In Vitro Induction of Interspecific Hybrid and Polyploidy Derived from Oryza officinalis Wall
Abstract
:1. Introduction
2. Results
2.1. Reproductive Characteristics of the Interspecific Hybrid Derived from O. officinalis and Cultivated Rice
2.2. Tissue Culture System of the Interspecific Hybrid Derived from O. officinalis and Cultivated Rice
2.3. Influence of Exogenous Hormone Ratio on Shoot Rooting
2.4. Induction of Interspecific Hybrid Derived from O. officinalis and Cultivated Rice by Colchicine
2.5. Investigation of the Agronomic Traits of Colchicine-Induced Plants
3. Discussion
3.1. Low Fertility Is the Major Limitation for the Utilization of the Hybrid Derived from O. officinalis and Cultivated Rice
3.2. Factors Influencing Tissue Culture in the Interspecific Hybrid Derived from O. officinalis and Cultivated Rice
3.3. Polyploidy Induction of Interspecific Hybrids Derived from O. officinalis and Cultivated Rice
4. Materials and Methods
4.1. Plant Material and Plant Growth Conditions
4.2. Cytological Observation of the Pollen and Embryo Sac Development Process
4.3. Tissue Culture of the Interspecific Hybrid Derived from O. officinalis
4.4. Callus Treatment with Colchicine Solution
4.5. Investigation of the Allopolyploid Hybrid and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaughan, D.A.; Morishima, H.; Kadowaki, K. Diversity in the Oryza genus. Curr. Opin. Plant Biol. 2003, 6, 139–146. [Google Scholar] [CrossRef]
- Brar, D.S.; Khush, G.S. Alien introgression in rice. Plant Mol. Biol. 1997, 35, 35–47. [Google Scholar] [CrossRef]
- Kitazumi, A.; Pabuayon, I.C.M.; Ohyanagi, H.; Fujita, M.; Osti, B.; Shenton, M.R. Potential of Oryza officinalis to augment the cold tolerance genetic mechanisms of Oryza sativa by network complementation. Sci. Rep. 2018, 8, 16346. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, H.; Chen, Z.; Shahid, M.Q.; Fu, X.; Liu, Y.; Liu, X.; Lu, Y. Development of drought-tolerant rice germplasm by screening and transforming TAC clones of Oryza officinalis Wall. Sci. Agric. Sin. 2014, 47, 1445–1457. [Google Scholar]
- Zhang, W.L.; Dong, Y.; Yang, L.; Ma, B.J.; Ma, R.R.; Huang, F.D.; Wang, C.C.; Hu, H.T.; Li, C.S.; Yan, C.Q.; et al. Small brown planthopper resistance loci in wild rice (Oryza officinalis). Mol. Genet. Genom. 2014, 289, 373–382. [Google Scholar] [CrossRef]
- Jiang, C.M.; Xiao, S.Q.; Li, D.Q.; Chen, L.; Zhang, Q.F.; Yin, F.Y.; Yu, T.Q.; Ke, X.; Zhang, D.Y. Identification and expression pattern analysis of bacterial blight ersistance genes in Oryza officinalis wall ex watt under Xanthomonas Oryzae Pv. Oryzae Stress. Plant Mol. Biol. Rep. 2019, 37, 436–449. [Google Scholar] [CrossRef]
- Jena, K.K.; Khush, G.S. Introgression of genes from Oryza officinalis well ex watt to cultivated rice, O. sativa L. Theor. Appl. Genet. 1990, 80, 737–745. [Google Scholar] [CrossRef]
- Huang, Z.; He, G.; Shu, L.; Zhang, Q. Identification and mapping of two brown planthopper resistance genes in rice. Theor. Appl. Genet. 2001, 102, 929–934. [Google Scholar] [CrossRef]
- Liu, Y.G.; Nagaki, K.; Fujita, M.; Kawaura, K.; Uozumi, M.; Ogihara, Y. Development of an efficient maintenance and screening system for large-insert genomic DNA libraries of hexaploid wheat in a transformation-competent artificial chromosome (TAC) vector. Plant J. 2000, 23, 687–695. [Google Scholar] [CrossRef]
- Song, J.Q.; Dong, F.G.; Lilly, J.W.; Stupar, R.M.; Jiang, J. Instability of bacterial artificial chromosome (BAC) clones containing tandemly repeated DNA sequences. Genome 2001, 44, 463–469. [Google Scholar] [CrossRef]
- Fu, X.L.; Lu, Y.G.; Liu, X.D.; Li, J.Q.; Zhao, X.J. Cytological behavior of hybridization barriers between Oryza sativa and Oryza officinalis. Agric. Sci. China 2011, 10, 1489–1500. [Google Scholar] [CrossRef]
- Tan, G.X.; Ren, X.; Weng, Q.M.; Shi, Z.Y.; Zhu, L.L.; He, G.C. Mapping of a new resistance gene to bacterial blight in rice line introgressed from Oryza officinalis. J. Genet. Genom. 2004, 31, 724–729. [Google Scholar]
- McClintock, B. The significance of responses of the genome to challenge. Science 1984, 226, 792–801. [Google Scholar] [CrossRef]
- Thengane, S.R.; Joshi, M.S.; Khuspe, S.S.; Mascarenhas, A.F. Anther culture in Helianthus annuus L.; influence of genotype and culture conditions on embryo induction and plant regeneration. Plant Cell Rep. 1994, 13, 222–226. [Google Scholar] [CrossRef]
- Zheng, W.J.; Zhang, Y.Z.; Wang, C.H.; Chao, J.M.; Hu, J. Studies on the differences of tissue culture of different explants in rice and their progeny variation. J. Anhui Agri Sci. 2008, 36, 1368–1370. [Google Scholar]
- Lin, Y.J.; Zhang, Q.F. Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep. 2005, 23, 540–547. [Google Scholar] [CrossRef]
- Tie, W.W.; Zhou, F.; Wang, L.; Xie, W.B.; Chen, H.; Li, X.H.; Lin, Y.G. Reasons for lower transformation efficiency in indica rice using Agrobacterium tumefaciens-mediated transformation: Lessons from transformation assays and genome-wide expression profiling. Plant Mol. Biol. 2012, 78, 1–18. [Google Scholar] [CrossRef]
- Wang, F.; Yuan, W.X.; Pao, G.L.; Qian, C.G.; Huang, Q.; Liu, J.; Yang, Y.; Chen, J.P. Rapid propagation of embryo rescue progeny of medicinal wild rice (Oryza sativa L.) by YF. J Zhejiang Agri Sci. 2017, 58, 642–643. [Google Scholar]
- Shahid, M.Q.; Xu, H.; Lin, S.; Chen, Z.; Naeem, M.; Li, Y.; Liu, X. Genetic analysis and hybrid vigor study of grain yield and other quantitative traits in autotetraploid rice. Pak. J. Bot. 2012, 44, 237–246. [Google Scholar]
- Ghaleb, M.A.A.; Li, C.; Shahid, M.Q.; Yu, H.; Liang, J.; Chen, R.; Wu, J.; Liu, X.D. Heterosis analysis and underlying molecular regulatory mechanism in a wide-compatible neo-tetraploid rice line with long panicles. BMC Plant Biol. 2020, 20, 83. [Google Scholar] [CrossRef]
- Ghouri, F.; Shahid, M.J.; Liu, J.; Lai, M.; Sun, L.; Wu, J.; Liu, X.; Ali, S.; Shahid, M.Q. Polyploidy and zinc oxide nanoparticles alleviated Cd toxicity in rice by modulating oxidative stress and expression levels of sucrose and metal-transporter genes. J. Hazard. Mater. 2023, 448, 130991. [Google Scholar] [CrossRef] [PubMed]
- Ghouri, F.; Shahid, M.J.; Liu, J.; Sun, L.; Riaz, M.; Imran, M.; Ali, S.; Liu, X.; Shahid, M.Q. The protective role of tetraploidy and nanoparticles in arsenic-stressed rice: Evidence from RNA sequencing, ultrastructural and physiological studies. J. Hazard. Mater. 2023, 458, 132019. [Google Scholar] [CrossRef]
- Zhang, L.S.; Shivute, F.N.; Shahid, M.Q.; Kamara, N.; Wu, J.W.; Liu, X.D. In vitro induction of auto-allotetraploid in a newly developed wild rice line from Oryza alta Swallen. Plant Cell Tiss. Organ. Cult. 2019, 139, 577–587. [Google Scholar] [CrossRef]
- Bouvier, L.; Guérif, P.; Djulbic, M.; Durel, C.E.; Chevreau, E.; Lespinasse, Y. Chromosome doubling of pear haploid plants and homozygosity assessment using isozyme and microsatellite markers. Euphytica 2002, 123, 255–262. [Google Scholar] [CrossRef]
- Xing, S.H.; Guo, X.B.; Wang, Q.; Pan, Q.F.; Tian, Y.S.; Liu, P.; Zhao, J.Y.; Wang, G.F. Induction and flow cytometry Identification of tetraploids from seed-derived explants through colchicine treatments in Catharanthus roseus (L.) G. Don. J. Biomed. Biotechnol. 2011, 2011, 793198. [Google Scholar] [CrossRef]
- Vahdati, K.; Sadat-Hosseini, M.; Martínez-Gómez, P.; Germanà, M.A. Production of haploid and doubled haploid lines in nut crops: Persian walnut, almond, and hazelnut. Methods Mol. Biol. 2021, 2289, 179–198. [Google Scholar] [CrossRef]
- Hosseini Grouh, M.S.; Vahdati, K.; Lotfi, M.; Hassani, D.; Biranvand, N.P. Production of haploids in persian walnut through parthenogenesis induced by gamma-irradiated pollen. J. Amer. Soc. Hort. Sci. 2011, 136, 198–204. [Google Scholar] [CrossRef]
- Sadat Noori, S.A.; Norouzi, M.; Karimzadeh, G.; Shirkool, K.; Niazian, M. Effect of colchicine-induced polyploidy on morphological characteristics and essential oil composition of ajowan (Trachyspermum ammi L.). Plant Cell Tiss. Organ. Cult. 2017, 130, 543–551. [Google Scholar] [CrossRef]
- Fu, X.L.; Lu, Y.G.; Liu, X.D.; Li, J.Q.; Zhao, X.J. Comparatively embryological observations on interspecific hybridizations between Oryza sativ a with different ploidy levels and O.officinalis. Chin. J. Rice Sci. 2008, 22, 385–391. [Google Scholar] [CrossRef]
- Guzmán, M.; Arias, F.J.Z. Increasing anther culture efficiency in rice (Oryza sativa L.) using anthers from ratooned plants. Plant Sci. 2000, 151, 107–114. [Google Scholar] [CrossRef]
- Wang, L.X.; Chen, L.; Chen, Y.; Wang, B.; Fu, J.; Xiao, S.Q.; Ke, X.; Zhang, Q.F.; Lei, Y.T.; Yu, T.Q.; et al. Application of rapid propagation seedlings of yunnan medicinal Oryza officinalis Wall. ex wstt in breeding. Liaoning Agric. Sci. 2019, 5, 7–11. [Google Scholar]
- Lee, K.; Jeon, H.; Kim, M. Optimization of a mature embryo-based in vitro culture system for high-frequency somatic embryogenic callus induction and plant regeneration from japonica rice cultivars. Plant Cell Tissue Organ. Cult. 2002, 71, 237–244. [Google Scholar] [CrossRef]
- Liu, Y.F.; Liu, Y.Z.; He, H.; Wang, J.H.; Li, L.; Li, X.F. Factors Influening of callus Induction and plantlet regeneration from mature embryos in indica rice. Plant Physiol. Commun. 2004, 40, 319–322. [Google Scholar]
- Chaturvedi, P.; Chowdhary, A. Enhancement of antioxidant compound in tylophora indica (Asclepeadaceae) callus. Adv. Appl. Sci. Res. 2013, 4, 325–330. [Google Scholar]
- Ge, X.J.; Chu, Z.H.; Lin, Y.J.; Wang, S.P. A tissue culture system for different germplasms of indica rice. Plant Cell Rep. 2006, 25, 392–402. [Google Scholar] [CrossRef]
- Pan, Y.H.; Liang, Y.T.; Chen, C.B.; Liang, S.C.; Tuan, J.Z.; Xu, J.P.; Huang, J.; Xu, Z.J. Study on differentiation and dedifferentiation of Oryza rufipogon Griff. J. Hennan Agri Sci. 2014, 43, 25–29. [Google Scholar] [CrossRef]
- Aleza, P.; Juárez, J.; Cuenca, J.; Ollitrault, P.; Navarro, L. Recovery of citrus triploid hybrids by embryo rescue and flow cytometry from 2x × 2x sexual hybridisation and its application to extensive breeding programs. Plant Cell Rep. 2010, 29, 1023–1034. [Google Scholar] [CrossRef]
- Urwin, N.A.R. Generation and characterisation of colchicine-induced polyploid Lavandula × intermedia. Euphytica 2014, 197, 331–339. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Liu, J.F.; Wang, L.Q. Polyploidy breeding and its application research progress of medicinal plants. J. Jilin Norm. Univ. (Nat. Sci. Ed.) 2009, 30, 128–131. [Google Scholar]
- Dhooghe, E.; Van Laere, K.; Eeckhaut, T.; Leus, L.; Van Huylenbroeck, J. Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tiss. Organ. Cult. 2011, 104, 359–373. [Google Scholar] [CrossRef]
- Xie, X.Q.; Agüero, C.B.; Wang, Y.J.; Walker, M.A. In vitro induction of tetraploids in Vitis × Muscadinia hybrids. Plant Cell Tiss. Organ. Cult. 2015, 122, 675–683. [Google Scholar] [CrossRef]
- Luan, L.; Long, W.B.; Wang, X.; Chen, Y.; Qiu, L.; Tu, S.B.; Kong, F.L.; Xiao, X.Y. Research on creating autotetraploid rice using colchicum to induce the panicle callus of diploid rice. J. Sichuan Uni. (Nat. Sci. Ed.) 2009, 46, 829–837. [Google Scholar]
- Xu, L.; Najeeb, U.; Naeem, M.S.; Naeem, M.S.; Daud, M.K.; Cao, J.S. Induction of tetraploidy in Juncus effusus by colchicine. Biol. Plant 2010, 54, 659–663. [Google Scholar] [CrossRef]
- Gantait, S.; Mandal, N.; Bhattacharyya, S.; Das, P.K. Induction and identification of tetraploids using in vitro colchicine treatment of Gerbera jamesonii bolus cv. sciella. Plant Cell Tiss. Organ. Cult. 2011, 106, 485–493. [Google Scholar] [CrossRef]
- Shahid, M.Q.; Li, Y.J.; Saleem, M.; Wei, C.M.; Naeem, M.; Liu, X.D. Yield and yield components in autotetraploid and diploid rice genotypes (indica and japonica) sown in early and late seasons. Aust. J. Crop Sci. 2013, 7, 632–641. [Google Scholar]
- Ghouri, F.; Zhu, J.; Yu, H.; Wu, J.; Baloch, F.S.; Liu, X.D.; Shahid, M.Q. Deciphering global DNA variations and embryo sac fertility in autotetraploid rice line. Turk. J. Agric. 2019, 43, 554–568. [Google Scholar] [CrossRef]
- Shahid, M.Q.; Liu, G.; Li, J.; Naeem, M.; Liu, X.D. Heterosis and gene action study of agronomic traits in diploid and autotetraploid rice. Acta Agric. Scand. Sect. B Plant Soil. Sci. 2011, 61, 23–32. [Google Scholar] [CrossRef]
- Wu, J.W.; Hu, C.Y.; Shahid, M.Q.; Guo, H.B.; Zeng, Y.X.; Liu, X.D.; Lu, Y.G. Analysis on genetic diversification and heterosis in autotetraploid rice. SpringerPlus 2013, 2, 439. [Google Scholar] [CrossRef] [PubMed]
Combination Name | Medium Name | 2,4-D Concentration (mg·L−1) | Acid-Hydrolyzed Casein Concentration (g·L−1) | Pro Concentration (g·L−1) | Induction Rate (%) |
---|---|---|---|---|---|
Y1 | N6 | 2.0 | 0.0 | 0.0 | 80.56 ± 5.44 a |
Y2 | N6 | 2.0 | 0.3 | 0.3 | 18.52 ± 3.17 bc |
Y3 | N6 | 2.0 | 0.3 | 3.0 | 7.78 ± 2.35 c |
Y4 | 1/2MS | 2.0 | 0.0 | 0.0 | 30.14 ± 5.18 b |
Combination Name | Differentiation Rate (%) | Seedling Emergence Rate (%) | Browning Rate (%) |
---|---|---|---|
F1 | 46.46 ± 7.61 b | 12.12 ± 5.70 B | 24.24 ± 4.93 B |
F2 | 75.00 ± 4.97 a | 28.97 ± 4.67 A | 14.29 ± 3.38 B |
F3 | 50.56 ± 6.25 b | 9.72 ± 4.84 B | 8.80 ± 3.71 B |
F4 | 47.62 ± 8.11 b | 5.56 ± 2.26 B | 49.21 ± 8.54 A |
Combination Name | Medium Name | IAA Concentration (mg·L−1) | NAA Concentration (mg·L−1) | BA Concentration (mg·L−1) | AC Concentration (g·L−1) | Root Number |
---|---|---|---|---|---|---|
G1 | 1/2MS | 0.0 | 2.0 | 0.2 | 0.5 | 13.95 ± 1.04 a |
G2 | 1/2MS | 2.0 | 0.0 | 0.2 | 0.5 | 11.85 ± 1.72 a |
G3 | 1/2MS | 1.0 | 1.0 | 0.5 | 0.5 | 10.77 ± 1.25 a |
Materials | Tiller Number | Plant Height (cm) | Leaf Length (cm) | Leaf Width (cm) | Stem Diameter (cm) |
---|---|---|---|---|---|
Control | 8.67 ± 0.92 | 74.63 ± 1.21 | 48.88 ± 0.72 | 1.42 ± 0.04 | 0.44 ± 0.02 |
Mixed-ploidy plant | 29.29 ± 3.06 ** | 70.99 ± 1.15 | 38.8 ± 1.54 ** | 1.91 ± 0.12 ** | 0.63 ± 0.05 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, M.; Chen, R.; Chen, X.; Shahid, M.Q.; Liu, X.; Wu, J. In Vitro Induction of Interspecific Hybrid and Polyploidy Derived from Oryza officinalis Wall. Plants 2023, 12, 3001. https://doi.org/10.3390/plants12163001
Tan M, Chen R, Chen X, Shahid MQ, Liu X, Wu J. In Vitro Induction of Interspecific Hybrid and Polyploidy Derived from Oryza officinalis Wall. Plants. 2023; 12(16):3001. https://doi.org/10.3390/plants12163001
Chicago/Turabian StyleTan, Meimei, Ruoxin Chen, Xingran Chen, Muhammad Qasim Shahid, Xiangdong Liu, and Jinwen Wu. 2023. "In Vitro Induction of Interspecific Hybrid and Polyploidy Derived from Oryza officinalis Wall" Plants 12, no. 16: 3001. https://doi.org/10.3390/plants12163001
APA StyleTan, M., Chen, R., Chen, X., Shahid, M. Q., Liu, X., & Wu, J. (2023). In Vitro Induction of Interspecific Hybrid and Polyploidy Derived from Oryza officinalis Wall. Plants, 12(16), 3001. https://doi.org/10.3390/plants12163001