Microscopical Analysis of Autofluorescence as a Complementary and Useful Method to Assess Differences in Anatomy and Structural Distribution Underlying Evolutive Variation in Loss of Seed Dispersal in Common Bean
Abstract
:1. Introduction
2. Results
2.1. Histological Characterization of the Dehiscence Zone in the Common Bean Pod
2.2. Identification of the Dehiscent Structures Underlying Spatial and Temporal Fruit Development
2.3. Association of Fruit Dehiscent Structures with Autofluorescence through Pod Maturation
3. Discussion
4. Materials and Methods
4.1. Plant Growth and Phenotype Evaluation
4.2. Sample Preparation, Tissue Embedding, Blocking, and Sectioning
4.3. Histochemical Staining Procedure and Light Microscopy
4.4. Confocal Microscopy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doebley, J.F.; Gaut, B.S.; Smith, B.D. The molecular genetics of crop domestication. Cell 2006, 127, 1309–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purugganan, M.; Fuller, D.Q. The nature of selection during plant domestication. Nature 2009, 457, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Parker, T.A.; Sassoum, L.; Gepts, P. Pod shattering in grain legumes: Emerging genetic and environment-related patterns. Plant Cell 2021, 33, 179–199. [Google Scholar] [CrossRef] [PubMed]
- Parker, T.A.; Berny Mier, T.; Palkovic, A.; Jernstedt, J.; Gepts, P. Pod indehiscence is a domestication and aridity resilience trait in common bean. New Phytol. 2020, 225, 558–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Tu, B.; Liu, C.; Liu, X. Pod anatomy, morphology and dehiscing forces in pod dehiscence of soybean (Glycine max (L.) Merrill). Flora 2018, 248, 48–53. [Google Scholar] [CrossRef]
- Lush, W.M.; Evans, L.T. The domestication and improvement of cowpeas (Vigna unguiculata (L.) WALP.). Euphytica 1981, 30, 579–587. [Google Scholar] [CrossRef]
- Gepts, P.; Debouck, D.G. Origin, domestication, and evolution of the common bean, Phaseolus vulgaris. In Common Beans: Research for Crop Improvement; CAB; Voysest, O., Van Schoonhoven, A., Eds.; C.A.B. International: Wallingford, UK, 1991; pp. 7–53. [Google Scholar]
- Romkaew, J.; Nagaya, Y.; Goto, M.; Suzuki, K.; Umezaki, T. Pod dehiscence in relation to chemical components of pod shell in soybean. Plant Prod. Sci. 2008, 11, 278–282. [Google Scholar] [CrossRef]
- Prakken, R. Inheritance of colours and pod characters in Phaseolus vulgaris L. Genetica 1934, 16, 177–296. [Google Scholar] [CrossRef]
- Koinange, E.M.S.; Singh, S.P.; Gepts, P. Genetic control of the domestication syndrome in common bean. Crop Sci. 1996, 36, 1037–1045. [Google Scholar] [CrossRef] [Green Version]
- Kongjaimun, A.; Somta, P.; Tomooka, N.; Kaga, A.; Vaughan, D.A.; Srinives, P. QTL mapping of pod tenderness and total soluble solid in yardlong bean [Vigna unguiculata (L.) Walp. subsp. unguiculata cv. -gr. sesquipedalis]. Euphytica 2013, 189, 217–223. [Google Scholar] [CrossRef]
- Suanum, W.; Somta, P.; Kongjaimun, A.; Yimram, T.; Kage, A.; Tomooka, N. Co-localization of QTLs for pod fiber content and pod shattering in F2 and backcross populations between yardlong bean and wild cowpea. Mol. Breed. 2016, 36, 80. [Google Scholar] [CrossRef]
- Takahashi, Y.; Kongjaimun, A.; Muto, C.; Kobayashi, Y.; Kumagai, M.; Sakai, H.; Satou, K.; Teruya, K.; Shiroma, A.; Shimoji, M.; et al. Same Locus for Non-shattering Seed Pod in Two Independently Domesticated Legumes, Vigna angularis and Vigna unguiculata. Front. Genet. 2020, 11, 748. [Google Scholar] [CrossRef]
- Ogutcen, E.; Pandey, A.; Khan, M.K.; Marques, E.; Penmetsa, R.V.; Kahraman, A.; von Wettberg, E.J. Pod shattering: A homologous series of variation underlying domestication and an avenue for crop improvement. Agronomy 2018, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Di Vittori, V.; Gioia, T.; Rodriguez, M.; Bellucci, E.; Bitocchi, E.; Nanni, L.; Attene, G.; Rau, D.; Papa, R. Convergent evolution of the seed shattering trait. Genes 2019, 10, 68. [Google Scholar] [CrossRef] [Green Version]
- Spence, J.; Vercher, Y.; Gates, P.; Harris, N. ‘Pod shatter’ in Arabidopsis thaliana, Brassica napus and B. juncea. J. Microsc. 1996, 181, 195–203. [Google Scholar] [CrossRef]
- Balanzà, V.; Roig-Villanova, I.; Di Marzo, M.; Masiero, S.; Colombo, L. Seed abscission and fruit dehiscence required for seed dispersal rely on similar genetic networks. Development 2016, 143, 3372–3381. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Shen, Y.Y.; Wu, X.M.; Wang, J.B. The basis of pod dehiscence: Anatomical traits of the dehiscence zone and expression of eight pod shatter-related genes in four species of Brassicaceae. Biol. Plant. 2016, 60, 343–354. [Google Scholar] [CrossRef]
- Meakin, P.J.; Roberts, J.A. Dehiscence of fruit in oilseed rape (Brassica napus L.) II. The role of cell wall degrading enzymes and ethylene. J. Exp. Bot. 1990, 41, 1003–1011. [Google Scholar] [CrossRef]
- Østergaard, L.; Borkhardt, B.; Ulvskov, P. ’Dehiscence’ in Plant Cell Separation and Adhesion; Roberts, J.A., Gonzalez-Carranza, Z.H., Eds.; Victoria Blackwell Publishing: Oxford, UK, 2007; pp. 137–163. [Google Scholar]
- Morgan, C.L.; Bruce, D.M.; Child, R.; Ladbrooke, Z.L.; Arthur, A.E. Genetic variation for pod shatter resistance among lines of oilseed rape developed from synthetic B. napus. Field Crops Res. 1998, 58, 153–165. [Google Scholar] [CrossRef]
- Christiansen, L.C.; Dal Degan, F.; Ulvskov, P.; Borkhardt, B. Examination of the dehiscence zone in soybean pods and isolation of a dehiscence-related endopolygalacturonase gene. Plant Cell Environ. 2002, 25, 479–490. [Google Scholar] [CrossRef]
- Østergaard, L.; Kempin, S.A.; Bies, D.; Klee, H.J.; Yanofsky, M.F. Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene. Plant Biotechnol. J. 2006, 4, 45–51. [Google Scholar] [CrossRef]
- Tiwari, S.; Bhatia, V. Characters of pod anatomy associated with pod shattering in soybean. Ann. Bot. 1995, 76, 483–485. [Google Scholar] [CrossRef]
- Ferrándiz, C. Regulation of fruit dehiscence in Arabidopsis. J. Exp. Bot. 2002, 53, 2031–2038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.B.; Wright, R.L.; McGraw, R.L. Seed pod dehiscence in birdsfoot trefoil, Lotus conimbricensis, and their interspecific somatic hybrid. Can. J. Plant Sci. 1990, 70, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Fourquin, C.; del Cerro, C.; Victoria, F.C.; Vialette-Guiraud, A.; de Oliveira, A.C.; Ferrandiz, C. A change in SHATTERPROOF protein lies at the origin of a fruit morphological novelty and a new strategy for seed dispersal in the Medicago genus. Plant Physiol. 2013, 162, 907–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Y.; Yang, X.; Liu, J.; Wang, B.H.; Liu, B.L.; Wang, Y.Z. Pod dehiscence resistance associated with domestication is mediated by a NAC gene in soybean. Nat. Commun. 2014, 5, 3352. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Wang, Y.Z. Seed shattering: From models to crops. Front. Plant Sci. 2015, 6, 476. [Google Scholar] [CrossRef]
- Li, L.F.; Olsen, K.M. To Have and to Hold: Selection for Seed and Fruit Retention During Crop Domestication. Curr. Top. Dev. Biol. 2016, 119, 63–109. [Google Scholar] [CrossRef]
- Ballester, P.; Ferrándiz, C. Shattering fruits: Variations on a dehiscent theme. Curr. Opin. Plant Biol. 2017, 35, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Funatsuki, H.; Suzuki, M.; Hirose, A.; Inaba, H.; Yamada, T.; Hajika, M.; Komatsu, K.; Katayama, T.; Sayama, T.; Ishimoto, M.; et al. Molecular basis of a shattering resistance boosting global dissemination of soybean. Proc. Natl. Acad. Sci. USA 2014, 111, 17797–17802. [Google Scholar] [CrossRef] [Green Version]
- Murgia, M.L.; Attene, G.; Rodriguez, M.; Bitocchi, E.; Bellucci, E.; Fois, D.; Nanni, L.; Gioia, T.; Albani, D.M.; Papa, R.; et al. A Comprehensive Phenotypic Investigation of the “Pod-Shattering Syndrome” in Common Bean. Front. Plant Sci. 2017, 8, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, C.L.; Ladbrooke, Z.L.; Bruce, D.M.; Child, R.; Arthur, A.E. Breeding oilseedrape for pod shattering resistance. J. Agric. Sci. 2000, 135, 347–359. [Google Scholar] [CrossRef]
- Davies, G.C.; Bruce, D.M. Fracture mechanics of oilseed rape pods. J. Mater. Sci. 1997, 32, 5895–5899. [Google Scholar] [CrossRef]
- Dong, D.; Dong, R.; Wang, Y.; Nie, B.; Liu, Z. Study on pod development and ventral suture structure of Vicia sativa cultivar Lanjian NO. 3. Acta Bot. Boreali-Occident. Sin. 2016, 36, 1376–1382. [Google Scholar]
- Tsuchiya, T. Physiological and genetic analysis of pod shattering in soybean. Jarq-Jpn. Agric. Res. Q. 1987, 21, 166–175. [Google Scholar]
- Suzuki, M.; Fujino, K.; Funatsuki, H. A major soybean QTL, qPDH1, controls pod dehiscence without marked morphological change. Plant Prod. Sci. 2009, 12, 217–223. [Google Scholar] [CrossRef]
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, L. Autofluorescence in Plants. Molecules 2020, 25, 2393. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, L.A. Lignification and lignin topochemistry—An ultrastructural view. Phytochemistry 2001, 57, 859–873. [Google Scholar] [CrossRef]
- Pesquet, E.; Ranocha, P.; Legay, S.; Digonnet, C.; Barbier, O.; Pichon, M.; Goffner, D. Novel markers of xylogenesis in zinnia are differentially regulated by auxin and cytokinin. Plant Physiol. 2005, 139, 1821–1839. [Google Scholar] [CrossRef] [Green Version]
- Liljegren, S. Phloroglucinol stain for lignin. Cold Spring Harb. Protoc. 2010, 2010, pdb.rot4954. [Google Scholar] [CrossRef]
- Tolivia, D.; Tolivia, J. Fasga: A new polychromatic method for simultaneous and differential staining of plant tissues. J. Microsc. 1987, 148, 113–117. [Google Scholar] [CrossRef]
- Fernández de Córdova, F.; Gepts, P.; López, M. Etapas de Desarrollo de la Planta de Fríjol Común (Phaseolus vulgaris L.); Centro Internacional de Agricultura Tropical (CIAT): Cali, CO, USA, 1986; 33p. [Google Scholar]
- Debouck, D.G.; Hidalgo, R. Morfología de la planta de frijol común. In Frijol: Investigación y Producción; Programa de las Naciones Unidas (PNUD); Centro Internacional de Agricultura Tropical (CIAT): Cali, CO, USA, 1985; pp. 7–41. [Google Scholar]
- Carlson, J.B.; Lersten, N.R. Reproductive morphology. In Soybeans: Improvement, Production, and Uses; Shibles, R.M., Harper, J.E., Wilson, R.F., Shoemaker, R.C., Eds.; American Society of Agronomy-Crop Science Society of America-Soil Science Society of America: Madison, WI, USA, 2004; Volume 16, pp. 59–95. [Google Scholar] [CrossRef]
- Bonawitz, N.D.; Kim, J.I.; Tobimatsu, Y.; Ciesielski, P.N.; Anderson, N.A.; Ximenes, E.; Maeda, J.; Ralph, J.; Donohoe, B.S.; Ladisch, M.; et al. Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature 2014, 509, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Vanholme, R.; Demedts, B.; Morreel, K.; Ralph, J.; Boerjan, W. Lignin biosynthesis and structure. Plant Physiol. 2010, 153, 895–905. [Google Scholar] [CrossRef] [Green Version]
- Graham, E.T.; Trentham, W.R. Staining paraffin extracted, alcohol rinsed plant tissue with an aqueous mixture of three dyes. Biotechnol. Histochem. 1998, 73, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.A.; Campbell, M.M. The genetic control of lignin deposition during plant growth and development. New Phytol. 2004, 164, 17–30. [Google Scholar] [CrossRef]
- Drijfhout, E. Influence of temperature on string formation of beans (Phaseolus vulgaris). Euphytica 1970, 19, 145–151. [Google Scholar] [CrossRef]
- Thurling, N.; Howieson, J. Genotypic variation in shattering resistance in spring rape. Australas. Plant Breed. Genet. Newsl. 1982, 32, 95–96. [Google Scholar]
- Liljegren, S.; Ditta, G.; Eshed, Y.; Savidge, B.; Bowman, J.L.; Yanofsky, M.F. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 2000, 404, 766–770. [Google Scholar] [CrossRef]
- Di Vittori, V.; Bitocchi, E.; Rodriguez, M.; Alseekh, S.; Bellucci, E.; Nanni, L.; Gioia, T.; Marzario, S.; Logozzo, G.; Rossato, M.; et al. Pod indehiscence in common bean is associated to the fine regulation of PvMYB26 and a non-functional abscission layer. J. Exp. Bot. 2021, 72, 1617–1633. [Google Scholar] [CrossRef] [PubMed]
- Kadkol, G.P.; Beilharz, V.C.; Halloran, G.M.; Macmilla, R.H. Anatomical Basis of Shatter-resistance in the Oilseed Brassicas. Aust. J. Bot. 1986, 34, 595–601. [Google Scholar] [CrossRef]
- Aguilar-Benitez, D.; Rubio, J.; Millán, T.; Gil, J.; Die, J.V.; Castro, P. Genetic analysis reveals PDH1 as a candidate gene for control of pod dehiscence in chickpea. Mol. Breed. 2020, 40, 40. [Google Scholar] [CrossRef]
- Donaldson, L.A.; Radotic, K. Fluorescence lifetime imaging of lignin autofluorescence in normal and compression wood. J. Microsc. 2013, 251, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Tu, B.; Liu, C.; Wang, X.; Li, Y.; Zhang, Q.; Liu, X.; Herbert, S.J. Greater Anatomical Differences of Pod Ventral Suture in Shatter-Susceptible and Shatter-Resistant Soybean Cultivars. Crop Sci. 2019, 59, 2784–2793. [Google Scholar] [CrossRef]
- Jia, C.; Dong, D.; Zhou, Q.; Searle, I.R.; Liu, Z. Significant cell differences in pod ventral suture in shatter-resistant and shatter-susceptible common vetch accessions. Crop Sci. 2021, 61, 1749–1759. [Google Scholar] [CrossRef]
- Bertioli, D.J.; Moretzsohn, M.C.; Madsen, H.; Sanda, N.; Leal-Bertioli, S.C.; Guimaraes, P.M.; Hougaard, B.K.; Fredslund, J.; Schauser, L.; Nielsen, A.M.; et al. An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genom. 2009, 10, 45. [Google Scholar] [CrossRef] [Green Version]
- Parker, T.; Cetz, J.; de Sousa, L.L.; Kuzay, S.; Lo, S.; de Oliveira Floriani, T.; Njau, S.; Arunga, E.; Duitama, J.; Jernstedt, J.; et al. Loss of pod strings in common bean is associated with gene duplication, retrotransposon insertion, and overexpression of PvIND. New Phytol. 2022, 235, 2454–2465. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Yan, L.; Dong, R.; Liu, W.; Wang, Y.; Liu, Z. Evaluation and analysis of pod dehiscence factors in shatter-susceptible and shatter-resistant common vetch. Crop Sci. 2017, 57, 2770–2776. [Google Scholar] [CrossRef]
- Romkaew, J.; Umezaki, T. Pod dehiscence in soybean: Assessing methods and varietal difference. Plant Prod. Sci. 2006, 9, 373–382. [Google Scholar] [CrossRef]
- Zhang, J.; Singh, A.K. Genetic control and geo-climate adaptation of pod dehiscence provides novel insights into soybean domestication. G3 Genes Genomes Genet. 2020, 10, 545–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitra, P.P.; Loque, D. Histochemical staining of Arabidopsis thaliana secondary cell wall elements. J. Vis. Exp. 2014, 87, e51381. [Google Scholar] [CrossRef] [Green Version]
- Sessions, R.A.; Zambryski, P.C. Arabidopsis gynoecium structure in the wild and in ettin mutants. Development 1995, 121, 1519–1532. [Google Scholar] [CrossRef] [PubMed]
- Zúñiga-Mayo, V.M.; Marsch-Martinez, N.; De Folter, S. JAIBA, a class-II HD-ZIP transcription factor involved in the regulation of meristematic activity, and important for correct gynoecium and fruit development in Arabidopsis. Plant J. 2012, 71, 314–326. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.M.; González, A.M.; De Dios Alche, J.; Santalla, M. Microscopical Analysis of Autofluorescence as a Complementary and Useful Method to Assess Differences in Anatomy and Structural Distribution Underlying Evolutive Variation in Loss of Seed Dispersal in Common Bean. Plants 2023, 12, 2212. https://doi.org/10.3390/plants12112212
Santos AM, González AM, De Dios Alche J, Santalla M. Microscopical Analysis of Autofluorescence as a Complementary and Useful Method to Assess Differences in Anatomy and Structural Distribution Underlying Evolutive Variation in Loss of Seed Dispersal in Common Bean. Plants. 2023; 12(11):2212. https://doi.org/10.3390/plants12112212
Chicago/Turabian StyleSantos, Ana M., Ana M. González, Juan De Dios Alche, and Marta Santalla. 2023. "Microscopical Analysis of Autofluorescence as a Complementary and Useful Method to Assess Differences in Anatomy and Structural Distribution Underlying Evolutive Variation in Loss of Seed Dispersal in Common Bean" Plants 12, no. 11: 2212. https://doi.org/10.3390/plants12112212
APA StyleSantos, A. M., González, A. M., De Dios Alche, J., & Santalla, M. (2023). Microscopical Analysis of Autofluorescence as a Complementary and Useful Method to Assess Differences in Anatomy and Structural Distribution Underlying Evolutive Variation in Loss of Seed Dispersal in Common Bean. Plants, 12(11), 2212. https://doi.org/10.3390/plants12112212