Dissection of Developmental Programs and Regulatory Modules Directing Endosperm Transfer Cell and Aleurone Identity in the Syncytial Endosperm of Barley
Abstract
:1. Introduction
2. Results
2.1. Anatomy of the Initial Cellularization Stage of the Barley Syncytium
2.2. RNA-Seq Analysis of Genes Expressed in Endosperm Subdomains Fated to Become ETCs or AL Cells
2.2.1. Cell Cycle Regulation, Cytokinesis and Cell Wall Formation Differ between ETC and Sync
2.2.2. Assimilate Transport Is a Key Feature of ETCs
2.2.3. Signaling Pathways Directing Cell Specification in Endosperm Domains
Different Hormone and Phosphorylation Pathways Are Transcriptionally Activated in Syncytial Subdomains
Signatures of TF Families Differ Substantially between Syncytial Domains
2.3. Enrichment of Cis-Regulatory Motifs in DEGs Specifies Targets of TFs
2.4. In Situ Hybridization Validates Domain-Specific Expression
2.5. Bimolecular Fluorescence Complementation (BiFC) Assays Confirmed Complex Formation of Co-Expressed Barley TCS Elements
3. Discussion
3.1. Timing of Cellularization and Differentiation in Endosperm Subdomains Varies
3.2. Nutrient Transport in the Young Endosperm
3.3. Signaling Pathways and Regulatory Modules Involved in Cell Fate Decisions
4. Materials and Methods
4.1. Plant Material
4.2. Light, Confocal and Transmission Electron Microscopy
4.3. Laser Capture Microdissection, Sample Preparation and RNA-Seq
4.4. Read Mapping and Transcriptome Analysis
4.5. Analysis of Cis-Motif Enrichment
4.6. In Situ Hybridization
4.7. Bimolecular Fluorescence Complementation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT Statistical. Food and Agriculture Organization of the United Nations [FAO]. 2020. Available online: http://www.fao.org/faostat/en/ (accessed on 10 February 2021).
- Olsen, O.-A. Endosperm development: Cellularization and cell fate specification. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 233–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, R.C.; Lemmon, B.E.; Olsen, O.-A. Endosperm development in barley: Microtubule involvement in the morphogenetic pathway. Plant Cell 1994, 6, 1241–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, O.-A. The modular control of cereal endosperm development. Trends Plant Sci. 2019, 25, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Olsen, O.-A. Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 2004, 16, 214–227. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.C.; Lemmon, B.E.; Olsen, O.A. Polarization predicts the pattern of cellularization in cereal endosperm. Protoplasma 1996, 192, 168–177. [Google Scholar] [CrossRef]
- Boisnard-Lorig, C.; Colon-Carmona, A.; Bauch, M.; Hodge, S.; Doerner, P.; Bancharel, E.; Dumas, C.; Haseloff, J.; Berger, F. Dynamic analyses of the expression of the HISTONE:YFP fusion protein in Arabidopsis show that syncytial endospermis divided in mitotic domains. Plant Cell 2001, 13, 495–509. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.J.; Moore, K.L.; Lombi, E.; Zhu, Y.G. Imaging element distribution and speciation in plant cells. Trends Plant Sci. 2014, 19, 182–193. [Google Scholar] [CrossRef]
- Gomez, E.; Royo, J.; Guo, Y.; Thompson, R.; Hueros, G. Establishment of cereal endosperm expression domains: Identification and properties of a maize transfer cell-specific transcription factor, ZmMRP-1. Plant Cell 2002, 14, 599–610. [Google Scholar] [CrossRef]
- Muñiz, L.M.; Royo, J.; Gómez, E.; Barrero, C.; Bergareche, D.; Hueros, G. The maize transfer cell-specific type-A response regulator ZmTCRR-1 appears to be involved in intercellular signaling. Plant J. 2006, 48, 17–27. [Google Scholar] [CrossRef]
- Muñiz, L.M.; Royo, J.; Gómez, E.; Baudot, G.; Paul, W.; Hueros, G. Atypical response regulators expressed in the maize endosperm transfer cells link canonical two component system and seed biology. BMC Plant Biol. 2010, 10, 84. [Google Scholar] [CrossRef] [Green Version]
- Hueros, G.; Royo, J.; Maitz, M.; Salamini, F.; Thompson, R.D. Evidence for factors regulating transfer cell-specific expression in maize endosperm. Plant Mol. Biol. 1999, 41, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Faleri, C.; Del Casino, C.; Thompson, R.D.; Cresti, M. Subcellular localisation of BETL-1, -2 and -4 in Zea mays L. endosperm. Sex. Plant Reprod. 2002, 15, 85–98. [Google Scholar] [CrossRef]
- Gutierrez-Marcos, J.F.; Costa, L.M.; Biderre-Petit, C.; O’Sullivan, D.M.; Wormald, M.; Perez, P.; Dickinson, H.G. Maternally expressed gene1 is a novel maize endosperm transfer cell-specific gene with a maternal parent-of-origin pattern of expression. Plant Cell 2004, 16, 1288–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doan, D.N.P.; Linnestadt, C.; Olsen, O.-A. Isolation of molecular markers from the barley endosperm coenocyte and the surrounding nucellus cell layers. Plant Mol. Biol. 1996, 31, 877–886. [Google Scholar] [CrossRef]
- Thiel, J.; Hollmann, J.; Rutten, T.; Weber, H.; Scholz, U.; Weschke, W. 454 Transcriptome sequencing suggests a role for two-component signalling in cellularization and differentiation of barley endosperm transfer cells. PLoS ONE 2012, 7, e41867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hertig, C.; Melzer, M.; Rutten, T.; Erbe, S.; Hensel, G.; Kumlehn, J.; Weschke, W.; Weber, H.; Thiel, J. Barley HISTIDINE KINASE 1 (HvHK1) coordinates transfer cell specification in the young endosperm. Plant J. 2020, 103, 1869–1884. [Google Scholar] [CrossRef]
- Becraft, P.W.; Stinard, P.S.; Mccarty, D.R. CRINKLY4: A TNFR-like receptor kinase involved in maize epidermal differentiation. Science 1996, 273, 1406–1409. [Google Scholar] [CrossRef]
- Becraft, P.W.; Asuncion-Crabb, Y.T. Positional cues specify and maintain aleurone cell fate in maize endosperm development. Development 2000, 127, 4039–4048. [Google Scholar] [CrossRef]
- Becraft, P.W.; Li, K.; Dey, N.; Asuncion-Crabb, Y.T. The maize dek1 gene functions in embryonic pattern formation and in cell fate specification. Development 2002, 129, 5217–5225. [Google Scholar] [CrossRef]
- Lid, S.E.; Gruis, D.; Jung, R.; Lorentzen, J.A.; Ananiev, E.; Chamberlin, M.; Niu, X.; Meeley, R.; Nichols, S.; Olsen, O.-A. The defective kernel 1 (dek1) gene required for aleurone cell development in the endosperm of maize grains encodes a membrane protein of the calpain gene superfamily. Proc. Natl. Acad. Sci. USA 2002, 99, 5460–5465. [Google Scholar] [CrossRef] [Green Version]
- Shen, B.; Li, C.; Min, Z.; Meeley, R.B.; Tarczynski, M.C.; Olsen, O.-A. Sal1 determines the number of aleurone cell layers in maize endosperm and encodes a class E-vacuolar sorting protein. Proc. Natl. Acad. Sci. USA 2003, 100, 6552–6557. [Google Scholar] [CrossRef] [Green Version]
- Yi, G.; Lauter, A.M.; Scott, M.P.; Becraft, P.W. The thick aleurone1 mutant defines a negative regulation of maize aleurone cellfate that functions downstream of defective kernel. Plant Physiol. 2011, 156, 1826–1836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, G.; Neelakandan, A.K.; Gontarek, B.C.; Vollbrecht, E.; Becraft, P.W. The naked endosperm genes encode duplicate INDETERMINATE domain transcription factors required for maize endosperm cell patterning and differentiation. Plant Physiol. 2015, 167, 443–456. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wu, X.; Yao, X.; Yu, R.; Larkin, P.J.; Liu, C.-M. Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains. Proc. Natl. Acad. Sci. USA 2018, 115, 11327–11332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klemsdal, S.S.; Hughes, W.; Lönneborg, A.; Aalen, R.B.; Olsen, O.-A. Primary structure of a novel barley gene differentially expressed in immature aleurone layers. Mol. Gen. Genet. 1991, 228, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Gillies, S.A.; Futardo, A.; Henry, R.J. Gene expression in the developing aleurone and starchy endosperm of wheat. Plant Biotechnol. J. 2012, 10, 668–679. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, D.; Yang, R.; Logan, K.; Chen, H.; Zhang, S.; Skaggs, M.I.; Lloyd, A.; Burnett, W.J.; Laurie, J.D.; et al. Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing. Proc. Natl. Acad. Sci. USA 2014, 111, 7582–7587. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Tucker, M.R.; Burton, R.A.; Shirley, N.J.; Little, A.; Morris, J.; Milne, L.; Houston, K.; Hedley, P.E.; Waugh, R.; et al. The dynamics of transcript abundance during cellularization of developing barley endosperm. Plant Phys. 2016, 170, 1549–1565. [Google Scholar] [CrossRef] [Green Version]
- Thiel, J.; Riewe, D.; Rutten, T.; Melzer, M.; Friedel, S.; Bollenbeck, F.; Weschke, W.; Weber, H. Differentiation of endosperm transfer cells of barley: A comprehensive analysis at the micro-scale. Plant J. 2012, 71, 639–655. [Google Scholar] [CrossRef]
- Zhan, J.; Thakare, D.; Ma, C.; Lloyd, A.; Nixon, N.M.; Arakaki, A.M.; Burnett, W.J.; Logan, K.O.; Wang, D.; Wang, X.; et al. RNA sequencing of laser-capture microdissected compartments of the maize kernel identifies regulatory modules associated with endosperm cell differentiation. Plant Cell 2015, 27, 513–531. [Google Scholar] [CrossRef]
- Pfeiffer, M.; Kugler, K.G.; Sandve, S.R.; Zhan, B.; Rudi, H.; Hvidsten, R.R.; IWGSC; Mayer, K.F.X.; Olsen, O.-A. Genome interplay in the grain transcriptome of hexaploid bread wheat. Science 2014, 345, 1250091. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.-Y.; Müller, M.; Gruissem, W.; Bhullar, N.K. Genome Wide Analysis of the Transcriptional Profiles in Different Regions of the Developing Rice Grains. Rice 2020, 13, 62. [Google Scholar] [CrossRef] [PubMed]
- Gruis, D.; Guo, H.N.; Selinger, D.; Tian, Q.; Olsen, O.-A. Surfaceposition, not signaling from surrounding maternal tissues, specifies aleuroneepidermal cell fate in maize. Plant Physiol. 2006, 141, 898–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takafuji, Y.; Shimizu-Sato, S.; Ta, K.N.; Suzuki, T.; Nosaka-Takahashi, M.; Oiwa, T.; Kimura, W.; Katoh, H.; Fukai, M.; Takeda, S.; et al. High-resolution spatiotemporal transcriptome analyses during cellularization of rice endosperm unveil the earliest gene regulation critical for aleurone and starchy endosperm cell fate specification. J. Plant Res. 2021, 134, 1061–1081. [Google Scholar] [CrossRef] [PubMed]
- Thiel, J. Development of endosperm transfer cells in barley. Front. Plant Sci. 2014, 5, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Offler, C.E.; Patrick, J.W. Transfer cells: What regulates the development of their intricate wall labyrinths? New Phytol. 2020, 228, 427–444. [Google Scholar] [CrossRef] [PubMed]
- Malumbres, M. Cyclin-dependent kinases. Genome Biol. 2014, 15, 122. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, E.; Cheung, A.Y.; Ueda, T. The regulatory RAB and ARF GTPases for vesicular trafficking. Plant Physiol. 2008, 147, 1516–1526. [Google Scholar] [CrossRef] [Green Version]
- Chateigner-Boutin, A.-L.; Bouchet, B.; Alvarado, C.; Bakan, B.; Guillon, F. The Wheat Grain Contains Pectic Domains Exhibiting Specific Spatial and Development-Associated Distribution. PLoS ONE 2014, 9, e89620. [Google Scholar] [CrossRef]
- Harholt, J.; Suttangkakul, A.; Scheller, H.V. Biosynthesis of pectin. Plant Physiol. 2010, 153, 384–395. [Google Scholar] [CrossRef] [Green Version]
- Livanos, P.; Müller, S. Division plane establishment and cytokinesis. Annu. Rev. Plant Biol. 2019, 70, 239–267. [Google Scholar] [CrossRef]
- Levy, S.; York, W.S.; Stuike-Prill, R.; Meyer, B.; Staehelin, L.A. Simulations of the static and dynamic molecular conformations of xyloglucan. The role of the fucosylated sidechain in surface-specific sidechain folding. Plant J. 1991, 1, 195–215. [Google Scholar] [CrossRef] [PubMed]
- Verger, S.; Chabout, S.; Gineau, E.; Mouille, G. Cell adhesion in plants is under the control of putative O-fucosyltransferases. Development 2016, 143, 2536–2540. [Google Scholar]
- Burk, D.H.; Ye, Z.H. Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein. Plant Cell 2002, 14, 2145–2160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weschke, W.; Panitz, R.; Gubatz, S.; Wang, Q.; Radchuk, R.; Weber, H.; Wobus, U. The role of invertases and hexose transporters in controlling sugar ratios in maternal and filial tissues of barley caryopses during early development. Plant J. 2003, 33, 395–411. [Google Scholar] [CrossRef]
- Weschke, W.; Panitz, R.; Sauer, N.; Wang, Q.; Neubohn, B.; Weber, H.; Wobus, U. Sucrose transport into barley seeds: A molecular characterization of two transporters and implications for seed development and starch accumulation. Plant J. 2000, 21, 455–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deeken, R.; Geiger, D.; Fromm, J.; Koroleva, O.; Ache, P.; Langenfeld-Heyser, R.; Sauer, N.; May, S.T.; Hedrich, R. Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 2002, 216, 334–344. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Blakeslee, J.J.; Lee, O.R.; Mravec, J.; Sauer, M.; Titapiwatanakun, B.; Makam, S.N.; Bouchard, R.; Geisler, M.; Martinoia, E.; et al. Interactions of PIN and PGP auxin transport mechanisms. Biochem. Soc. Trans. 2007, 35, 137–141. [Google Scholar] [CrossRef]
- Sharan, A.; Soni, P.; Nongpiur, R.C.; Singla-Pareek, S.L.; Pareek, A. Mapping the Two-component system network in rice. Sci. Rep. 2017, 7, 9287. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Wijeratne, A.J.; Tang, C.; Zhang, T.; Fenelon, R.-E.; Owen, H.-A.; Zhao, D. Ectopic expression of TAPETUM DETERMINANT1 affects ovule development in Arabidopsis. J. Exp. Bot. 2016, 67, 1311–1326. [Google Scholar] [CrossRef] [Green Version]
- Mir, R.; Morris, V.H.; Buschmann, H.; Rasmussen, C.G. Division plane orientation defects revealed by a synthetic double mutant phenotype. Plant Physiol. 2018, 176, 418–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueiredo, D.D.; Köhler, C. Auxin: A molecular trigger of seed development. Genes Dev. 2018, 32, 479–490. [Google Scholar] [CrossRef] [Green Version]
- Jameson, P.E.; Song, J. Cytokinin: A key driver of seed yield. J. Exp. Bot. 2016, 67, 593–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kania, T.; Russenberger, D.; Peng, S.; Apel, K.; Melzer, S. FPF1 promotes flowering in Arabidopsis. Plant Cell 1997, 9, 1327–1338. [Google Scholar] [PubMed]
- Finkelstein, R.R.; Gibson, S.I. ABA and sugar interactions regulating development: Cross-talk or voices in a crowd? Curr. Opin. Plant Biol. 2002, 5, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Basunia, M.A.; Nonhebel, H.M.; Backhouse, D.; McMillan, M. Localised expression of OsIAA29 suggests a key role for auxin in regulating development of the dorsal aleurone of early rice grains. Planta 2021, 254, 40. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.-K.; Zhang, M.-Q.; Leng, Y.-J.; Xu, L.-N.; Jia, S.-W.; Wang, S.-L.; Song, T.; Wang, R.-A.; Yang, Q.-Q.; Tao, T.; et al. OsNAC129 Regulates Seed Development and Plant Growth and Participates in the Brassinosteroid Signaling Pathway. Front. Plant Sci. 2022, 13, 905148. [Google Scholar] [CrossRef]
- Wu, H.; Becraft, P.W. Comparative transcriptomics and network analysis define gene coexpression modules that control maize aleurone development and auxin signaling. Plant Genome 2021, 14, e20126. [Google Scholar] [CrossRef]
- Radoeva, T.; Lokerse, A.S.; Peris, C.I.; Wendrich, J.R.; Xiang, D.; Liao, C.-L.; Vlaar, L.; Boekschoten, M.; Hooiveld, G.; Datla, R.; et al. A robust auxin response network controls embryo and suspensor development through a basic helix loop helix transcriptional module. Plant Cell 2019, 31, 52–67. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Li, J.; Liu, Y.; Zhang, Q.; Gao, Y.; Fang, K.; Cao, Q.; Qin, L.; Xing, Y. Roles of the GA-mediated SPL Gene Family and miR156 in the Floral Development of Chinese Chestnut (Castanea mollissima). Int. J. Mol. Sci. 2019, 20, 1577. [Google Scholar] [CrossRef] [Green Version]
- Van der Knaap, E.; Kim, J.H.; Kende, H. A novel gibberellin induced gene from rice and its potential regulatory role in stem growth. Plant Physiol. 2000, 122, 695–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omidbakhshfard, M.A.; Proost, S.; Fujikura, U.; Mueller-Roeber, B. Growth-Regulating Factors (GRFs): A Small Transcription Factor Family with Important Functions in Plant Biology. Mol. Plant 2015, 8, 998–1010. [Google Scholar] [CrossRef] [Green Version]
- Portereiko, M.; Lloyd, A.; Steffen, J.G.; Punwani, J.A.; Otsuga, D.; Drews, G.N. AGL80 is required for central cell and endosperm development in Arabidopsis. Plant Cell 2006, 18, 1862–1872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qing, L.; Aoyama, T. Pathways for Epidermal Cell Differentiation via the Homeobox Gene GLABRA2: Update on the Roles of the Classic Regulator. J. Integr. Plant Biol. 2012, 54, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.F.; Schoof, H.; Haecker, A.; Lenhard, M.; Jürgens, G.; Laux, T. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 1998, 95, 805–815. [Google Scholar] [CrossRef] [Green Version]
- Heinz, S.; Brenner, C.; Spann, N.; Bertolino, E.; Lin, Y.C.; Laslo, P.; Cheng, J.X.; Murre, C.; Singh, H.; Glass, C.K. Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities. Mol. Cell 2010, 38, 576–589. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Tang, Y.; Liu, Y.; Sun, R.; Li, Y.; Ma, J.; Zhang, S.; Zhang, F.; Chen, Z.; Liao, X.; et al. The Central Circadian Clock Protein TaCCA1 Regulates Seedling Growth and Spike Development in Wheat (Triticum aestivum L.). Front. Plant Sci. 2022, 13, 946213. [Google Scholar] [CrossRef]
- Xie, M.; Chen, H.; Huang, L.; O’Neil, R.C.; Shokhirev, M.N.; Ecker, J.R. A B-ARR-mediated cytokinin transcriptional network directs hormone cross-regulation and shoot development. Nat. Commun. 2018, 9, 1604. [Google Scholar] [CrossRef] [Green Version]
- Krusell, L.; Rasmussen, I.; Gausing, K. DNA binding sites recognised in vitro by a knotted class 1 homeodomain protein encoded by the hooded gene, k, in barley (Hordeum vulgare). FEBS Lett. 1997, 408, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Kovalchuk, N.; Smith, J.; Pallotta, M.; Singh, R.; Ismagul, A.; Eliby, S.; Bazanova, N.; Milligan, A.S.; Hrmova, M.; Langridge, P.; et al. Characterization of the wheat endosperm transfer cell-specific protein TaPR60. Plant Mol. Biol. 2009, 71, 81–98. [Google Scholar] [CrossRef]
- Forestan, C.; Meda, S.; Varotto, S. ZmPIN1-mediated auxin transport is related to cellular differentiation during maize embryogenesis and endosperm development. Plant Phys. 2010, 152, 1373–1390. [Google Scholar] [CrossRef] [Green Version]
- Nelson, B.K.; Cai, X.; Nebenführ, A. A Multicolored Set of in Vivo Organelle Markers for Co-Localization Studies in Arabidopsis and Other Plants. Plant J. 2007, 51, 1126–1136. [Google Scholar] [CrossRef] [PubMed]
- Grefen, C.; Städele, K.; Růzicka, K.; Obrdlik, P.; Harter, K.; Horák, J. Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Mol. Plant 2008, 1, 308–320. [Google Scholar] [CrossRef]
- Robert, P.; Jamme, F.; Barron, C.; Bouchet, B.; Saulnier, L.; Dumas, P.; Guillon, F. Change in wall composition of transfer and aleurone cells during wheat grain development. Planta 2011, 233, 393–406. [Google Scholar] [CrossRef]
- Wai, L.L.; Collins, H.M.; Byrt, C.S.; Lahnstein, J.; Shirley, N.J.; Aubert, M.K.; Tucker, M.R.; Peukert, M.; Matros, A.; Burton, R.A. Overexpression of HvCslF6 in barley grain alters carbohydrate partitioning plus transfer tissue and endosperm development. J. Exp. Bot. 2019, 71, 138–153. [Google Scholar]
- Wilson, S.M.; Burton, R.A.; Doblin, M.S.; Stone, B.A.; Newbigin, E.J.; Fincher, G.B.; Bacic, A. Temporal and spatial appearance of wall polysaccharides during cellularization of barley (Hordeum vulgare) endosperm. Planta 2006, 224, 655–667. [Google Scholar] [CrossRef] [PubMed]
- Dante, R.A.; Larkins, B.A.; Sabelli, P.A. Cell cycle control and seed development. Front. Plant Sci. 2014, 5, 493. [Google Scholar] [CrossRef] [Green Version]
- Dante, R.A.; Sabelli, P.A.; Nguyen, H.N.; Leiva-Neto, J.T.; Tao, Y.; Lowe, K.S.; Hoerster, G.J.; Gordon-Kamm, W.J.; Jung, R.; Larkins, B.A. Cyclin-dependent kinase complexes in developing maize endosperm: Evidence for differential expression and functional specification. Planta 2014, 239, 493–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Li, Y.; Xie, Q.; Wu, Y. Loss of CDKC;2 increases both cell division and drought tolerance in Arabidopsis thaliana. Plant J. 2017, 91, 816–828. [Google Scholar] [CrossRef] [Green Version]
- Ishimaru, K.; Hirotsu, N.; Madoka, Y.; Murakami, N.; Hara, N.; Onodera, H.; Kashiwagi, T.; Ujiie, K.; Shimizu, B.-I.; Onishi, A.; et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat. Genet. 2013, 45, 707–711. [Google Scholar] [CrossRef]
- Brown, R.C.; Lemmon, B.E. The developmental biology of cereal endosperm. In Endosperm. Plant Cell Monographs; Olsen, O.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 8, pp. 1–20. [Google Scholar]
- Walbot, V. Overview of key steps in aleurone development. In The Maize Handbook; Freeling, M., Walbot, V., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1994; pp. 78–80. [Google Scholar]
- Lin, D.; Nagawa, S.; Chen, J.; Cao, L.; Chen, X.; Xu, T.; Li, H.; Dhonukshe, P.; Yamamuro, C.; Friml, J.; et al. A ROP GTPase-dependent auxin signaling pathway regulates the subcellular distribution of PIN2 in Arabidopsis roots. Curr. Biol. 2012, 22, 1319–1325. [Google Scholar] [CrossRef] [Green Version]
- Doll, N.M.; Depège-Fargeix, N.; Rogowsky, P.M.; Widiez, T. Signaling in early maize kernel development. Mol. Plant 2017, 10, 375–388. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Ma, S.; Chen, X.M.; Yi, F.; Li, B.B.; Liang, X.G.; Liao, S.J.; Gao, L.H.; Zhou, S.L.; Ruan, Y.L. A transcriptional landscape underlying sugar import for grain set in maize. Plant J. 2022, 110, 228–242. [Google Scholar] [CrossRef] [PubMed]
- Dündar, E.; Bush, D.R. BAT1, a bidirectional amino acid transporter in Arabidopsis. Planta 2009, 229, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Forestan, C.; Farinati, S.; Varotto, S. The maize PIN gene family of auxin transporters. Front. Plant Sci. 2012, 3, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dibley, S.J.; Zhou, Y.; Adriunas, F.A.; Talbot, M.J.; Offler, C.E.; Patrick, J.W.; McCurdy, D.W. Early gene expression programs accompanying trans-differentiation of epidermal cells of Vicia faba cotyledons into transfer cells. New Phytol. 2009, 182, 863–877. [Google Scholar] [CrossRef] [Green Version]
- Schikora, A.; Schmidt, W. Formation of transfer cells and H(+)-ATPase expression in tomato roots under P and Fe deficiency. Planta 2002, 215, 304–311. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Wang, Z.; Liu, K.; Wand, P. Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. J. Exp. Bot 2006, 57, 149–160. [Google Scholar] [CrossRef] [Green Version]
- Brenner, M.L.; Cheikh, N. The role of hormones in photosynthate partitioning and seed filling. In Plant Hormones; Davies, P.J., Ed.; Springer: Dordrecht, The Netherlands, 1995; pp. 649–670. [Google Scholar]
- Sreenivasulu, N.; Radchuk, V.; Alawady, A.; Borisjuk, L.; Weier, D.; Staroske, N.; Fuchs, J.; Miersch, O.; Strickert, M.; Usadel, B.; et al. De-regulation of abscisic acid contents causes abnormal endosperm development in the barley mutant seg8. Plant J. 2010, 64, 589–603. [Google Scholar] [CrossRef]
- Zhao, X.; De Palma, J.; Oane, R.; Gamuyao, R.; Luo, M.; Chaudhury, A.; Hervé, P.; Xue, Q.; Bennett, J. OsTDL1A binds to the LRR domain of rice receptor kinase MSP1, and is required to limit sporocyte numbers. Plant J. 2008, 54, 375–387. [Google Scholar] [CrossRef] [Green Version]
- Hong, L.; Tang, D.; Shen, Y.; Hu, Q.; Wang, K.; Li, M.; Lu, T.; Cheng, Z. MIL2 (MICROSPORELESS2) regulates early cell differentiation in the rice anther. New Phytol. 2012, 196, 402–413. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Huang, J.; Ahsan, N.; Biener, G.; Paprocki, J.; Thelen, J.J.; Raicu, V.; Zhao, D. Two SERK receptor-like kinases interact with EMS1 to control anther cell fate determination. Plant Phys. 2017, 173, 326–337. [Google Scholar] [CrossRef] [Green Version]
- Thiel, J.; Weier, D.; Sreenivasulu, N.; Strickert, M.; Weichert, N.; Melzer, M.; Czauderna, T.; Wobus, U.; Weber, H.; Weschke, W. Different hormonal regulation of cellular differentiation and function in nucellar projection and endosperm transfer cells: A microdissection-based transcriptome study of young barley grains. Plant Phys. 2008, 148, 1436–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valdivia, E.R.; Herrera, M.T.; Gianzo, C.; Fidalgo, J.; Revilla, G.; Zarra, I.; Sampedro, J. Regulation of secondary wall synthesis and cell death by NAC transcription factors in the monocot Brachypodium distachyon. J. Exp. Bot. 2013, 64, 1333–1343. [Google Scholar] [CrossRef]
- Zhong, R.; Ye, Z.-H. Secondary cell walls: Biosynthesis, patterned deposition and transcriptional regulation. Plant Cell Phys. 2015, 56, 195–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinappa, K.S.A.; Nguyen, T.T.S.; Hou, J.; Wu, Y.; McCurdy, D.W. Phloem parenchyma transfer cells in Arabidopsis—An experimental system to identify transcriptional regulators of wall ingrowth formation. Front. Plant Sci. 2013, 4, 102. [Google Scholar]
- Figueiredo, D.D.; Batista, R.A.; Roszak, P.J.; Köhler, C. Auxin production couples endosperm development to fertilization. Nat. Plants 2015, 1, 15184. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.-Y.; Smet, W.; Brunoud, G.; Yoshida, S.; Vernoux, T.; Weijers, D. Reporters for sensitive and quantitative measurement of auxin response. Nat. Methods 2015, 12, 207–210. [Google Scholar] [CrossRef] [Green Version]
- Batista, R.A.; Figueiredo, D.D.; Santos-González, J.; Köhler, C. Auxin regulates endosperm cellularization in Arabidopsis. Genes Dev. 2019, 33, 466–476. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Lausser, A.; Dresselhaus, T. Hormonal responses during early embryogenesis in maize. Biochem. Soc. Trans. 2014, 42, 325–331. [Google Scholar] [CrossRef]
- Bernardi, J.; Lanubile, A.; Li, Q.B.; Kumar, D.; Kladnik, A.; Cook, S.D.; Ross, J.J.; Marocco, A.; Chourey, P.S. Impaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in the ZmYuc1 gene encoding endosperm-specific YUCCA1 protein in maize. Plant Physiol. 2012, 160, 1318–1328. [Google Scholar] [CrossRef] [Green Version]
- Kabir, M.R.; Nonhebel, H.M. Reinvestigation of THOUSAND-GRAIN WEIGHT 6 grain weight genes in wheat and rice indicates a role in pollen development rather than regulation of auxin content in grains. Theor. Appl. Genet. 2021, 134, 2051–2062. [Google Scholar] [CrossRef]
- Nordström, A.; Tarkowski, P.; Tarkowska, D.; Norbaek, R.; Astot, C.; Dolezal, K.; Sandberg, G. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development. Proc. Natl. Acad. Sci. USA 2004, 101, 8039–8044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day, R.C.; Herridge, R.P.; Ambrose, B.A.; Macknight, R.C. Transcriptome analysis of proliferating Arabidopsis endosperm reveals biological implications for the control of syncytial division, cytokinin signaling, and gene expression regulation. Plant Physiol. 2008, 148, 1964–1984. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Wang, R.; Zi, H.; Li, Y.; Cao, X.; Li, D.; Guo, L.; Tong, J.; Pan, Y.; Jiao, Y.; et al. AUXIN RESPONSE FACTOR3 Regulates Floral Meristem Determinacy by Repressing Cytokinin Biosynthesis and Signaling. Plant Cell 2018, 30, 324–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, S.; Fang, J.; Xu, F.; Wang, W.; Sun, X.; Chu, J.; Cai, B.; Feng, Y.; Chu, C. CYTOKININ OXIDASE/DEHYDROGENASE4 Integrates Cytokinin and Auxin Signaling to Control Rice Crown Root Formation. Plant Physiol. 2014, 165, 1035–1046. [Google Scholar] [PubMed] [Green Version]
- Woodward, C.; Bemis, S.M.; Hill, E.J.; Sawa, S.; Koshiba, T.; Torii, K.U. Interaction of Auxin and ERECTA in Elaborating Arabidopsis Inflorescence Architecture Revealed by the Activation Tagging of a New Member of the YUCCA Family Putative Flavin Monooxygenases. Plant Physiol. 2005, 139, 192–203. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.K.; Wilson, R.L.; Palme, K.; Ditengou, F.A.; Shpak, E.D. ERECTA family genes regulate auxin transport in the shoot apical meristem and forming leaf primordia. Plant Physiol. 2013, 162, 1978–1991. [Google Scholar] [CrossRef] [Green Version]
- Dorcey, E.; Urbez, C.; Blázquez, M.A.; Carbonell, J.; Perez-Amador, M.A. Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. Plant J. 2009, 58, 318–332. [Google Scholar] [CrossRef]
- Davière, J.M.; Achard, P. A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals. Mol. Plant 2016, 9, 10–20. [Google Scholar]
- Hewezi, T.; Maier, T.R.; Nettleton, D.; Baum, T.J. The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection. Plant Physiol. 2012, 159, 321–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schommer, C.; Debernardi, J.M.; Bresso, E.G.; Rodriguez, R.E.; Palatnik, J.F. Repression of cell proliferation by miR319-regulated TCP4. Mol. Plant 2014, 7, 1533–1544. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.Y.; Li, B.; Dong, A.W. The Arabidopsis transcription factor AtTCP15 regulates endoreduplication by modulating expression of key cell-cycle genes. Mol. Plant 2012, 5, 270–280. [Google Scholar] [CrossRef]
- Ferrero, L.V.; Gastaldi, V.; Ariel, F.D.; Viola, I.L.; Gonzalez, D.H. Class I TCP proteins TCP14 and TCP15 are required for elongation and gene expression responses to auxin. Plant Mol. Biol. 2021, 105, 147–159. [Google Scholar] [CrossRef]
- Gastaldi, V.; Lucero, L.E.; Ferrero, L.V.; Ariel, F.D.; Gonzalez, D.H. Class-I TCP Transcription Factors Activate the SAUR63 Gene Subfamily in Gibberellin-Dependent Stamen Filament Elongation. Plant Physiol. 2020, 182, 2096–2110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, W.H.; Taliercio, E.W.; Chourey, P.S. The Miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell 1996, 8, 971–983. [Google Scholar] [CrossRef] [PubMed]
- Sosso, D.; Luo, D.; Li, Q.B.; Sasse, J.; Yang, J.; Gendrot, G.; Suzuki, M.; Koch, K.E.; McCarty, D.R.; Chourey, P.S.; et al. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat. Genet. 2015, 47, 1489–1493. [Google Scholar] [CrossRef]
- Brugière, N.; Jiao, S.; Hantke, S.; Zinselmeier, C.; Roessler, J.A.; Niu, X.; Jones, R.J.; Habben, J.E. Cytokinin Oxidase Gene Expression in Maize Is Localized to the Vasculature, and Is Induced by Cytokinins, Abscisic Acid, and Abiotic Stress. Plant Physiol. 2003, 132, 1228–1240. [Google Scholar] [CrossRef] [Green Version]
- Brugière, N.; Humbert, S.; Rizzo, N.; Bohn, J.; Habben, J.E. A member of the maize isopentenyl transferase gene family, Zea mays isopentenyl transferase 2 (ZmIPT2), encodes a cytokinin biosynthetic enzyme expressed during kernel development. Cytokinin biosynthesis in maize. Plant Mol. Biol. 2008, 67, 215–229. [Google Scholar] [CrossRef]
- Rijavec, T.; Jain, M.; Dermastia, M.; Chourey, P.S. Spatial and temporal profiles of cytokinin biosynthesis and accumulation in developing caryopses of maize. Ann. Bot. 2011, 107, 1235–1245. [Google Scholar] [CrossRef] [Green Version]
- Faix, B.; Radchuk, V.; Nerlich, A.; Hümmer, C.; Radchuk, R.; Emery, R.J.N.; Keller, H.; Götz, K.-P.; Weschke, W.; Geigenberger, P.; et al. Barley grains, deficient in cytosolic small subunit of ADP-glucose pyrophosphorylase, reveal coordinate adjustment of C:N metabolism mediated by an overlapping metabolic-hormonal control. Plant J. 2012, 69, 1077–1093. [Google Scholar] [PubMed]
- Müller, K.J.; Romano, N.; Gerstner, O.; Garcia-Marotot, F.; Pozzi, C.; Salamini, F.; Rohde, W. The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature 1995, 74, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Bolduc, N.; Hake, S. The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. Plant Cell 2009, 21, 1647–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daghma, D.S.; Kumlehn, J.; Melzer, M. The use of cyanobacteria as filler in nitrocellulose capillaries improves ultrastructural preservation of immature barley pollen upon high pressure freezing. J. Microsc. 2011, 244, 79–84. [Google Scholar] [CrossRef]
- Brandt, R.; Mascher, M.; Thiel, J. Laser-capture microdissection-based RNA-seq of barley grain tissues. Methods Mol. Biol. 2018, 1723, 7–23. [Google Scholar]
- IBSC. Split Pseudomolecules of the Map-Based Reference Genome Assembly of Barley cv. Morex; e!DAL—Plant Genomics and Phenomics Research Data Repository (PGP), IPK Gatersleben: Seeland, Germany, 2016. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Drea, S.; Corsar, J.; Crawford, B.; Shaw, P.; Dolan, L.; Doonan, J.H. A streamlined method for systematic, high resolution in situ analysis of mRNA distribution in plants. Plant Methods 2005, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Walter, M.; Chaban, C.; Schütze, K.; Batistic, O.; Weckermann, K.; Näke, C.; Blazevic, D.; Grefen, C.; Schumacher, K.; Oecking, C.; et al. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 2004, 40, 428–438. [Google Scholar] [CrossRef]
- Gahrtz, M.; Conrad, U. Immunomodulation of plant function by in vitro selected single-chain Fv intrabodies. In Recombinant Proteins from Plants: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2009; pp. 289–312. [Google Scholar]
ETC | Sync | |||||
---|---|---|---|---|---|---|
Motif Logo | Name | TF Family | log P-val | Enrich. Factor | log P-val | Enrich. Factor |
HVH21 (HD-KNOTTED)/Hordeum vulgare | HD-Knotted | - | - | −3.55 × 104 | 13.28 | |
ERF015/MA1265.2/Jaspar | AP2ERF | −4.38 × 104 | 10.2 | - | - | |
MYB41/col-MYB41-DAP-Seq/Homer | MYB | −3.36 × 104 | 8.71 | - | - | |
SEP3/Arabidopsis-Flower-Sep3-ChIP-Seq/Homer | MADS | −8.04 × 103 | 1.09 | −4.92 × 104 | 8.23 | |
MYB3/MA1038.1/Jaspar | MYB | −3.07 × 104 | 8.16 | - | - | |
TAGL1/Tomato-TAGL1-ChIP-Seq/Homer | MADS | - | - | −3.22 × 104 | 7.69 | |
SPL13/MA1321.1/Jaspar | SPL | - | - | −3.82 × 104 | 7.29 | |
CRC/col-CRC-DAP-Seq(GSE60143)/Homer | C2C2 YABBY | −5.78 × 104 | 7.17 | - | - | |
At5g04390/col200-At5g04390-DAPseq/Homer | C2H2 | - | - | −4.73 × 104 | 6.68 | |
HY5/colamp-HY5-DAP-Seq/Homer | bZIP | −8.89 × 103 | 1.12 | −3.35 × 104 | 6.41 | |
MYB101/MA1173.1/Jaspar | MYB | −2.80 × 104 | 6.34 | - | - | |
AT1G04880/colamp-DAP-Seq/Homer | ARID | - | - | −3.32 × 104 | 6.34 | |
ARF36/MA1695.1/Jaspar | ARF | - | - | −4.39 × 104 | 6.34 | |
bZIP910/Antirrhinum majus/AthaMap | bZIP | - | - | −2.98 × 104 | 6.28 | |
NFYB/MA0502.2/Jaspar | NF | −3.37 × 104 | 6.16 | - | - | |
STZ/MA1372.1/Jaspar | C2H2 | - | - | −2.93 × 104 | 6.14 | |
HAP3/col-HAP3-DAP-Seq/Homer | CCAATH AP3 | - | - | −4.26 × 104 | 5.92 | |
At4g38000/col-At4g38000-DAP-Seq/Homer | C2C2 Dof | - | - | −3.59 × 104 | 5.58 | |
ERF6/MA1006.1/Jaspar | AP2ERF | −2.78 × 104 | 5.50 | - | - | |
CCA1/MA0972.1/Jaspar | MYB related | −4.97 × 104 | 5.37 | - | - | |
AT5G45580/colamp-DAP-Seq/Homer | G2 like | −4.76 × 104 | 5.12 | - | - | |
LCL1/MA1187.1/Jaspar | MYB related | −4.56 × 104 | 4.97 | - | - | |
ARR1/MA0945.1/Jaspar | RR type B | −2.85 × 104 | 4.93 | - | - | |
ARR10/MA0121.1/Jaspar | RR type B | −4.04 × 104 | 4.90 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hertig, C.; Rutten, T.; Melzer, M.; Schippers, J.H.M.; Thiel, J. Dissection of Developmental Programs and Regulatory Modules Directing Endosperm Transfer Cell and Aleurone Identity in the Syncytial Endosperm of Barley. Plants 2023, 12, 1594. https://doi.org/10.3390/plants12081594
Hertig C, Rutten T, Melzer M, Schippers JHM, Thiel J. Dissection of Developmental Programs and Regulatory Modules Directing Endosperm Transfer Cell and Aleurone Identity in the Syncytial Endosperm of Barley. Plants. 2023; 12(8):1594. https://doi.org/10.3390/plants12081594
Chicago/Turabian StyleHertig, Christian, Twan Rutten, Michael Melzer, Jos H. M. Schippers, and Johannes Thiel. 2023. "Dissection of Developmental Programs and Regulatory Modules Directing Endosperm Transfer Cell and Aleurone Identity in the Syncytial Endosperm of Barley" Plants 12, no. 8: 1594. https://doi.org/10.3390/plants12081594
APA StyleHertig, C., Rutten, T., Melzer, M., Schippers, J. H. M., & Thiel, J. (2023). Dissection of Developmental Programs and Regulatory Modules Directing Endosperm Transfer Cell and Aleurone Identity in the Syncytial Endosperm of Barley. Plants, 12(8), 1594. https://doi.org/10.3390/plants12081594