iridaceae Family
3.9. Liliaceae Family
3.10. Primulaceae Family
3.11. Ranunculaceae Family
3.12. Zingeberaceae Family
Species | Explant Type | Cryopreservation Techniques | Survival/Regrowth (%) | References |
---|---|---|---|---|
Amaryllidaceae | ||||
Allium cepa | Pollen | Des | R: 60 | [59] |
Allium cepa | Shoot tips | DV | R: 58 | [52] |
Adventitious buds | R: 72 | |||
Shoot tips from bulbs | R: 32 | |||
Allium chinense | Shoot tips | DV | R: 100 | [23] |
Allium sativum | Shoot apices from bulbs | Vitr | R: 90 | [43] |
Allium sativum | Shoot tips from bulbs | Vitr | R: 75 | [53] |
Allium sativum | Shoot tips | Vitr | R: 70 | [44] |
Allium sativum | Apices bulbs | DV | R: 100 | [179] |
Allium sativum | Immature involucres (bulbil primordia and floral buds) | DV | S: 90 R: 83 | [60] |
Allium sativum | Unripe inflorescences | DV | S: 79.9 R: 78.2 | [54] |
Allium sativum | Stem discs | ED | S: 75 R: 55 | [48] |
Allium sativum | Shoot apices | DV | S: 82.6 R: 75.9 | [50] |
Allium sativum | Shoot tips | D-cryoplate | R: 94 | [58] |
Amaryllis belladonna | Embryo axes | Des and cryoprotection | S: 85 | [65] |
Amaryllis belladonna | Zygotic embryos | Des and cryoprotection | S: 100 | [66] |
Galanthus elwesii | Apical meristems | DV | S: 96.7 R: 75.5 | [71] |
Narcissus L. | Somatic embryos | DV | S: 100 | [72] |
Aracaceae | ||||
Colocasia esculenta | Embryogenic callus | CF | S: 75 | [77] |
Colocasia esculenta | Shoot tips | Vitr | S: ~80 | [78] |
Colocasia esculenta | Shoot tips | Vitr | S: 100 | [79] |
ED | S: 85.5 | |||
Colocasia esculenta | Embryogenic callus | EV | S: 60 | [76] |
Colocasia esculenta | Shoot tips | Vitr | S: 30 | [180] |
Colocasia esculenta | Shoot tips | DV | S: 100 | [81] |
Colocasia esculenta | Shoot tips | ED | S: 65 | [76] |
Colocasia esculenta | Apical meristems | DV | S: 77.8 | [80] |
Colocasia esculenta | Shoot tips | ED | S: 33 | [82] |
Colocasia esculenta | Pollen | Directly in LN | V: 86 * G: 16 * | [83] |
Asparagaceae | ||||
Asparagus officinalis | Shoot tips | CF | S: ~100 | [85] |
Asparagus officinalis | Somatic embryos | Vitr | S: 65 | [89] |
Asparagus officinalis | Cultured cells | Vitr | S: 48 | [89] |
Asparagus officinalis | Single node segments with axillary bud | Des | S: 63 R: 70 | [91] |
Asparagus officinaIis | Segment bud clusters | Vitr | R: ~90 | [86] |
Asparagus officinalis | Embryogenic suspension cells | Vitr | S: 86 | [90] |
Asparagus officinalis | Shoot tips | DV | S: 90 R: 71 | [93] |
Asparagus officinalis | Rhizome buds | ED | R: 84 | [94] |
Asteraceae | ||||
Helianthus tuberosus | Shoot tips | Vitr | R: 34 | [100] |
Helianthus tuberosus | Shoot tips | DV | S: 93 R: 83 | [97] |
Smallanthus sonchifolius | Apical buds | DV | S: 90 R: 87 | [104] |
Berberidaceae | ||||
Podophyllum hexandrum | Mature seeds | Des | G: 89 | [110] |
Basellaceae | ||||
Ullucus tuberosus | Shoot tips | DV | S: 38.8 R: 34.6 | [107] |
Ullucus tuberosus | Shoot tips | DV | R: 52.5 | [108] |
Desiccation | R: 10 | |||
Ullucus tuberosus | Shoots tips | V-cryoplate | R: 43.3 | [106] |
D-cryoplate | R: 96.7 | |||
Colchicaceae | ||||
Gloriosa superba | Pollen | Des | N.R. | [112] |
Iridaceae | ||||
Crocus sativus | Shoot tips | Vitr | S: 85.8 | [113] |
Crocus hyemalis | Embryogenic callus | Vitr | S: 66.7 R: 50.0 | [114] |
EV | S: 75 R: 66.7 | [115] | ||
Crocus moabiticus | Embryogenic callus | Vitr | S: 50 R: 44.4 | [114] |
EV | S: 55.6 R: 66.7 | [115] | ||
Gladiolus spp | Shoot tips | DV | R: 54.0 | [119] |
Gladiolus | Pollen | CF | G: 52.8 | [116] |
Iris pumila | Shoot tips | Vitr | S: 63 R: 55 | [124] |
Iris nigricans | Somatic embryos | ED | S: 60 R: 54 | [122] |
Liliaceae | ||||
Chlorophytum borivilianum | Meristems | Vitr | S: 66 R: 33 | [126] |
Fritillaria anhuiensis | Shoot tips | Vitr | S: 79.9 R: 52.3 | [129] |
Fritillaria cirrhosa | Callus | Vitr | S: 80 | [130] |
Fritillaria cirrhosa | Callus | Vitr | S: 87.4 | [131] |
Fritillaria thunbergii | Pollen | CF | V: 56.4 | [128] |
Fritillaria thunbergii | Callus | CF | N.R. | [181] |
Lilium spp | Apical meristems | Vitr | R: 85 | [145] |
Lilium japonicum | Scale segments with adventitious buds | ED | R: 90 | [182] |
Lilium spp | Shoot tips | DV | S: 89.5 R: 87.5 | [149] |
Lilium spp | Shoot tips | DV | S: 95 R: 87.5 | [151] |
Lilium oriental hybrid ‘Siberia’ | Shoot tips | DV | R: 90 | [148] |
Lilium spp | Shoot meristems | Vitr | S: 90 | [144] |
Lilium oriental hybrid ‘Siberia | Shoot tips | DV | S: 92.5 | [146] |
Lilium lancifolium | Shoot tips | Vitr | S: 95 | [150] |
Lilium oriental hybrid ‘Siberia | Small leaf squares with adventitious bud | Vitr | S: 85 R: 72 | [183] |
Lilium spp | Apical meristems | DV | S: 83.8 R: 67.6 | [152] |
Lilium martagon | Meristem | DV | S: 65 R: 87 | [154] |
Lilium spp | Adventitious bulbs | DV | R: 65.7 | [155] |
Lilium ledebourii | Seeds | Des | G: 94.8 | [156] |
Vitr | G: 97.4 | |||
Glycerol pretreatment | G: 97.5 | |||
ED | G: 69.4 | |||
Lilium ledebourii | Seeds | Des | G: 100 | [141] |
Lilium ledebourii | Seeds | ED | G: 50 | [139] |
Lilium ledebourii | Seeds | Pre-growth dehydration | G: 75 | [140] |
Lilium ledebourii | Seed | EV | R: 10 | [138] |
Embryonic axes | R: 10 | |||
Lilium oriental hybrids | Pollen | Des | G: 51 | [184] |
Lilium oriental hybrid ‘Siberia’ | Pollen | Rapid cooling | V: 58.8 | [153] |
Vitr | V: 70.3 | |||
Tulipa tarda | Apical meristems | DV | S: 90 R: 40 | [157] |
Tulipa tarda | Apical meristems | DV | R: 100 | [158] |
Primulaceae | ||||
Cyclamen persicum | Embryogenic suspension cultures | CF | R: 75 | [162] |
Cyclamen persicum | Embryogenic callus | Vitr | R: 90 | [164] |
C. cilicium | R: 78 | |||
C. mirabile | R: 80 | |||
C. parviflorum | R: 70 | |||
C. pseudibericum | R:75 | |||
Ranunculaceae | ||||
Aconitum heterophyllum | Mature seeds | Des | G: 88 | [110] |
Zingeberaceae | ||||
Curcuma longa | Axillary buds | DV | S: 80 | [168] |
Kaempferia galanga | Shoot tips | Vitr | S: 66.7 R: 46.7 | [174] |
Kaempferia galanga | Shoot tips | ED | S: 56.7 R: 33.3 | [174] |
Zingiber officinale | Shoot buds | Vitr | R: 80 | [178] |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reed, B.M.; Sarasan, V.; Kane, M.; Bunn, E.; Pence, V.C. Biodiversity conservation and conservation biotechnology tools. Vitr. Cell. Dev. Biol.-Plant 2011, 47, 1–4. [Google Scholar] [CrossRef]
- Coelho, N.; Gonçalves, S.; Romano, A. Endemic Plant Species Conservation: Biotechnological Approaches. Plants 2020, 9, 345. [Google Scholar] [CrossRef] [PubMed]
- Frankel, O. Natural variation and its conservation. In Genetic Diversity in Plants; Springer: Berlin/Heidelberg, Germany, 1977; pp. 21–44. [Google Scholar]
- Gonzalez-Arnao, M.T.; Martinez-Montero, M.E.; Cruz-Cruz, C.A.; Engelmann, F. Advances in cryogenic techniques for the long-term preservation of plant biodiversity. Biotechnol. Biodivers 2014, 4, 129–170. [Google Scholar]
- Jenderek, M.M.; Reed, B.M. Cryopreserved storage of clonal germplasm in the USDA National Plant Germplasm System. Vitr. Cell. Dev. Biol.-Plant 2017, 53, 299–308. [Google Scholar] [CrossRef]
- Engelmann, F. Use of biotechnologies for the conservation of plant biodiversity. Vitr. Cell. Dev. Biol.-Plant 2011, 47, 5–16. [Google Scholar] [CrossRef]
- Sakai, A.; Engelmann, F. Vitrification, encapsulation-vitrification and droplet-vitrification: A review. CryoLetters 2007, 28, 151–172. [Google Scholar]
- Popova, E.; Kulichenko, I.; Kim, H.-H. Critical Role of Regrowth Conditions in Post-Cryopreservation of In Vitro Plant Germplasm. Biology 2023, 12, 542. [Google Scholar] [CrossRef]
- Engelmann, F. In vitro conservation methods. Biotechnol. Agric. Ser 1997, 19, 119–162. [Google Scholar]
- Sakai, A. Survival of the Twig of Woody Plants at −196 °C. Nature 1960, 185, 393–394. [Google Scholar] [CrossRef]
- Wang, M.-R.; Lambardi, M.; Engelmann, F.; Pathirana, R.; Panis, B.; Volk, G.M.; Wang, Q.-C. Advances in cryopreservation of in vitro-derived propagules: Technologies and explant sources. Plant Cell Tissue Organ Cult. (PCTOC) 2021, 144, 7–20. [Google Scholar] [CrossRef]
- Benito, M.G.; Clavero-Ramírez, I.; López-Aranda, J. The use of cryopreservation for germplasm conservation of vegetatively propagated crops. Span. J. Agric. Res 2004, 2, 341–351. [Google Scholar] [CrossRef]
- Reed, B.M.; Uchendu, E. Controlled rate cooling. In Plant Cryopreservation: A Practical Guide; Springer: New York, NY, USA, 2008; pp. 77–92. [Google Scholar]
- Kaczmarczyk, A.; Funnekotter, B.; Menon, A.; Phang, P.Y.; Al-Hanbali, A.; Bunn, E.; Mancera, R. Current issues in plant cryopreservation. In Current Frontiers in Cryobiology; IntechOpen: London, UK, 2012; Volume 6, pp. 417–438. [Google Scholar]
- Reed, B.M.; Kovalchuk, I.; Kushnarenko, S.; Meier-Dinkel, A.; Schoenweiss, K.; Pluta, S.; Straczynska, K.; Benson, E.E. Evaluation of critical points in technology transfer of cryopreservation protocols to international plant conservation laboratories. CryoLetters 2004, 25, 341–352. [Google Scholar] [PubMed]
- Day, J.G.; Harding, K.C.; Nadarajan, J.; Benson, E.E. Cryopreservation. In Molecular Biomethods Handbook; Springer: Berlin/Heidelberg, Germany, 2008; pp. 917–947. [Google Scholar]
- Benson, E.E. Cryopreservation. In Plant Conservation Biotechnology; CRC Press: Boca Raton, FL, USA, 1999; pp. 109–122. [Google Scholar]
- Reinhoud, P.J.; Van Iren, F.; Kijne, J.W. Cryopreservation of undifferentiated plant cells. In Cryopreservation of Tropical Plant Germplasm: Current Research Progress and Application; Engelmann, F., Takagi, H., Eds.; JIRCAS, IPGRI: Rome, Italy, 2000; pp. 91–102. [Google Scholar]
- Sakai, A.; Kobayashi, S.; Oiyama, I. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep. 1990, 9, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Fabre, J.; Dereuddre, J. Encapsulation-dehydration: A new approach to cryopreservation of Solanum shoot-tips. CryoLetters 1990, 11, 413–426. [Google Scholar]
- Sakai, A.; Hirai, D.; Takao, N. Development of PVS-based vitrification and encapsulation–vitrification protocols. In Plant Cryopreservation: A Practical Guide; Springer: New York, NY, USA, 2008; pp. 33–57. [Google Scholar]
- Engelmann, F.; Arnao, M.-T.G.; Wu, Y.; Escobar, R. Development of encapsulation dehydration. In Plant Cryopreservation: A Practical Guide; Springer: New York, NY, USA, 2008; pp. 59–75. [Google Scholar]
- Tanaka, D.; Sakuma, Y.; Yamamoto, S.; Matsumoto, T.; Niino, T. Development of the V cryo-plate method for cryopreservation of in vitro rakkyo (Allium chinense G. Don). In Proceedings of the Acta Hortic 1234, Bangkok, Thailand, 26–28 March 2018; pp. 287–292. [Google Scholar]
- Mix-Wagner, G.; Schumacher, H.; Cross, R. Recovery of potato apices after several years of storage in liquid nitrogen. CryoLetters 2003, 24, 33–41. [Google Scholar]
- Panis, B.; Piette, B.; Swennen, R. Droplet vitrification of apical meristems: A cryopreservation protocol applicable to all Musaceae. Plant Sci. 2005, 168, 45–55. [Google Scholar] [CrossRef]
- Panis, B.; Piette, B.; Andre, E.; Van den Houwe, I.; Swennen, R. Droplet vitrification: The first generic cryopreservation protocol for organized plant tissues? In Proceedings of the I International Symposium on Cryopreservation in Horticultural Species, Leuven, Belgium, 5–8 April 2011; pp. 157–162. [Google Scholar]
- Niino, T.; Yamamoto, S.; Matsumoto, T.; Engelmann, F.; Valle Arizaga, M.; Tanaka, D. Development of V and D cryo-plate methods as effective protocols for cryobanking. In Proceedings of the III International Symposium on Plant Cryopreservation 1234, Bangkok, Thailand, 26–28 March 2018; pp. 249–262. [Google Scholar]
- Yamamoto, S.-I.; Rafique, T.; Priyantha, W.S.; Fukui, K.; Matsumoto, T.; Niino, T. Development of a cryopreservation procedure using aluminium cryo-plates. CryoLetters 2011, 32, 256–265. [Google Scholar]
- da Silva, J.A.T.; Kim, H.; Engelmann, F. Chrysanthemum low-temperature storage and cryopreservation: A review. Plant Cell Tissue Organ Cult. (PCTOC) 2015, 120, 423–440. [Google Scholar] [CrossRef]
- Niino, T.; Yamamoto, S.-i.; Fukui, K.; Martínez, C.R.C.; Arizaga, M.V.; Matsumoto, T.; Engelmann, F. Dehydration improves cryopreservation of mat rush (Juncus decipiens Nakai) basal stem buds on cryo-plates. CryoLetters 2013, 34, 549–560. [Google Scholar]
- Niino, T.; Watanabe, K.; Nohara, N.; Rafique, T.; Yamamoto, S.-I.; Fukui, K.; Arizaga, M.V.; Martinez, C.R.C.; Matsumoto, T.; Engelmann, F. Cryopreservation of mat rush lateral buds by air dehydration using aluminum cryo-plate. Plant Biotechnol. 2014, 31, 281–287. [Google Scholar] [CrossRef]
- Niino, T.; Gupta, S.; Meena, D. 4. Cryopreservation of Shoot Apices Using V Cryo-Plate and D Cryo-Plate Method. In Laboratory Manual for Eighth International Training Course on In Vitro and Cryopreservation Approaches for Conservation of Plant Genetic Resources; Agrawal, A., Gowthami, R., Srivastava, V., Malhotra, E.V., Pandey, R., Sharma, N., Gupta, S., Bansal, S., Chaudhury, R., Rana, J.C., et al., Eds.; Malhotra Publishing House: New Delhi, India, 2019; pp. 17–23. [Google Scholar]
- Matsumoto, T.; Yamamoto, S.-I.; Fukui, K.; Rafique, T.; Engelmann, F.; Niino, T. Cryopreservation of persimmon shoot tips from dormant buds using the D cryo-plate technique. Hortic. J. 2015, 84, 106–110. [Google Scholar] [CrossRef]
- Funnekotter, B.; Bunn, E.; Mancera, R.L. Cryo-mesh: A simple alternative cryopreservation protocol. CryoLetters 2017, 38, 155–159. [Google Scholar] [PubMed]
- Stavělíková, H. Morphological characteristics of garlic (Allium sativum L.) genetic resources collection–Information. Inf. Hortic. Sci. 2008, 35, 130–135. [Google Scholar] [CrossRef]
- Garden, K.R.B. Available online: https://www.kew.org/science/collections-and-resources/data-and-digital/names-and-taxonomy (accessed on 24 May 2023).
- Kumar, R.; Kumar, D. Comprehensive metabolomics and antioxidant activity of Allium species viz Allium semenovii, A. sativum and A. cepa: An important spice. Food Res. Int. 2023, 166, 112584. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-H.; Popova, E.; Shin, D.-J.; Yi, J.-Y.; Kim, C.H.; Lee, J.-S.; Yoon, M.-K.; Engelmann, F. Cryobanking of Korean Allium germplasm collections: Results from a 10 year experience. CryoLetters 2012, 33, 45–57. [Google Scholar]
- Zanke, C.; Zamecnik, J.; Kotlińska, T.; Olas, M.; Keller, E. Cryopreservation of garlic for the establishment of a European core collection. In Proceedings of the I International Symposium on Cryopreservation in Horticultural Species 908, Leuven, Belgium, 5–8 April 2009; pp. 431–438. [Google Scholar]
- Keller, E.R.J.; Senula, A.; Zanke, C. Alliaceae in cryopreservation, achievements and constraints. In Proceedings of the I International Symposium on Cryopreservation in Horticultural Species 908, Leuven, Belgium, 5–8 April 2009; pp. 495–508. [Google Scholar]
- Niwata, E. Cryopreservation of apical meristems of garlic (Allium sativum L.) and high subsequent plant regeneration. Cryo-Lett 1995, 16, 102–107. [Google Scholar]
- Subbarayan, K.; Rolletschek, H.; Senula, A.; Ulagappan, K.; Hajirezaei, M.-R.; Keller, E.J. Influence of oxygen deficiency and the role of specific amino acids in cryopreservation of garlic shoot tips. BMC Biotechnol. 2015, 15, 40. [Google Scholar] [CrossRef] [PubMed]
- Baek, H.-J.; Kim, H.-H.; Cho, E.-G.; Chae, Y.-A.; Engelmann, F. Importance of explant size and origin and of preconditioning treatments for cryopreservation of garlic shoot apices by vitrification. CryoLetters 2003, 24, 381–388. [Google Scholar]
- Keller, E. Improvement of cryopreservation results in garlic using low temperature preculture and high-quality in vitro plantlets. CryoLetters 2005, 26, 357–366. [Google Scholar]
- Makowska, Z.; Keller, J.; Engelmann, F. Cryopreservation of apices isolated from garlic (Allium sativum L.) bulbils and cloves. CryoLetters 1999, 20, 175–182. [Google Scholar]
- Keller, E. Cryopreservation of Allium sativum L.(garlic). In Cryopreservation of Plant Germplasm II; Springer: Berlin/Heidelberg, Germany, 2002; pp. 37–47. [Google Scholar]
- Sudarmonowati, E. Cryopreservation of garlic (Allium sativum) cv. Lumbu Hijau using vitrification technique. Ann. Bogor. 2001, 8, 39–47. [Google Scholar]
- Lynch, P.T.; Souch, G.R.; Harding, K. Effects of post-harvest storage of Allium sativum bulbs on the cryopreservation of stem-discs by encapsulation/dehydration. J. Hortic. Sci. Biotechnol 2012, 87, 588–592. [Google Scholar] [CrossRef]
- Lynch, P.T.; Souch, G.R.; Zámeník, J.; Harding, K. Optimization of water content for the cryopreservation of Allium sativum in vitro cultures by encapsulation-dehydration. CryoLetters 2016, 37, 308–317. [Google Scholar] [PubMed]
- Liu, X.-X.; Wen, Y.-B.; Cheng, Z.-H.; Mou, S.-W. Establishment of a garlic cryopreservation protocol for shoot apices from adventitious buds in vitro. Sci. Hortic 2017, 226, 10–18. [Google Scholar] [CrossRef]
- Wang, M.-R.; Zhang, Z.; Haugslien, S.; Sivertsen, A.; Rasmussen, M.; Wang, Q.-C.; Blystad, D.-R. Cryopreservation of shallot (Allium cepa var. aggregatum) shoot tips by droplet-vitrification. In Proceedings of the III International Symposium on Plant Cryopreservation 1234, Bangkok, Thailand, 26–28 March 2018; pp. 241–248. [Google Scholar]
- Wang, M.-R.; Zhang, Z.; Zámečník, J.; Bilavčík, A.; Blystad, D.-R.; Haugslien, S.; Wang, Q.-C. Droplet-vitrification for shoot tip cryopreservation of shallot (Allium cepa var. aggregatum): Effects of PVS3 and PVS2 on shoot regrowth. Plant Cell Tissue Organ Cult. (PCTOC) 2020, 140, 185–195. [Google Scholar] [CrossRef]
- Volk, G.M.; Maness, N.; Rotindo, K. Cryopreservation of garlic (Allium sativum L.) using plant vitrification solution 2. CryoLetters 2004, 25, 219–226. [Google Scholar]
- Kim, H.-H.; Lee, J.-K.; Hwang, H.-S.; Engelmann, F. Cryopreservation of garlic germplasm collections using the droplet-vitrification technique. CryoLetters 2007, 28, 471–482. [Google Scholar]
- Taesan, K.; Joung-Kwan, L.; Jae-Jun, J.; Sang-Sik, N.; Engelmann, F.; Haeng-Hoon, K.; Yun-Keol, L. Implementation of cryopreservation for garlic genetic resources by the droplet vitrification procedure. In Proceedings of the XXVII International Horticultural Congress-IHC2006: II International Symposium on Plant Genetic Resources of Horticultural 760, Seoul, Republic of Korea, 14–18 August 2006; pp. 209–215. [Google Scholar]
- Kim, H.; Cho, E.; Park, S. Analysis of factors affecting the cryopreservation of garlic shoot tips. J. Biomed. Nanotechnol 2006, 2, 129–132. [Google Scholar] [CrossRef]
- Mahajan, R. In vitro and cryopreservation techniques for conservation of snow mountain garlic. In Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 335–346. [Google Scholar]
- Tanaka, D.; Sakuma, Y.; Yamamoto, S.-I.; Valle Arizaga, M.; Niino, T.; Matsumoto, T. Development of–80° C storage for Allium shoot tips using D cryo-plate method. Plant Cell Tissue Organ Cult. (PCTOC) 2021, 144, 115–122. [Google Scholar] [CrossRef]
- Senula, A.; Keller, E. Pollen cryopreservation to support maintenance of a wild species collection of the genus Allium. In Proceedings of the II International Symposium on Plant Cryopreservation 1039, Fort Collins, CO, USA, 11–14 August 2013; pp. 289–296. [Google Scholar]
- Kim, H.-H.; Lee, J.-K.; Yoon, J.-W.; Ji, J.-J.; Nam, S.-S.; Hwang, H.-S.; Cho, E.-G.; Engelmann, F. Cryopreservation of garlic bulbil primordia by the droplet-vitrification procedure. CryoLetters 2006, 27, 143–153. [Google Scholar]
- Ganeshan, S. Viability and fertilizing capacity of onion pollen (Allium cepa L.) stored in liquid nitrogen (−196 °C). Trop Agric (Trinidad) 1986, 63, 46–48. [Google Scholar]
- Ganeshan, S.; Rajasekharan, P.; Shashikumar, S.; Decruze, W. Cryopreservation of pollen. In Plant cryopreservation: A Practical Guide; Springer: New York, NY, USA, 2008; pp. 443–464. [Google Scholar]
- Dennehy, Z.; Bilsborrow, J.; Culham, A.; David, J.; Könyves, K. The complete plastome of the South African species, Amaryllis belladonna L.(Amaryllidaceae). Mitochondrial DNA Part B 2021, 6, 3393–3395. [Google Scholar] [CrossRef] [PubMed]
- Sershen, N.; Berjak, P.; Pammenter, N.W. Desiccation sensitivity of excised embryonic axes of selected amaryllid species. Seed Sci. Res. 2008, 18, 1–11. [Google Scholar]
- Sershen, N.; Pammenter, N.; Berjak, P.; James, W.-S. Cryopreservation of embryonic axes of selected amaryllid species. CryoLetters 2007, 28, 387–399. [Google Scholar]
- Sershen, N.; Berjak, P.; Pammenter, N.; Wesley-Smith, J. The effects of various parameters during processing for cryopreservation on the ultrastructure and viability of recalcitrant zygotic embryos of Amaryllis belladonna. Protoplasma 2012, 249, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, D.; Varghese, B.; Berjak, P.; Pammenter, N.W. Uneven drying of zygotic embryos and embryonic axes of recalcitrant seeds: Challenges and considerations for cryopreservation. Cryobiology 2014, 69, 100–109. [Google Scholar] [CrossRef]
- Sershen, N.; Varghese, B.; Pammenter, N.W.; Berjak, P. Cryo-tolerance of zygotic embryos from recalcitrant seeds in relation to oxidative stress—A case study on two amaryllid species. J. Plant Physiol. 2012, 169, 999–1011. [Google Scholar] [CrossRef]
- Berkov, S.; Bastida, J.; Sidjimova, B.; Viladomat, F.; Codina, C. Alkaloid diversity in Galanthus elwesii and Galanthus nivalis. Chem. Biodivers. 2011, 8, 115–130. [Google Scholar] [CrossRef]
- Pawłowska, B. Employment of encapsulation-dehydration method for liquid nitrogen cryopreservation of ornamental plant explants propagated. Folia Hortic 2008, 20, 61–71. [Google Scholar] [CrossRef]
- Maślanka, M.; Panis, B.; Bach, A. Cryopreservation of Galanthus elwesii Hook. apical meristems by droplet vitrification. CryoLetters 2013, 34, 1–9. [Google Scholar]
- Maślanka, M.; Panis, B.; Malik, M. Cryopreservation of Narcissus L.‘Carlton’somatic embryos by droplet vitrification. Propag. Ornam. Plants 2016, 16, 28–35. [Google Scholar]
- Macharia, M.W.; Runo, S.M.; Muchugi, A.N.; Palapala, V. Genetic structure and diversity of East African taro [Colocasia esculenta (L.) Schott]. Afr. J. Biotechnol 2014, 13, 2950–2955. [Google Scholar]
- Baltazar-Bernal, O.; Spinoso-Castillo, J.L.; Mancilla-Álvarez, E.; Bello-Bello, J.J. arbuscular mycorrhizal fungi induce tolerance to salinity stress in Taro plantlets (Colocasia esculenta L. Schott) during acclimatization. Plants 2022, 11, 1780. [Google Scholar] [CrossRef] [PubMed]
- Rashmi, D.; Raghu, N.; Gopenath, T.; Palanisamy, P.; Bakthavatchalam, P.; Karthikeyan, M.; Gnanasekaran, A.; Ranjith, M.; Chandrashekrappa, G.; Basalingappa, K. Taro (Colocasia esculenta): An overview. J. Med. Plants Stud 2018, 6, 156–161. [Google Scholar]
- Seng.-Ron, H.; Ming.-Hua, Y. A simple cryopreservation protocol for in vitro-grown shoot tips of Chinese genuine red bud taro (Colocasia esculenta L. Schott Var. Cormosus CV. Hongyayu) by encapsulation-dehydration. Sci. Hortic. 2013, 162, 226–233. [Google Scholar] [CrossRef]
- Shimonishi, K.; Karube, M.; Ishikawa, M. Cryopreservation of taro (Colocasia esculenta) embryogenic callus by slow prefreezing. Jpn. J. Breed 1993, 43, 187. [Google Scholar]
- Takagi, H.; Thinh, N.T.; Islam, O.; Senboku, T.; Sakai, A. Cryopreservation of in vitro-grown shoot tips of taro (Colocasia esculenta (L.) Schott) by vitrification. 1. Investigation of basic conditions of the vitrification procedure. Plant Cell Rep. 1997, 16, 594–599. [Google Scholar] [CrossRef]
- Thinh, N.T.; Takagi, H. Cryopreservation of Colocasia esculenta L. Schott (Taro). In Biotechnology in Agriculture and Forestry; Towill, L.E., Bajaj, Y.P.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 50, pp. 96–118. [Google Scholar]
- Noor Camellia, N.; Abdul Muhaimin, A.; Umikalsum, M.; Rozlaily, Z. Cryopreservation of In vitro Grown Taro (Colocasia esculenta) Apical Meristem using a Droplet-vitrification PVS3 Technique. Tran. Malays. Soc. Plant Physiol 2021, 28, 240–245. [Google Scholar]
- Sant, R.; Panis, B.; Taylor, M.; Tyagi, A. Cryopreservation of shoot-tips by droplet vitrification applicable to all taro (Colocasia esculenta var. esculenta) accessions. Plant Cell Tiss. Org. Cult. 2007, 92, 107–111. [Google Scholar] [CrossRef]
- Acedo, V.; Damasco, O.; Laurena, A.; Cruz, P.S.; Namuco, L.; Lalusin, A. In vitro Shoot Tip Response to Encapsulation Dehydration Procedure for Cryopreservation of Philippine Taro [Colocasia esculenta (L.) Schott]. Int. J. Res. Agric. Sci 2018, 5, 2348–3997. [Google Scholar]
- Mukherjee, A.; George, J.; Pillai, R.; Chakrabarti, S.K.; Naskar, S.K.; Patro, R.; Nayak, S.; Lebot, V. Development of taro (Colocasia esculenta (L.) Schott) hybrids overcoming its asynchrony in flowering using cryostored pollen. Euphytica 2016, 212, 29–36. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, N.; Liu, H.; Li, Z.; Lu, L.; Wang, C. The bioactive compounds and biological functions of Asparagus officinalis L.–A review. J. Funct. Foods 2020, 65, 103727. [Google Scholar] [CrossRef]
- Kumu, Y.; Harada, T.; Yakuwa, T. Development of a Whole Plant from a Shoot Tip of Asparagus officinalis L. Frozen Down to −196 °C. J. Fac. Agric. Hokkaido Univ 1983, 61, 285–294. [Google Scholar]
- Kohmura, H.; Sakai, A.; Chokyu, S.; Yakuwa, T. Cryopreservation of in vitro-cultured multiple bud clusters of asparagus (Asparagus officinalis L. cv Hiroshimagreen (2n = 30) by the techniques of vitrification. Plant Cell Rep. 1992, 11, 433–437. [Google Scholar] [CrossRef]
- Suzuki, T.; Kaneko, M.; Harada, T. Increase in Freezing Resistance of Excised Shoot Tips of Asparagus officinalis L. by Preculture on Sugar-Rich Media. Cryobiology 1997, 34, 264–275. [Google Scholar] [CrossRef]
- Suzuki, T.; Kaneko, M.; Harada, T.; Yakuwa, T. Enhanced Formation of Roots and Subsequent Promotion of Growth of Shoots on Cryopreserved Nodal Segments of Asparagus officinalis L. Cryobiology 1998, 36, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Uragami, A.; Sakai, A.; Nagai, M.; Takahashi, T. Survival of cultured cells and somatic embryos of Asparagus officinalis cryopreserved by vitrification. Plant Cell Rep. 1989, 8, 418–421. [Google Scholar] [CrossRef] [PubMed]
- Nishizawa, S.; Sakai, A.; Amano, Y.; Matsuzawa, T. Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci. 1993, 91, 67–73. [Google Scholar] [CrossRef]
- Uragami, A.; Sakai, A.; Nagai, M. Cryopreservation of dried axillary buds from plantlets of Asparagus officinalis L. grown in vitro. Plant Cell Rep. 1990, 9, 328–331. [Google Scholar] [CrossRef]
- Uragami, A. Cryopreservation of Asparagus. In Cryopreservation of Plant Germplasm I; Springer: Berlin/Heidelberg, Germany, 1995; pp. 332–343. [Google Scholar]
- Mix-Wagner, G.; Conner, A.; Cross, R. Survival and recovery of asparagus shoot tips after cryopreservation using the “droplet” method. N. Z. J. Crop Hortic. Sci. 2000, 28, 283–287. [Google Scholar] [CrossRef]
- Carmona-Martín, E.; Regalado, J.; Perán-Quesada, R.; Encina, C. Cryopreservation of rhizome buds of Asparagus officinalis L.(cv. Morado de Huétor) and evaluation of their genetic stability. Plant Cell Tissue Organ Cult. (PCTOC) 2018, 133, 395–403. [Google Scholar] [CrossRef]
- Jitsuyama, Y.; Suzuki, T.; Harada, T.; Fujikawa, S. Sucrose incubation increases freezing tolerance of asparagus (Asparagus officinalis L.) embryogenic cell suspensions. CryoLetters 2002, 23, 103–112. [Google Scholar]
- Bakku, R.K.; Gupta, R.; Min, C.-W.; Kim, S.-T.; Takahashi, G.; Shibato, J.; Shioda, S.; Takenoya, F.; Agrawal, G.K.; Rakwal, R. Unravelling the Helianthus tuberosus L.(Jerusalem artichoke, Kiku-Imo) tuber proteome by label-free quantitative proteomics. Molecules 2022, 27, 1111. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-M.; Han, L.; Lu, X.-X.; Volk, G.M.; Xin, X.; Yin, G.-K.; He, J.-J.; Wang, L.; Chen, X.-L. Cryopreservation of Jerusalem artichoke cultivars using an improved droplet-vitrification method. Plant Cell Tissue Organ Cult. (PCTOC) 2017, 128, 577–587. [Google Scholar] [CrossRef]
- Swan, T.; O’Hare, D.; Gill, R.; Lynch, P. Influence of preculture conditions on the post-thaw recovery of suspension cultures of Jerusalem artichoke (Helianthus tuberosus L.). CryoLetters 1999, 20, 325–336. [Google Scholar]
- Harris, W.; Lynch, P.; Hargreaves, A.; Bonner, P. Cryopreservation of Helianthus tuberosus cell suspension cultures: The effect of preculture treatments on cytoskeletal proteins and transglutaminase activity. CryoLetters 2004, 25, 213–217. [Google Scholar]
- Volk, G.; Richards, K. Preservation methods for Jerusalem artichoke cultivars. HortScience 2006, 41, 80–83. [Google Scholar] [CrossRef]
- Chessum, K.; Chen, T.; Kam, R.; Yan, M. A Comprehensive Chemical and Nutritional Analysis of New Zealand Yacon Concentrate. Foods 2022, 12, 74. [Google Scholar] [CrossRef] [PubMed]
- Campos, D.; Betalleluz-Pallardel, I.; Chirinos, R.; Aguilar-Galvez, A.; Noratto, G.; Pedreschi, R. Prebiotic effects of yacon (Smallanthus sonchifolius Poepp. & Endl), a source of fructooligosaccharides and phenolic compounds with antioxidant activity. Food Chem. 2012, 135, 1592–1599. [Google Scholar]
- Žiarovská, J.; Padilla-González, G.F.; Viehmannová, I.; Fernández, E. Genetic and chemical diversity among yacon [Smallanthus sonchifolius (Poepp. et Endl.) H. Robinson] accessions based on iPBS markers and metabolomic fingerprinting. Plant Physiol. Biochem. 2019, 141, 183–192. [Google Scholar] [CrossRef]
- Hammond, S.D.H.; Viehmannova, I.; Zamecnik, J.; Panis, B.; Faltus, M. Droplet-vitrification methods for apical bud cryopreservation of yacon [Smallanthus sonchifolius (Poepp. and Endl.) H. Rob.]. Plant Cell Tissue Organ Cult. (PCTOC) 2021, 147, 197–208. [Google Scholar] [CrossRef]
- Hammond Hammond, S.D.; Viehmannova, I.; Zamecnik, J.; Panis, B.; Hlasna Cepkova, P. Efficient slow-growth conservation and assessment of clonal fidelity of Ullucus tuberosus Caldas microshoots. Plant Cell Tissue Organ Cult. (PCTOC) 2019, 138, 559–570. [Google Scholar] [CrossRef]
- Arizaga, M.V.; Yamamoto, S.-I.; Tanaka, D.; Fukui, K.; Nohara, N.; Nishikawa, T.; Watanabe, K.; Niino, T. Cryopreservation of in vitro shoot tips of ulluco (Ullucus tuberosus Cal.) using D cryo-plate method. CryoLetters 2017, 38, 419–427. [Google Scholar]
- Sánchez, D.; Panta, A.; Tay, D.; Roca, W. Cryopreservation of ulluco (Ullucus tuberosus CAL.) and oca (Oxalis tuberosa Mol.) shoot tips using the PVS2 droplet-vitrification method. In Proceedings of the I International Symposium on Cryopreservation in Horticultural Species 908, Leuven, Belgium, 5–8 April 2009; pp. 339–346. [Google Scholar]
- Zamecnikova, J.; Fernandez, E.; Viehmannova, I.; Zamecnik, J.; Faltus, M. Preparation of shoot tips by sucrose and dehydration pre-treatment of Ullucus tuberosus Cal. for cryopreservation. In Proceedings of the I International Symposium on Cryopreservation in Horticultural Species 908, Leuven, Belgium, 5–8 April 2009; pp. 331–338. [Google Scholar]
- Lata, H.; Moraes, R.M.; Bertoni, B.; Pereira, A.M. In vitro germplasm conservation of Podophyllum peltatum L. under slow growth conditions. Vitr. Cell. Dev. Biol.-Plant 2010, 46, 22–27. [Google Scholar] [CrossRef]
- Kushwaha, R.; Chanda, S.; Ogra, R.; Bhattacharya, A. Cryopreservation criteria of Podophyllum hexandrum and Aconitum heterophyllum seeds based on storage behavior. Seed Technol 2010, 32, 117–127. [Google Scholar]
- Haldhar, R.; Prasad, D.; Bahadur, I.; Dagdag, O.; Berisha, A. Evaluation of Gloriosa superba seeds extract as corrosion inhibition for low carbon steel in sulfuric acidic medium: A combined experimental and computational studies. J. Mol. Liq 2021, 323, 114958. [Google Scholar] [CrossRef]
- Rajasekharan, P.; Rohini, M.; Harsha, R.; Anilkumar, G. Pollen Cryopreservation Protocol for Gloriosa superba L. In.Pollen Cryopreserv. Protoc.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 383–391. [Google Scholar]
- MalekZadeh, S.; Khosrowshahli, M.; Taeb, M. Cryopreservation of the axial meristem of Crocus sativus L. Cryobiology 2009, 59, 412. [Google Scholar] [CrossRef]
- Baghdadi, S.; Makhadmeh, I.; Syouf, M.; Arabiat, A.; Shibli, R.; Shatnawai, M. Cryopreservation by vitrification of embryogenic callus of wild crocus (Crocus hyemalis and Crocus moabiticus). In Proceedings of the I International Symposium on Cryopreservation in Horticultural Species 908, Leuven, Belgium, 5–8 April 2009; pp. 239–246. [Google Scholar]
- Baghdadi, S.; Shibli, R.; Syouf, M.; Shatnawai, M.; Arabiat, A.; Makhadmeh, I. Cryopreservation by encapsulationvitrification of embryogenic callus of wild Crocus (Crocus hyemalis and Crocus moabiticus). Jordan J. Agric. Sci. 2010, 6, 436–443. [Google Scholar]
- Rajasekharan, P.; Rao, T.; Janakiram, T.; Ganeshan, S. Freeze preservation of gladiolus pollen. Euphytica 1994, 80, 105–109. [Google Scholar] [CrossRef]
- Geng, X.; Huang, B.; Luo, F.; Wu, Z.; Qiu, J. A study on cryopreservation of Gladiolus pollens. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2011, 35, 7–12. [Google Scholar]
- Rajasekharan, P.; Rao, T. Pollen Cryopreservation Protocol for Gladiolus. In Pollen Cryopreservation Protocols; Springer: New York, NY, USA, 2023; pp. 373–382. [Google Scholar]
- Joung, H.Y.; Cantor, M.; Kamo, K.; Ellis, D. Cryopreservation of Gladiolus cultivars. In Proceedings of the XXVII International Horticultural Congress-IHC2006: II International Symposium on Plant Genetic Resources of Horticultural 760, Seoul, Republic of Korea, 14–18 August 2006; pp. 225–231. [Google Scholar]
- Rajasekharan, P.; Ganeshan, S. Current perspectives on pollen cryopreservation in horticultural species. In Proceedings of the III International Symposium on Plant Cryopreservation 1234, Bangkok, Thailand, 26–28 March 2018; pp. 47–56. [Google Scholar]
- Rajasekharan, P.; Rohini, M. (Eds.) Pollen Cryopreservation: Advances and Prospects. In Pollen Cryopreservation Protocols; Springer Protocols Handbooks: Humana, NY, USA, 2023; pp. 1–18. [Google Scholar]
- Shibli, R.A. Cryopreservation of black iris (Iris nigricans) somatic embryos by encapsulation-dehydration. CryoLetters 2000, 21, 39–46. [Google Scholar] [PubMed]
- Jevremović, S.; Bohanec, B.; Lambardi, M.; De Carlo, A.; Benelli, C.; Subotiü, A. Clonal fidelity of Iris pumila plants regenerated after cryopreservation by vitrification. Cryopreserv. Crop Species Eur 2011, 871, 40. [Google Scholar]
- Jevremović, S.; Subotić, A.; Benelli, C.; De Carlo, A.; Lambardi, M. Cryopreservation of Iris pumila shoot tips by vitrification. Acta Hortic 2011, 908, 355–359. [Google Scholar] [CrossRef]
- Munyao, J.N.; Dong, X.; Yang, J.-X.; Mbandi, E.M.; Wanga, V.O.; Oulo, M.A.; Saina, J.K.; Musili, P.M.; Hu, G.-W. Complete chloroplast genomes of Chlorophytum comosum and Chlorophytum gallabatense: Genome structures, comparative and phylogenetic analysis. Plants 2020, 9, 296. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R.; Singh, V.; Keshavkant, S.; Quraishi, A. Vitrification-based cryopreservation of in vitro-grown apical meristems of Chlorophytum borivilianum Sant et Fernand: A critically endangered species. Proc. Natl. Acad. Sci. USA India Sect. B Biol. Sci 2021, 91, 471–476. [Google Scholar] [CrossRef]
- Day, P.D.; Berger, M.; Hill, L.; Fay, M.F.; Leitch, A.R.; Leitch, I.J.; Kelly, L.J. Evolutionary relationships in the medicinally important genus Fritillaria L.(Liliaceae). Mol. Phylogen. Evol. 2014, 80, 11–19. [Google Scholar] [CrossRef]
- Su, X. Methods of cryopreservation of pollen in Fritillaria thunbergii Miq. China J. Chin. Mater. Med. 1991, 16, 399–401, 447. [Google Scholar]
- Zhu, Y.; Chen, F.; Xue, J.; Zhang, A.; Sheng, W.; Song, Y. Study on preservation of Fritillaria anhuiensis by vitrification in vitro. China J. Chin. Mater. Med. 2011, 36, 2462–2464. [Google Scholar]
- Wang, Y.; Lin, K.; Liu, Y.; Ma, L.; Dai, Y.; Xu, S.; Wang, X. Research on Cryopreservation of Cultured Fritillaria Cirrhosa D. Don Tissues by Vitrification. J. Chengdu Univ. (Nat. Sci. Ed.) 2012, 31, 11–13. [Google Scholar]
- Yue-hua, W. The Key Cryopreservation Techniques of Fritillaria cirrhosa D. Don Callus. J. Anhui Agric. Sci. 2011, 23, 14023–14026. [Google Scholar]
- Bacchetta, L.; Remotti, P.C.; Bernardini, C.; Saccardo, F. Adventitious shoot regeneration from leaf explants and stem nodes of Lilium. Plant Cell Tiss. Org. Cult. 2003, 74, 37–44. [Google Scholar] [CrossRef]
- Nhut, D.T.; Van Le, B.; Tran Thanh Van, K. Manipulation of the morphogenetic pathways of Lilium longiflorum transverse thin cell layer explants by auxin and cytokinin. Vitr. Cell. Dev. Biol.-Plant 2001, 37, 44–49. [Google Scholar] [CrossRef]
- Wang, P.; Li, J.; Attia, F.A.K.; Kang, W.; Wei, J.; Liu, Z.; Li, C. A critical review on chemical constituents and pharmacological effects of Lilium. Food Sci. Hum. Wellness 2019, 8, 330–336. [Google Scholar] [CrossRef]
- Li, J.-W.; Zhang, X.-C.; Wang, M.-R.; Bi, W.-L.; Faisal, M.; da Silva, J.A.T.; Volk, G.M.; Wang, Q.-C. Development, progress and future prospects in cryobiotechnology of Lilium spp. Plant Methods 2019, 15, 125. [Google Scholar] [CrossRef]
- Bouman, H.; De Klerk, G.J. Cryopreservation of lily meristems. In Proceedings of the V International Symposium on Flower Bulbs 266, Seattle, WA, USA, 10–14 July 1989; pp. 331–338. [Google Scholar]
- Kaviani, B. Cryopreservation by Encapsulation-dehydration for Long-term Storage of Some Important Germplasm: Seed of Lily [‘Lilium ledebourii’(Baker) Bioss.], Embryonic Axe of Persian Lilac (‘Melia azedarach’ L.), and Tea (‘Camellia sinensis’ L.). Plant Omics 2010, 3, 177. [Google Scholar]
- Kaviani, B.; Dehkaei, M.P.; Hashemabadi, D.; Darabi, A. Cryopreservation of Lilium ledebourii (Baker) Bioss by encapsulation-vitrification and in vivo media for planting of germplasms. Am.-Eurasian J. Agric. Environ. Sci. 2010, 8, 556–560. [Google Scholar]
- Kaviani, B.; Safari-Motlagh, M.; Padasht-Dehkaei, M.; Darabi, A.H.; Rafizadeh, A. Cryopreservation of lily [Lilium ledebourii (Baker) Bioss.] germplasm by encapsulation-dehydration. Int. J. Bot 2008, 4, 491–493. [Google Scholar] [CrossRef]
- Kaviani, B.; Abadi, D.; Torkashvand, A.; Hoor, S. Cryopreservation of seeds of lily [Lilium Iedebourii (Baker) Bioss]: Use of sucrose and dehydration. Afr. J. Biotechnol. 2009, 8, 3809–3810. [Google Scholar] [CrossRef]
- Urbaniec-Kiepura, M.; Bach, A. Effect of pre-storage on Lilium martagon L. seed longevity following cryopreservation. CryoLetters 2014, 35, 462–472. [Google Scholar]
- Kaviani, B. Cryopreservation of lily seeds by encapsulation-dehydration. In Proceedings of the I International Symposium on Cryopreservation in Horticultural Species 908, Leuven, Belgium, 5–8 April 2009; pp. 253–256. [Google Scholar]
- Yi, J.Y.; Lee, G.A.; Lee, S.Y.; Chung, J.W. Development of cryo-banking system of Lilium species. Flower Res J. 2014, 22, 185–189. [Google Scholar] [CrossRef]
- Bouman, H.; Tiekstra, A.; Petutschnig, E.; Homan, M.; Schreurs, R. Cryopreservation of Lilium species and cultivars. In Proceedings of the 21st International Eucarpia Symposium on Classical versus Molecular Breeding of Ornamentals. Acta Hort 612, München, Germany, 25–29 August 2003; pp. 147–154. [Google Scholar]
- Matsumoto, T.; Sakai, A.; Yamada, K. Cryopreservation of in vitro-grown apical meristems of lily by vitrification. Plant Cell Tiss. Org. Cult. 1995, 41, 237–241. [Google Scholar] [CrossRef]
- Bi, W.L.; Yin, Z.F.; Guo, L.; Chen, L.; Pan, C.; Wang, Q.C. Plant regeneration from shoot regrowth and de novo embryo-like structures from cryopreserved shoot tips of Lilium spp. Vitr. Cell. Dev. Biol.-Plant 2015, 51, 390–398. [Google Scholar] [CrossRef]
- Yin, Z.-F.; Bi, W.-L.; Chen, L.; Wang, Q.-C. Plant regeneration and cryopreservation of Lilium. In Proceedings of the III International Symposium on the Genus Lilium Acta Hortic.1027, Zhangzhou, China, 1–3 April 2014; pp. 185–196. [Google Scholar]
- Wang, Q.C.; Volk, G.M.; Yin, Z.; Chen, L.; Bi, W. Somatic embryogenesis and organogenesis from cryopreserved shoot tips of Lilium oriental hybrid’Siberia’. In Proceedings of the II International Symposium on Plant Cryopreservation, Fort Collins, CO, USA, 11–14 August 2013; pp. 193–200. [Google Scholar]
- Yi, J.Y.; Lee, G.A.; Chung, J.W.; Lee, S.Y.; Lim, K.B. Efficient cryopreservation of Lilium spp. shoot tips using droplet-vitrification. Plant Breed. Biotechnol 2013, 1, 131–136. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Y.; Li, B.L.; Liu, Q.; Shi, Y.; Jia, M.X.; Shen, C. Protective effect of reducing cryotube volume on Lilium lancifolium and Euonymus fortunei shoot tips survival after cryopreservation by vitrification. Acta Hortic 2015, 1104, 255–258. [Google Scholar]
- Yin, Z.-F.; Bi, W.-L.; Chen, L.; Zhao, B.; Volk, G.M.; Wang, Q.-C. An efficient, widely applicable cryopreservation of Lilium shoot tips by droplet vitrification. Acta Physiol. Plant 2014, 36, 1683–1692. [Google Scholar] [CrossRef]
- Chen, X.-L.; Li, J.-H.; Xin, X.; Zhang, Z.-E.; Xin, P.-P.; Lu, X.-X. Cryopreservation of in vitro-grown apical meristems of Lilium by droplet-vitrification. South Afr. J. Bot 2011, 77, 397–403. [Google Scholar] [CrossRef]
- Jin, X.; Qian, L.; Mengxue, J.; Yan, L.; Bingling, L.; Yin, S. Generation of reactive oxygen species during cryopreservation may improve Lilium× siberia pollen viability. Vitr. Cell. Dev. Biol.-Plant 2014, 50, 369–375. [Google Scholar]
- Urbaniec-Kiepura, M.; Bach, A. Cryopreservation of Lilium martagon L. meristems by droplet-vitrification and evaluation of their physiological stability. CryoLetters 2017, 38, 78–89. [Google Scholar]
- Song, J.Y.; Lee, Y.Y.; Yi, J.Y.; Lee, J.R.; Yoon, M.S. Preconditioning for Cryopreservation of in vitro Grown Bulblets of Lily using Droplet-Vitrification. Korean J. Plant Resour 2020, 33, 689–695. [Google Scholar]
- Mohajeri, M.R.; Zare, A.G.; Shahab, M.A.N.; Kalate, S.J. Seed germination of Lilium ledebourii (Baker) Boiss. after cryopreservation. J. Rangel. Sci 2014, 4, 279–286. [Google Scholar]
- Maślanka, M.; Bach, A. Cryopreservation of Tulipa tarda Stapf. apical meristems by droplet vitrification. Acta Biol. Crac. 2013, 55, 58. [Google Scholar] [CrossRef]
- Maślanka, M.; Szewczyk, A. Droplet-vitrification cryopreservation of Tulipa tarda Stapf. apical meristems. Plant Cell Tissue Organ Cult. (PCTOC) 2020, 144, 91–95. [Google Scholar] [CrossRef]
- Zengin, G.; Mahomoodally, M.F.; Sinan, K.I.; Picot-Allain, M.C.N.; Yildiztugay, E.; Cziáky, Z.; Jekő, J.; Saleem, H.; Ahemad, N. Chemical characterization, antioxidant, enzyme inhibitory and cytotoxic properties of two geophytes: Crocus pallasii and Cyclamen cilicium. Food Res. Int. 2020, 133, 109129. [Google Scholar] [CrossRef]
- Mahomoodally, M.F.; Picot-Allain, M.C.N.; Zengin, G.; Llorent-Martínez, E.J.; Stefanucci, A.; Ak, G.; Senkardes, I.; Tomczyk, M.; Mollica, A. Chemical profiles and biological potential of tuber extracts from Cyclamen coum Mill. Biocatal. Agric. Biotechnol 2021, 33, 102008. [Google Scholar] [CrossRef]
- Tagipur, M.E.; Seker, G.; Teixeira da Silva, J.A.; Mendi, Y.Y. Somatic embryogenesis, cryopreservation, and in vitro mutagenesis in Cyclamen. In Somatic Embryogenesis in Ornamentals and Its Applications; Springer: New Delhi, India, 2016; pp. 155–167. [Google Scholar]
- Winkelmann, T.; Mußmann, V.; Serek, M. Cryopreservation of embryogenic suspension cultures of Cyclamen persicum Mill. Plant Cell Rep. 2004, 23, 1–8. [Google Scholar] [CrossRef]
- Mubmann, V.; Serek, M.; Winkelmann, T. Cryopreservation of Embryogenic Suspension Cultures of Cyclamen persicum Mill. In Proceedings of the V International Symposium on In Vitro Culture and Horticultural Breeding 725, Debrecen, Hungary, 12–17 September 2004; pp. 391–396. [Google Scholar]
- Izgu, T.; Sevindik, B.; Simsek, O.; Curuk, P.; Kacar, Y.A.; Mendi, Y.Y. Analysis of Genetic Stability in Some Cyclamen Species Endemic to Turkey Following Cryopreservation By Vitrification. In Proceedings of the Plant and Animal Genome Conference, XXIV, San Diego, CA, USA, 9–13 January 2015. [Google Scholar]
- Malhotra, N.; Shivani, S. Aconitum heterophyllum. In Himalayan Medicinal Plants; Malhotra, N., Singh, M., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 5–25. [Google Scholar]
- Wani, T.A.; Kaloo, Z.A.; Dangroo, N.A. Aconitum heterophyllum Wall. ex Royle: A critically endangered medicinal herb with rich potential for use in medicine. J. Integr. Med 2022, 20, 104–113. [Google Scholar] [CrossRef]
- Nair, K.P. Turmeric (Curcuma Longa L.) and Ginger (Zingiber Officinale Rosc.)-World’s Invaluable Medicinal Spices: The Agronomy and Economy of Turmeric and Ginger; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Islam, M. Genetic Diversity of the Genus Curcuma in Bangladesh and Further Biotechnological Approaches for In Vitro Regeneration and Long-Term Conservation of C. longa Germplasm. Ph.D. Thesis, University of Hannover, Hannover, Germany, 2004. [Google Scholar]
- Langis, R.; Steponkus, P.L. Cryopreservation of rye protoplasts by vitrification. Plant Physiol. 1990, 92, 666–671. [Google Scholar] [CrossRef]
- Preetha, T.S.; Hemanthakumar, A.S.; Krishnan, P.N. A comprehensive review of Kaempferia galanga L.(Zingiberaceae): A high sought medicinal plant in Tropical Asia. J. Med. Plants Stud 2016, 4, 270–276. [Google Scholar]
- Haque, S.M.; Ghosh, B. Micropropagation of Kaempferia angustifolia Roscoe-an aromatic, essential oil yielding, underutilized medicinal plant of Zingiberaceae family. J. Crop Sci. Biotechnol 2018, 21, 147–153. [Google Scholar] [CrossRef]
- Resmi, J.; Bindu, M.; Suja, G. In vitro Multiplication of Kaempferia Galanga L.-An Important Medicinal Plant. J. Krishi Vigyan 2022, 11, 223–228. [Google Scholar] [CrossRef]
- Hemanthakumar, A.; Preetha, T. Macro-and Micropropagation of Plants for Income Generation. In Conservation and Sustainable Utilization of Bioresources; Springer: Berlin/Heidelberg, Germany, 2023; pp. 409–450. [Google Scholar]
- Preetha, T.; Hemanthakumar, A.; Krishnan, P. Shoot tip cryopreservation by vitrification in Kaempferia galanga L. an endangered, overexploited medicinal plant in Tropical Asia. IOSR J. Pharm. Biol. Sci 2013, 8, 19–23. [Google Scholar] [CrossRef]
- Preetha, T.S.; Hemanthakumar, A.S.; Krishnan, P.N. Cryopreservation of aromatic ginger Kaempferia galanga L. by encapsulation-dehydration. Not. Sci. Biol. 2021, 13, 11024. [Google Scholar] [CrossRef]
- Ravindran, P.N.; Nirmal Babu, K. (Eds.) Ginger: The Genus Zingiber, 1st ed.; CRC Press: Washington, DC, USA, 2005; pp. 15–87. [Google Scholar]
- Geetha, S.P. In Vitro Technology for Genetic Conservation of Some Genera of Zingiberaceae. Ph.D. Thesis, University of Calicut, Thenhipalam, India, 2002. [Google Scholar]
- Yamuna, G.; Sumathi, V.; Geetha, S.; Praveen, K.; Swapna, N.; Nirmal Babu, K. Cryopreservation of in vitro grown shoots of ginger (Zingiber officinale Rosc.). CryoLetters 2007, 28, 241–252. [Google Scholar] [PubMed]
- Ellis, D.; Skogerboe, D.; Andre, C.; Hellier, B.; Volk, G. Implementation of garlic cryopreservation techniques in the national plant germplasm system. CryoLetters 2006, 27, 99–106. [Google Scholar] [PubMed]
- Sant, R.; Taylor, M.; Tyagi, A. Cryopreservation of in vitro-grown shoot-tips of tropical taro (Colocasia esculenta var. esculenta) by vitrification. CryoLetters 2006, 27, 133–142. [Google Scholar]
- Xin, S. Preservation of the Callus Tissues under the Condition of Superlower Temperature (−196 ℃) in Fritillaria thunbergii Miq. Mod. Appl. Pharm. 1990, 4, 18–19. [Google Scholar] [CrossRef]
- Matsumoto, T.; Sakai, A.; Yamada, K. Cryopreservation of in vitro-grown meristems of wasabi (Wasabia japonica) by encapsulation-vitrification method. CryoLetters 1995, 16, 189–196. [Google Scholar]
- Pan, C.; Liu, J.; Bi, W.L.; Chen, H.; Engelmann, F.; Wang, Q.C. Cryopreservation of small leaf squares-bearing adventitious buds of Lilium Oriental hybrid ‘Siberia’by vitrification. Plant Cell Tissue Organ Cult. (PCTOC) 2018, 133, 159–164. [Google Scholar] [CrossRef]
- Shi, T.T.Z.G.L.; Wen, S.M.; Lu, J.L. Cryopreservation of Lilium pollens. North Hortic 2013, 13, 64–66. [Google Scholar]
- Pan, S.-Y.; Gerhard, L.; Gao, S.-H.; Zhou, S.-F.; Yu, Z.-L.; Chen, H.-Q.; Zhang, S.-F.; Tang, M.-K.; Sun, J.-N.; Ko, K.-M. Historical perspective of traditional indigenous medical practices: The current renaissance and conservation of herbal resources. Evid.-Based Complement. Altern. Med. 2014, 2014, 525340. [Google Scholar] [CrossRef]
- Ruta, C.; Lambardi, M.; Ozudogru, E.A. Biobanking of vegetable genetic resources by in vitro conservation and cryopreservation. Biodivers. Conserv. 2020, 29, 3495–3532. [Google Scholar] [CrossRef]
- Benelli, C. Plant cryopreservation: A look at the present and the future. Plants 2021, 10, 2744. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Merzougui, S.; Benelli, C.; El Boullani, R.; Serghini, M.A. The Cryopreservation of Medicinal and Ornamental Geophytes: Application and Challenges. Plants 2023, 12, 2143. https://doi.org/10.3390/plants12112143
El Merzougui S, Benelli C, El Boullani R, Serghini MA. The Cryopreservation of Medicinal and Ornamental Geophytes: Application and Challenges. Plants. 2023; 12(11):2143. https://doi.org/10.3390/plants12112143
Chicago/Turabian StyleEl Merzougui, Soumaya, Carla Benelli, Rachida El Boullani, and Mohammed Amine Serghini. 2023. "The Cryopreservation of Medicinal and Ornamental Geophytes: Application and Challenges" Plants 12, no. 11: 2143. https://doi.org/10.3390/plants12112143
APA StyleEl Merzougui, S., Benelli, C., El Boullani, R., & Serghini, M. A. (2023). The Cryopreservation of Medicinal and Ornamental Geophytes: Application and Challenges. Plants, 12(11), 2143. https://doi.org/10.3390/plants12112143