Insights into the Functional Components in Wheat Grain: Spatial Pattern, Underlying Mechanism and Cultivation Regulation
Abstract
:1. Introduction
2. Spatial Distribution of Grain Components
2.1. Protein
2.2. Starch
2.3. Other Components
2.4. Processing and Baking Quality
3. The Underlying Mechanisms of the Spatial Heterogeneity Formation of Protein and Starch in Wheat Grain
3.1. Substrate Supply and Spatial Heterogeneity of Protein and Starch in Wheat Grain
3.2. Synthesis Capacity and Spatial Heterogeneity of Protein and Starch in Wheat Grains
4. Spatial Heterogeneity of Grain Compositions as Affected by Cultivation Practices
4.1. Nitrogen Fertilizer
4.2. Plant Density Combined with Nitrogen Availability
4.3. Sulfur Fertilizer and Amino Acids Spraying
4.4. The Spatial Heterogeneity in Grain Trace Elements as Affected by Cultivation Practices
5. Spatial Heterogeneity of Grain Compositions as Affected by Cultivation Practices
6. Perspectives
6.1. Technological Advancements Facilitate the Mechanism Investigation of Spatial Heterogeneity Formation
6.2. Directional Regulation of Key Gene Expression Modifies the Spatial Distribution Pattern
6.3. Differential Spatial Responses to Cultivation Practices Have the Potential for Specialized Wheat Production
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Veraverbeke, W.S.; Delcour, J.A. Wheat protein composition and properties of wheat glutenin in relation to breadmaking functionality. Crit. Rev. Food Sci. Nutr. 2002, 42, 179–208. [Google Scholar] [CrossRef] [PubMed]
- Jayas, D.; Paliwal, J.; Erkinbaev, C.; Ghosh, P.; Karunakaran, C. Wheat quality evaluation. In Computer Vision Technology for Food Quality Evaluation; Academic Press: Cambridge, MA, USA, 2016; pp. 385–412. [Google Scholar]
- Onipe, O.O.; Jideani, A.I.; Beswa, D. Composition and functionality of wheat bran and its application in some cereal food products. Int. J. Food Sci. Technol. 2015, 50, 2509–2518. [Google Scholar] [CrossRef]
- Barron, C.; Surget, A.; Rouau, X. Relative amounts of tissues in mature wheat (Triticum aestivum L.) grain and their carbohydrate and phenolic acid composition. J. Cereal Sci. 2007, 45, 88–96. [Google Scholar] [CrossRef]
- De Brier, N.; Gomand, S.V.; Donner, E.; Paterson, D.; Smolders, E.; Delcour, J.A.; Lombi, E. Element distribution and iron speciation in mature wheat grains (Triticum aestivum L.) using synchrotron X-ray fluorescence microscopy mapping and X-ray absorption near-edge structure (XANES) imaging. Plant Cell Environ. 2016, 39, 1835–1847. [Google Scholar] [CrossRef]
- Shewry, P.; Evers, A.; Bechtel, D.; Abecassis, J. Development, structure, and mechanical properties of the wheat grain. In Wheat: Chemistry and Technology; AACC International Press: Washington, DC, USA, 2009; pp. 51–96. [Google Scholar]
- Kramer, T. Environmental and genetic variation for protein content in winter wheat (Triticum aestivum L.). Euphytica 1979, 28, 209–218. [Google Scholar] [CrossRef]
- Shewry, P.R. Wheat. J. Exp. Bot. 2009, 60, 1537–1553. [Google Scholar] [CrossRef]
- Kent, N.; Evers, A. Variation in protein composition within the endosperm of hard wheat. Cereal Chem. 1969, 46, 293–300. [Google Scholar]
- Duncan, E.G.; O’Sullivan, C.A.; Roper, M.M.; Biggs, J.S.; Peoples, M.B. Influence of co-application of nitrogen with phosphorus, potassium and sulphur on the apparent efficiency of nitrogen fertiliser use, grain yield and protein content of wheat. Field Crops Res. 2018, 226, 56–65. [Google Scholar] [CrossRef]
- He, J.; Penson, S.; Powers, S.J.; Hawes, C.; Shewry, P.R.; Tosi, P. Spatial patterns of gluten protein and polymer distribution in wheat grain. J. Agric. Food Chem. 2013, 61, 6207–6215. [Google Scholar] [CrossRef]
- Zheng, B.; Zhang, X.; Wang, Q.; Li, W.; Huang, M.; Zhou, Q.; Cai, J.; Wang, X.; Cao, W.; Dai, T. Increasing plant density improves grain yield, protein quality and nitrogen agronomic efficiency of soft wheat cultivars with reduced nitrogen rate. Field Crops Res. 2021, 267, 108145. [Google Scholar] [CrossRef]
- Zhong, Y.; Yang, M.; Cai, J.; Wang, X.; Zhou, Q.; Cao, W.; Dai, T.; Jiang, D. Nitrogen topdressing timing influences the spatial distribution patterns of protein components and quality traits of flours from different pearling fractions of wheat (Triticum aestivum L.) grains. Field Crops Res. 2018, 216, 120–128. [Google Scholar] [CrossRef]
- Tosi, P.; He, J.; Lovegrove, A.; Gonzáles-Thuillier, I.; Penson, S.; Shewry, P.R. Gradients in compositions in the starchy endosperm of wheat have implications for milling and processing. Trends Food Sci. Technol. 2018, 82, 1–7. [Google Scholar] [CrossRef]
- Zhong, C.; Huang, J.W.; Jiang, D.; Zhong, Y.X.; Wang, X.; Cai, J.; Chen, W.; Zhou, Q. Metabolomic Analysis Reveals Patterns of Whole Wheat and Pearling Fraction Flour Quality Response to Nitrogen in Two Wheat Lines with Contrasting Protein Content. J. Agric. Food Chem. 2023, 71, 2290–2300. [Google Scholar] [CrossRef] [PubMed]
- Kent, N. Subaleuron endosperm cells of high protein content. Cereal Chem. 1966, 43, 585–601. [Google Scholar]
- Xiong, F.; Yu, X.; Zhou, L.; Zhang, J.; Jin, Y.; Li, D.; Wang, Z. Effect of nitrogen fertilizer on distribution of starch granules in different regions of wheat endosperm. Crop J. 2014, 2, 46–54. [Google Scholar] [CrossRef]
- Savill, G.P.; Michalski, A.; Powers, S.J.; Wan, Y.; Tosi, P.; Buchner, P.; Hawkesford, M.J. Temperature and nitrogen supply interact to determine protein distribution gradients in the wheat grain endosperm. J. Exp. Bot. 2018, 69, 3117–3126. [Google Scholar] [CrossRef] [PubMed]
- Tosi, P.; Gritsch, C.S.; He, J.; Shewry, P.R. Distribution of gluten proteins in bread wheat (Triticum aestivum) grain. Ann. Bot. 2011, 108, 23–35. [Google Scholar] [CrossRef]
- Tester, R.F.; Karkalas, J.; Qi, X. Starch—Composition, fine structure and architecture. J. Cereal Sci. 2004, 39, 151–165. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, X.; Yang, J.; Zhou, L.; Cai, J.; Wang, X.; Dai, T.; Cao, W.; Jiang, D. Spatial distribution patterns of protein and starch in wheat grain affect baking quality of bread and biscuit. J. Cereal Sci. 2018, 79, 362–369. [Google Scholar] [CrossRef]
- Peng, M.; Gao, M.; Abdel-Aal, E.S.; Hucl, P.; Chibbar, R. Separation and characterization of A-and B-type starch granules in wheat endosperm. Cereal Chem. 1999, 76, 375–379. [Google Scholar] [CrossRef]
- Tomlinson, K.; Denyer, K. Starch synthesis in cereal grains. Adv. Bot. Res. 2003, 40, 1–61. [Google Scholar]
- Tosi, P.; Parker, M.; Gritsch, C.S.; Carzaniga, R.; Martin, B.; Shewry, P.R. Trafficking of storage proteins in developing grain of wheat. J. Exp. Bot. 2009, 60, 979–991. [Google Scholar] [CrossRef]
- Andersson, A.A.; Andersson, R.; Piironen, V.; Lampi, A.-M.; Nyström, L.; Boros, D.; Fraś, A.; Gebruers, K.; Courtin, C.M.; Delcour, J.A. Contents of dietary fibre components and their relation to associated bioactive components in whole grain wheat samples from the health grain diversity screen. Food Chem. 2013, 136, 1243–1248. [Google Scholar] [CrossRef]
- Ciudad-Mulero, M.; Fernández-Ruiz, V.; Matallana-González, M.C.; Morales, P. Dietary fiber sources and human benefits: The case study of cereal and pseudocereals. Adv. Food Nutr. Res. 2019, 90, 83–134. [Google Scholar] [PubMed]
- Messia, M.; Candigliota, T.; De Arcangelis, E.; Marconi, E. Arabinoxylans and glucans assessment in cereals. Ital. J. Food Sci. 2017, 29, 112. [Google Scholar]
- Bach Knudsen, K.E.; Nørskov, N.P.; Bolvig, A.K.; Hedemann, M.S.; Laerke, H.N. Dietary fibers and associated phytochemicals in cereals. Mol. Nutr. Food Res. 2017, 61, 1600518. [Google Scholar] [CrossRef] [PubMed]
- Veličković, D.; Ropartz, D.; Guillon, F.; Saulnier, L.; Rogniaux, H. New insights into the structural and spatial variability of cell-wall polysaccharides during wheat grain development, as revealed through MALDI mass spectrometry imaging. J. Exp. Bot. 2014, 65, 2079–2091. [Google Scholar] [CrossRef] [PubMed]
- Veličković, D.A.; Saulnier, L.; Lhomme, M.; Damond, A.; Guillon, F.; Rogniaux, H.L.N. Mass spectrometric imaging of wheat (Triticum spp.) and barley (Hordeum vulgare L.) cultivars: Distribution of major cell wall polysaccharides according to their main structural features. J. Agric. Food Chem. 2016, 64, 6249–6256. [Google Scholar] [CrossRef] [PubMed]
- Fanuel, M.; Ropartz, D.; Guillon, F.; Saulnier, L.; Rogniaux, H. Distribution of cell wall hemicelluloses in the wheat grain endosperm: A 3D perspective. Planta 2018, 248, 1505–1513. [Google Scholar] [CrossRef]
- Fanuel, M.; Grélard, F.; Foucat, L.; Alvarado, C.; Arnaud, B.; Chateigner-Boutin, A.-L.; Saulnier, L.; Legland, D.; Rogniaux, H. Spatial correlation of water distribution and fine structure of arabinoxylans in the developing wheat grain. Carbohydr. Polym. 2022, 294, 119738. [Google Scholar] [CrossRef]
- Adom, K.K.; Sorrells, M.E.; Liu, R.H. Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J. Agric. Food Chem. 2005, 53, 2297–2306. [Google Scholar] [CrossRef]
- Xue, Y.-F.; Eagling, T.; He, J.; Zou, C.-Q.; McGrath, S.P.; Shewry, P.R.; Zhao, F.-J. Effects of nitrogen on the distribution and chemical speciation of iron and zinc in pearling fractions of wheat grain. J. Agric. Food Chem. 2014, 62, 4738–4746. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Stewart, T.; Amrahli, M.; Evans, J.; Sharp, P.; Govindan, V.; Hawkesford, M.J.; Shewry, P.R. Localisation of iron and zinc in grain of biofortified wheat. J. Cereal Sci. 2022, 105, 103470. [Google Scholar] [CrossRef]
- Cakmak, I.; Kutman, U.Á. Agronomic biofortification of cereals with zinc: A review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef]
- Wang, Y.; Specht, A.; Horst, W. Stable isotope labelling and zinc distribution in grains studied by laser ablation ICP-MS in an ear culture system reveals zinc transport barriers during grain filling in wheat. New Phytol. 2011, 189, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Zhou, Q.; Hu, S.; Wang, F.; Tian, Z.; Hu, X.; Liu, H.; Jiang, D.; Chen, W. Metabolomic analysis of the grain pearling fractions of six bread wheat varieties. Food Chem. 2022, 369, 130881. [Google Scholar] [CrossRef]
- Wang, X. Differences in the Physicochemical Properties and Spatial Distribution of Processing Quality of Wheat Starch and Nitrogen Regulation. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2018. [Google Scholar]
- Yang, J. Effect of Starch Glluten Addition and Different Pearling Fractions Mixed on the Physicochemical Properties and Baking Quality of Wheat Flour. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2017. [Google Scholar]
- Dai, M.; Zhang, Y.; Pan, W.; Zhang, B.; Guo, B.; Wei, Y. Physicochemical properties of protein from pearling fractions of wheat kernels. Cereal Chem. 2020, 97, 1084–1092. [Google Scholar] [CrossRef]
- Guo, J.; Wang, F.; Zhang, Z.; Wu, D.; Bao, J. Characterization of gluten proteins in different parts of wheat grain and their effects on the textural quality of steamed bread. J. Cereal Sci. 2021, 102, 103368. [Google Scholar] [CrossRef]
- Shewry, P.R.; Mitchell, R.A.; Tosi, P.; Wan, Y.; Underwood, C.; Lovegrove, A.; Freeman, J.; Toole, G.A.; Mills, E.C.; Ward, J.L. An integrated study of grain development of wheat (cv. Hereward). J. Cereal Sci. 2012, 56, 21–30. [Google Scholar] [CrossRef]
- Gutierrez, L.; Van Wuytswinkel, O.; Castelain, M.; Bellini, C. Combined networks regulating seed maturation. Trends Plant Sci. 2007, 12, 294–300. [Google Scholar] [CrossRef]
- Shewry, P.R.; Underwood, C.; Wan, Y.; Lovegrove, A.; Bhandari, D.; Toole, G.; Mills, E.C.; Denyer, K.; Mitchell, R.A. Storage product synthesis and accumulation in developing grains of wheat. J. Cereal Sci. 2009, 50, 106–112. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, G. Molecular prospective on the wheat grain development. Crit. Rev. Biotechnol. 2021, 43, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Nadaud, I.; Girousse, C.; Debiton, C.; Chambon, C.; Bouzidi, M.F.; Martre, P.; Branlard, G. Proteomic and morphological analysis of early stages of wheat grain development. Proteomics 2010, 10, 2901–2910. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Poole, R.L.; Huttly, A.K.; Toscano-Underwood, C.; Feeney, K.; Welham, S.; Gooding, M.J.; Mills, C.; Edwards, K.J.; Shewry, P.R. Transcriptome analysis of grain development in hexaploid wheat. BMC Genom. 2008, 9, 121. [Google Scholar] [CrossRef] [PubMed]
- Young, T.E.; Gallie, D.R.; DeMason, D.A. Ethylene-mediated programmed cell death during maize endosperm development of wild-type and shrunken2 genotypes. Plant Physiol. 1997, 115, 737–751. [Google Scholar] [CrossRef]
- Young, T.E.; Gallie, D.R. Analysis of programmed cell death in wheat endosperm reveals differences in endosperm development between cereals. Plant Mol. Biol. 1999, 39, 915–926. [Google Scholar] [CrossRef]
- Liu, J.; Wu, M.-W.; Liu, C.-M. Cereal Endosperms: Development and Storage Product Accumulation. Annu. Rev. Plant Biol. 2022, 73, 255–291. [Google Scholar] [CrossRef]
- Wu, X.; Liu, J.; Li, D.; Liu, C.M. Rice caryopsis development II: Dynamic changes in the endosperm. J. Integr. Plant Biol. 2016, 58, 786–798. [Google Scholar] [CrossRef]
- Ugalde, T.; Jenner, C. Substrate gradients and regional patterns of dry matter deposition within developing wheat endosperm. I. Carbohydrates. Funct. Plant Biol. 1990, 17, 377–394. [Google Scholar] [CrossRef]
- Ugalde, T.; Jenner, C. Substrate gradients and regional patterns of dry matter deposition within developing wheat endosperm. II. Amino acids and protein. Funct. Plant Biol. 1990, 17, 395–406. [Google Scholar] [CrossRef]
- Peukert, M.; Thiel, J.; Peshev, D.; Weschke, W.; Van den Ende, W.; Mock, H.-P.; Matros, A. Spatio-temporal dynamics of fructan metabolism in developing barley grains. Plant Cell 2014, 26, 3728–3744. [Google Scholar] [CrossRef]
- Zhong, Y.; Vidkjær, N.H.; Massange-Sanchez, J.A.; Laursen, B.B.; Gislum, R.; Borg, S.; Jiang, D.; Hebelstrup, K.H. Changes in spatiotemporal protein and amino acid gradients in wheat caryopsis after N-topdressing. Plant Sci. 2020, 291, 110336. [Google Scholar] [CrossRef]
- Wang, Z.; Gu, Y. The development of wheat endosperm and its nutrient input pathways. Crop J. 1998, 24, 536–543. [Google Scholar]
- Chen, X.; Bo, L.; Shao, S.; Wang, L.; Zhu, X.; Wang, W.; Yu, X.; Xiong, F. Accumulation characteristic of protein bodies in different regions of wheat endosperm under drought stress. J. Integr. Agric. 2016, 15, 2921–2930. [Google Scholar] [CrossRef]
- Moore, K.L.; Tosi, P.; Palmer, R.; Hawkesford, M.J.; Grovenor, C.R.; Shewry, P.R. The dynamics of protein body formation in developing wheat grain. Plant Biotechnol. J. 2016, 14, 1876–1882. [Google Scholar] [CrossRef]
- Blennow, A.; Jensen, S.L.; Shaik, S.S.; Skryhan, K.; Carciofi, M.; Holm, P.B.; Hebelstrup, K.H.; Tanackovic, V. Future cereal starch bioengineering: Cereal ancestors encounter gene technology and designer enzymes. Cereal Chem. 2013, 90, 274–287. [Google Scholar] [CrossRef]
- Loussert, C.; Popineau, Y.; Mangavel, C. Protein bodies ontogeny and localization of prolamin components in the developing endosperm of wheat caryopses. J. Cereal Sci. 2008, 47, 445–456. [Google Scholar] [CrossRef]
- Sørensen, M.B.; Cameron-Mills, V.; Brandt, A. Transcriptional and post-transcriptional regulation of gene expression in developing barley endosperm. Mol. Gen. Genet. MGG 1989, 217, 195. [Google Scholar] [CrossRef]
- Ma, D.; Gao, H.; Du, C.; Li, L.; Sun, W.; Liu, S.; Wang, C.; Xie, Y.; Kang, G. Transcriptomic and metabolomics analysis of different endosperm region under nitrogen treatments. Int. J. Mol. Sci. 2019, 20, 4212. [Google Scholar] [CrossRef] [PubMed]
- Gillies, S.A.; Futardo, A.; Henry, R.J. Gene expression in the developing aleurone and starchy endosperm of wheat. Plant Biotechnol. J. 2012, 10, 668–679. [Google Scholar] [CrossRef]
- Espina, V.; Wulfkuhle, J.D.; Calvert, V.S.; VanMeter, A.; Zhou, W.; Coukos, G.; Geho, D.H.; Petricoin, E.F.; Liotta, L.A. Laser-capture microdissection. Nat. Protoc. 2006, 1, 586. [Google Scholar] [CrossRef]
- Zhan, J.; Thakare, D.; Ma, C.; Lloyd, A.; Nixon, N.M.; Arakaki, A.M.; Burnett, W.J.; Logan, K.O.; Wang, D.; Wang, X. RNA sequencing of laser-capture microdissected compartments of the maize kernel identifies regulatory modules associated with endosperm cell differentiation. Plant Cell 2015, 27, 513–531. [Google Scholar] [CrossRef] [PubMed]
- Hermans, W.; Mutlu, S.; Michalski, A.; Langenaeken, N.A.; Courtin, C.M. The Contribution of sub-aleurone cells to wheat endosperm protein content and gradient is dependent on cultivar and n-fertilization level. J. Agric. Food Chem. 2021, 69, 6444–6454. [Google Scholar] [CrossRef] [PubMed]
- Ran, L.; Yu, X.; Li, Y.; Zou, J.; Deng, J.; Pan, J.; Xiong, F. Analysis of development, accumulation and structural characteristics of starch granule in wheat grain under nitrogen application. Int. J. Biol. Macromol. 2020, 164, 3739–3750. [Google Scholar] [CrossRef]
- Zheng, B.; Fang, Q.; Zhang, C.; Mahmood, H.; Zhou, Q.; Li, W.; Li, X.; Cai, J.; Wang, X.; Zhong, Y. Reducing nitrogen rate and increasing plant density benefit processing quality by modifying the spatial distribution of protein bodies and gluten proteins in endosperm of a soft wheat cultivar. Field Crops Res. 2020, 253, 107831. [Google Scholar] [CrossRef]
- Tao, L.; Zhou, Q.; Cai, J.; Wang, X.; Dai, T.; Jiang, D. Effects of sulfur application period on the development of wheat caryopsis and endosperm. J. Nanjing Agric. Univ. 2018, 41, 402–412. [Google Scholar]
- Li, Y.N. Study on the Regulation of Leaf Spraying Sulfur-Containing Amino Acids on Wheat Grain Quality. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2014. [Google Scholar]
- Pan, M.; Wang, H.; Hu, S.; Cai, J.; Zhou, Q.; Dai, T.; Cao, W.; Jiang, D.; Zhong, Y. Spraying exogenous regulators improves breadmaking quality and modifies the spatial distribution of gluten protein. Arch. Agron. Soil Sci. 2023, 1–14. [Google Scholar] [CrossRef]
- Shi, R.; Zhang, Y.; Chen, X.; Sun, Q.; Zhang, F.; Römheld, V.; Zou, C. Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). J. Cereal Sci. 2010, 51, 165–170. [Google Scholar] [CrossRef]
- Xue, Y.F.; Zhang, W.; Liu, D.Y.; Xia, H.Y.; Zou, C.Q. Nutritional composition of iron, zinc, calcium, and phosphorus in wheat grain milling fractions as affected by fertilizer nitrogen supply. Cereal Chem. 2016, 93, 543–549. [Google Scholar] [CrossRef]
- Wang, X.; Guo, Z.; Hui, X.; Wang, R.; Wang, S.; Kopittke, P.M.; Wang, Z.; Shi, M. Improved Zn bioavailability by its enhanced colocalization and speciation with S in wheat grain tissues after N addition. Food Chem. 2023, 404, 134582. [Google Scholar] [CrossRef]
- Dong, M. Effects of Foliar Zine Application on Different Layers of Grain Quality and Physiological Mechanisms in Wheat. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2017. [Google Scholar]
- Shao, Y.; Zhang, P.; Ma, G.; Lu, H. Effect of nitrogen and zinc fertilizer combination application on nitrogen and zinc content and distribution in wheat grains. Henan Agric. Sci. 2021, 50, 35. [Google Scholar]
- Goesaert, H.; Brijs, K.; Veraverbeke, W.; Courtin, C.; Gebruers, K.; Delcour, J. Wheat flour constituents: How they impact bread quality, and how to impact their functionality. Trends Food Sci. Technol. 2005, 16, 12–30. [Google Scholar] [CrossRef]
- Shewry, P.R.; Wan, Y.; Hawkesford, M.J.; Tosi, P. Spatial distribution of functional components in the starchy endosperm of wheat grains. J. Cereal Sci. 2020, 91, 102869. [Google Scholar] [CrossRef] [PubMed]
- Liu, X. Formular Flour and Flour in Pearling Fractions of Grains on Flour Physicochemical Properties and Biscuits Processing Quality. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2014. [Google Scholar]
- Kiser, M.R.; Reid, C.D.; Crowell, A.S.; Phillips, R.P.; Howell, C.R. Exploring the transport of plant metabolites using positron emitting radiotracers. HFSP J. 2008, 2, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Mathews, A.J.; Li, K.; Wen, J.; Komarov, S.; O’Sullivan, J.A.; Tai, Y.-C. A dedicated high-resolution PET imager for plant sciences. Phys. Med. Biol. 2014, 59, 5613. [Google Scholar] [CrossRef]
- Weisenberger, A.G.; Kross, B.; Lee, S.; McKisson, J.; McKisson, J.; Xi, W.; Zorn, C.; Reid, C.D.; Howell, C.R.; Crowell, A.S. PhytoBeta imager: A positron imager for plant biology. Phys. Med. Biol. 2012, 57, 4195. [Google Scholar] [CrossRef]
- Karve, A.A.; Alexoff, D.; Kim, D.; Schueller, M.J.; Ferrieri, R.A.; Babst, B.A. In vivo quantitative imaging of photoassimilate transport dynamics and allocation in large plants using a commercial positron emission tomography (PET) scanner. BMC Plant Biol. 2015, 15, 273. [Google Scholar] [CrossRef]
- Partelová, D.; Kuglerová, K.; Konotop, Y.; Horník, M.; Lesný, J.; Gubišová, M.; Gubiš, J.; Kováč, P.; Matušíková, I. Imaging of photoassimilates transport in plant tissues by positron emission tomography. Nova Biotechnol. Chim. 2017, 16, 32–41. [Google Scholar] [CrossRef]
- Partelová, D.; Horník, M.; Lesný, J.; Rajec, P.; Kováč, P.; Hostin, S. Imaging and analysis of thin structures using positron emission tomography: Thin phantoms and in vivo tobacco leaves study. Appl. Radiat. Isot. 2016, 115, 87–96. [Google Scholar] [CrossRef]
- Tauris, B.; Borg, S.; Gregersen, P.L.; Holm, P.B. A roadmap for zinc trafficking in the developing barley grain based on laser capture microdissection and gene expression profiling. J. Exp. Bot. 2009, 60, 1333–1347. [Google Scholar] [CrossRef]
- Menguer, P.K.; Vincent, T.; Miller, A.J.; Brown, J.K.; Vincze, E.; Borg, S.; Holm, P.B.; Sanders, D.; Podar, D. Improving zinc accumulation in cereal endosperm using Hv MTP 1, a transition metal transporter. Plant Biotechnol. J. 2018, 16, 63–71. [Google Scholar] [CrossRef] [PubMed]
Country | Australia | China | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Classification of Wheat | Prime Hard Wheat | Hard Wheat | Premium White Wheat | Standard White Wheat | Standard Noodle Wheat | Premium White Wheat—Noodle Wheat | Soft Wheat | Durum Wheat | Strong Gluten Wheat | Medium–Strong Gluten Wheat | Medium Gluten Wheat | Weak Gluten Wheat | ||||
Protein content (%) | ≥13.0 | ≥11.5 | ≥10.0 | - | 9.5–11.5 | 10.0–11.5 | <9.5 | >13.0 | ≥14 | 13.0–14.0 | 12.5–13.0 | <12.5 | ||||
Bulk density(g/L) | ≥760 | ≥760 | ≥760 | ≥760 | ≥720 | ≥760 | - | - | ≥770 | ≥770 | ≥770 | ≥750 | ||||
Drop value(s) | ≥350 | ≥300 | ≥300 | ≥300 | ≥300 | ≥300 | - | - | No data source | |||||||
Gluten content (%) | No data source | ≥30 | 28–30 | 25–28 | <25 | |||||||||||
Data sources | https://wheatquality.com.au/ (accessed on 22 February 2023) https://www.aegic.org.au/australian-grains/wheat/ (accessed on 22 February 2023) https://www.graintrade.org.au/ (accessed on 22 February 2023) | Quality classification of wheat varieties GB/T17320-2013 | ||||||||||||||
Country | United States | Russia | ||||||||||||||
Classification of Wheat | Hard Red Winter | Hard Red Spring | Hard White | Durum | Soft White | Soft Red Winter | Durum Wheat | Soft Wheat | ||||||||
Grade I | Grade II | Grade III | Grade IV | Grade V | Grade I | Grade II | Grade III | Grade IV | Grade V | |||||||
Protein content (%) | 10.0–13.0 | 12.0–15.0 | 10.5–14.0 | 12.0–15.0 | 8.5–10.5 | 8.5–10.5 | ≥13.5 | ≥12.5 | ≥11.5 | ≥10.0 | - | ≥14.5 | ≥13.5 | ≥12.0 | ≥10.0 | - |
Bulk density(g/L) | No data source | ≥770 | ≥770 | ≥745 | ≥710 | - | ≥750 | ≥750 | ≥730 | ≥710 | - | |||||
Drop value(s) | No data source | ≥200 | ≥200 | ≥150 | ≥80 | - | ≥200 | ≥200 | ≥150 | ≥80 | - | |||||
Gluten content (%) | No data source | ≥28 | ≥25 | ≥22 | ≥18 | - | ≥32 | ≥28 | ≥23 | ≥18 | - | |||||
Data sources | Overview of U.S. WHEAT INSPECTION (2021). https://www.uswheat.org/wp-content/uploads/Overview-of-U.S.-Wheat-Inspection.pdf (accessed on 22 February 2023) | Russian national standard ΓOCT9353-2016 |
Cultivation Practice | Regulatory Effect | |||
---|---|---|---|---|
Aleurone | Outer Endosperm | Middle Endosperm | Inner Endosperm | |
Increase N level | +++ | ++ | ++ | + |
Delay N topdressing timing | +++ | +++ | ++ | + |
Increase planting density and decrease N level | +++ | +++ | ++ | + |
Apply S fertilizer | ++ | +++ | +++ | + |
Foliar spray of Zn fertilizer | ++ | + | + | +++ |
Foliar spray of amino acid | ++ | ++ | +++ | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Y.; Chen, Y.; Pan, M.; Wang, H.; Sun, J.; Chen, Y.; Cai, J.; Zhou, Q.; Wang, X.; Jiang, D. Insights into the Functional Components in Wheat Grain: Spatial Pattern, Underlying Mechanism and Cultivation Regulation. Plants 2023, 12, 2192. https://doi.org/10.3390/plants12112192
Zhong Y, Chen Y, Pan M, Wang H, Sun J, Chen Y, Cai J, Zhou Q, Wang X, Jiang D. Insights into the Functional Components in Wheat Grain: Spatial Pattern, Underlying Mechanism and Cultivation Regulation. Plants. 2023; 12(11):2192. https://doi.org/10.3390/plants12112192
Chicago/Turabian StyleZhong, Yingxin, Yuhua Chen, Mingsheng Pan, Hengtong Wang, Jiayu Sun, Yang Chen, Jian Cai, Qin Zhou, Xiao Wang, and Dong Jiang. 2023. "Insights into the Functional Components in Wheat Grain: Spatial Pattern, Underlying Mechanism and Cultivation Regulation" Plants 12, no. 11: 2192. https://doi.org/10.3390/plants12112192
APA StyleZhong, Y., Chen, Y., Pan, M., Wang, H., Sun, J., Chen, Y., Cai, J., Zhou, Q., Wang, X., & Jiang, D. (2023). Insights into the Functional Components in Wheat Grain: Spatial Pattern, Underlying Mechanism and Cultivation Regulation. Plants, 12(11), 2192. https://doi.org/10.3390/plants12112192