Changes in Soil Properties, Microbial Quantity and Enzyme Activities in Four Castanopsis hystrix Forest Types in Subtropical China
Abstract
:1. Introduction
2. Results
2.1. Soil Physicochemical Properties Content
2.2. Soil MBC and MBN Content
2.3. Soil Enzyme Activities
2.4. PCA of All Selected Soil Parameters in Two Soil Layers
2.5. Correlations among the Selected Soil Characters
3. Materials and Methods
3.1. Site Selection and Description
3.2. Soil Sampling
3.3. Soil Physicochemical Properties Measurements
3.4. Soil MBC and MBN Measurements
3.5. Soil Enzyme Activities Measurements
3.6. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conforti, M.; Lucà, F.; Scarciglia, F.; Matteucci, G.; Buttafuoco, G. Soil carbon stock in relation to soil properties and landscape position in a forest ecosystem of southern Italy (Calabria region). Catena 2016, 144, 23–33. [Google Scholar] [CrossRef]
- Gispert, M.; Pardini, G.; Emran, M.; Doni, S.; Masciandaro, G. Seasonal evolution of soil organic matter, glomalin and enzymes and potential for C storage after land abandonment and renaturalization processes in soils of NE Spain. Catena 2018, 162, 402–413. [Google Scholar] [CrossRef]
- Fernández-Martínez, M.; Vicca, S.; Janssens, I.A.; Sardans, J.; Luyssaert, S.; Campioli, M.; Peñuelas, J. Erratum: Corrigendum: Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Change 2015, 5, 386. [Google Scholar] [CrossRef] [Green Version]
- Wardle, D.A.; Bardgett, R.D.; Klironomos, J.N.; Setala, H.; Van, W.H. Ecological linkages between aboveground and belowground biota. Science 2004, 304, 1629–1633. [Google Scholar] [CrossRef] [PubMed]
- Wardle, D.A. Do experiments exploring plant diversity-ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? J. Veg. Sci. 2016, 27, 646–653. [Google Scholar] [CrossRef]
- Scharenbroch, B.C.; Bockheim, J.G. Pedodiversity in an old-growth northern hardwood forest in the Huron Mountains, Upper Peninsula, Michigan. Can. J. For. Res. 2007, 37, 1106–1117. [Google Scholar] [CrossRef]
- Kreitinger, J.P.; Klein, T.M.; Novick, N.J.; Alexander, M. Nitrification and characteristics of nitrifying microorganisms in an acid forest soil. Soil Sci. Soc. Am. J. 1985, 49, 1407–1410. [Google Scholar] [CrossRef]
- Yakovchenko, V.; Sikora, L.J.; Kaufman, D.D. A biologically based indicator of soil quality. Biol. Fertil. Soils 1996, 21, 245–251. [Google Scholar] [CrossRef]
- Bergstrom, D.W.; Monreal, C.M.; King, D.J. Sensitivity of soil enzyme activities to conservation practices. Soil Sci. Soc. Am. J. 1998, 62, 1286–1295. [Google Scholar] [CrossRef]
- Guo, J.; Feng, H.; Mcnie, P.; Liu, Q.; Xu, X.; Pan, C.; Yan, K.; Feng, L.; Goitom, E.A.; Yu, Y. Species mixing improves soil properties and enzymatic activities in Chinese fir plantations: A meta-analysis. Catena 2023, 220, 106723. [Google Scholar] [CrossRef]
- Mekouar, M.A. Food and Agriculture Organization of the United Nations (FAO). Yearb. Int. Environ. Law 2017, 28, 506–520. [Google Scholar] [CrossRef] [Green Version]
- Payn, T.; Carnus, J.M.; Freer-Smith, P.; Kimberley, M.; Kollert, W.; Liu, S.; Orazio, C.; Rodriguez, L.; Silva, L.N.; Wingfield, M.J. Changes in planted forests and future global implications. For. Ecol. Manag. 2015, 352, 57–67. [Google Scholar] [CrossRef] [Green Version]
- State Forestry Administration. Results of the Eighth National Forest Resources Inventory. For. Resour. Manag. 2014, 1, 1–2. [Google Scholar]
- Brockerhoff, E.G.; Jactel, H.; Parrotta, J.A.; Quine, C.P.; Hawksworth, D.L. Plantation forests and biodiversity: Oxymoron or opportunity? Biodivers. Conserv. 2008, 17, 925–951. [Google Scholar] [CrossRef]
- Pra, A.; Masiero, M.; Barreiro, S.; Tomé, M.; Martinez De Arano, I.; Orradre, G.; Onaindia, A.; Brotto, L.; Pettenella, D. Forest plantations in Southwestern Europe: A comparative trend analysis on investment returns, markets and policies. For. Policy Econ. 2019, 109, 102000. [Google Scholar] [CrossRef]
- Gascho, G.J. Soil fertility decline in the tropics: With case studies on plantations. Soil Sci. 2005, 170, 149–151. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Zhang, B.X.; Sun, H.H. Research progress on soil degradation of plantation in China. Prot. For. Sci. Technol. 2009, 91, 99–100. [Google Scholar]
- Binkley, D.; Giardina, C. Why do tree species affect soils? The warp and woof of tree-soil interactions. Biogeochemistry 1998, 42, 89–106. [Google Scholar] [CrossRef]
- Reich, P.B.; Oleksyn, J.; Modrzynski, J.; Mrozinski, P.; Hobbie, S.E.; Eissenstat, D.M.; Chorover, J.; Chadwick, O.A.; Hale, C.M.; Tjoelker, M.G. Linking litter calcium, earthworms and soil properties: A common garden test with 14 tree species. Ecol. Lett. 2005, 8, 811–818. [Google Scholar] [CrossRef]
- Russell, A.E.; Raich, J.W.; Valverde-Barrantes, Q.J.; Fisher, R.F. Tree species effects on soil properties in experimental plantations in tropical moist forest. Soil Sci. Soc. Am. J. 2007, 71, 1389–1397. [Google Scholar] [CrossRef] [Green Version]
- Coll, L.; Ameztegui, A.; Collet, C.; Löf, M.; Mason, B.; Pach, M.; Verheyen, K.; Abrudan, I.; Barbati, A.; Barreiro, S. Knowledge gaps about mixed forests: What do European forest managers want to know and what answers can science provide? For. Ecol. Manag. 2018, 407, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; Deyn, G.D.; De Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P. Soil quality-a critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Baath, E.; Frostegard, A.; Pennanen, T.; Frizte, H. Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils. Soil Biol. Biochem. 1995, 27, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Qi, R.; Li, J.; Lin, Z.; Li, Z.J.; Li, Y.T.; Yang, X.D.; Zhang, J.J.; Zhao, B.Q. Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Appl. Soil Ecol. 2016, 102, 36–45. [Google Scholar] [CrossRef]
- Motavalli, P.P.; Palm, C.A.; Parton, W.J.; Elliott, E.T.; Frey, S.D. Soil pH and organic C dynamics in tropical forest soils: Evidence from laboratory and simulation studies. Soil Biol. Biochem. 1995, 27, 1589–1599. [Google Scholar] [CrossRef]
- Kemmitt, S.J.; Wright, D.; Goulding, K.; Jones, D. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol. Biochem. 2006, 38, 898–911. [Google Scholar] [CrossRef]
- Poorter, H.; Remkes, C.; Lambers, H. Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant Physiol. 1990, 94, 621–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, S.C.; Cavagnaro, T.R.; Nally, R.M.; Paul, K.I.; Baker, P.J.; Beringer, J.; Thomson, J.R.; Thomson, R.M. Reforestation with native mixed-species plantings in a temperate continental climate effectively sequesters and stabilizes carbon within decades. Glob. Change Biol. 2015, 21, 1552–1566. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Wang, S.L. Effect of mixed species on Soil Nutrients of Picea koraiensis plantation. J. Northeast For. Univ. 2019, 47, 39–43. [Google Scholar] [CrossRef]
- Zhou, L.; Sun, Y.; Saeed, S.; Zhang, B.; Luo, M. The difference of soil properties between pure and mixed Chinese fir (Cunninghamia lanceolata) plantations depends on tree species. Glob. Ecol. Conserv. 2020, 22, e01009. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Fang, S.; Fang, S.; Tian, Y.; Guo, J. Variation of soil enzyme activity and microbial biomass in poplar plantations of different genotypes and stem spacing. J. For. Res. 2018, 29, 963–972. [Google Scholar] [CrossRef]
- Lungmuana; Singh, S.B.; Choudhury, B.U.; Vanthawmliana; Saha, S.; Hnamte, V. Transforming jhum to plantations: Effect on soil microbiological and biochemical properties in the foot hills of North Eastern Himalayas, India. Catena 2019, 177, 84–91. [Google Scholar] [CrossRef]
- Guo, Q.; Qiu, L.P. Analysis of factors affecting the activity of several major soil enzymes//Institute of Management Science and Industrial Engineering. In Proceedings of the 2019 International Conference on Medical Sciences and Biological Engineering (MedSBE 2019), Phnom Penh, Cambodia, 28–29 October 2019; Francis Academic Press: London, UK, 2019; pp. 30–36. [Google Scholar] [CrossRef]
- Wei, S.; Li, L.; Tan, J.; Liu, X.; Huang, C. Soil enzyme activities and their relationships to soil physicochemical properties in different successive rotation plantations of Eucalyptus grandis. Chin. J. Appl. Environ. Biol. 2019, 25, 1312–1318. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, M.S.; Kim, J.G.; Kim, S.O. Use of Soil Enzymes as Indicators for Contaminated Soil Monitoring and Sustainable Management. Sustainability 2020, 12, 8209. [Google Scholar] [CrossRef]
- Zarafshar, M.; Bazot, S.; Matinizadeh, M.; Bordbar, S.K.; Rousta, M.J.; Kooch, Y.; Abbasia, A.; Negahdarsaber, M. Do tree plantations or cultivated fields have the same ability to maintain soil quality as natural forests? Appl. Soil Ecol. 2020, 151, 103536. [Google Scholar] [CrossRef]
- Dou, X.; He, P.; Cheng, X.; Zhou, W. Long-term fertilization alters chemically-separated soil organic carbon pools: Based on stable C isotope analyses. Sci. Rep. 2016, 6, 19061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, S.D. Analysis Method for Soil Agro-Chemistry, 3rd ed.; China Agriculture Press: Beijing, China, 2000; pp. 432–437. [Google Scholar]
- Iqbal, J.; Hu, R.; Feng, M.; Lin, S.; Malghani, S.; Ali, I.M. Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: A case study at Three Gorges Reservoir Area, South China. Agric. Ecosyst. Environ. 2018, 137, 294–307. [Google Scholar] [CrossRef]
- Morisada, K.; Ono, K.; Kanomata, H. Organic carbon stock in forest soils in Japan. Geoderma 2004, 119, 21–32. [Google Scholar] [CrossRef]
- Wang, Q.K.; Wang, S.L. Microbial biomass in subtropical forest soils effect of conversion of natural secondary forest to Cunninghamia lanceolata plantation. J. For. Res. 2006, 17, 197–200. [Google Scholar] [CrossRef]
- Xu, X.K.; Inubushi, K.; Sakamoto, K. Effect of vegetations and temperature on microbial biomass carbon and quotients of temperate volcanic forest soils. Geoderma 2006, 136, 310–319. [Google Scholar] [CrossRef]
- Matos, E.S.; Freese, D.; Ślązak, A.; Bachmann, U.; Veste, M.; Hüttl, R.F. Organic-carbon and nitrogen stocks and organic-carbon fractions in soil under mixed pine and oak forest stands of different ages in NE Germany. J. Plant Nutr. Soil Sci. 2010, 173, 654–661. [Google Scholar] [CrossRef]
- Gahagan, A.; Giardina, C.P.; King, J.S.; Binkley, D.; Pregitzer, K.S.; Burton, A.J. Carbon fluxes, storage and harvest removals througl 60 years of stand development in red pine plantations and mixed hardwood stands in North Michigan, USA. For. Ecol. Manag. 2015, 337, 88–97. [Google Scholar] [CrossRef]
- Lu, S.B.; Xu, Y.; Fu, X.P.; Zhang, Y.J. Soil carbon stocks in plantations and natural forests of the sub-tropics. Acta Ecol. Sin. 2019, 39, 478–486. [Google Scholar] [CrossRef]
- Berger, T.W.; Inselsbacher, E.; Zechmeister-Boltenstern, S. Carbon dioxide emissions of soils under pure and mixed stands of beech and spruce, affected by decomposing foliage litter mixtures. Soil Biol. Biochem. 2010, 42, 986–997. [Google Scholar] [CrossRef]
- Qin, J.; Tang, X.H.; Yang, X.M. Effects of different forest types of Masson pine on soil physical and chemical properties. J. Ecol. Environ. 2013, 22, 598–604. [Google Scholar] [CrossRef]
- Xu, X.; Thornton, P.E.; Post, W.M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob. Ecol. Biogeogr. 2013, 22, 737–749. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Ladd, J.N. Microbial biomass in soil: Measurement and turnover. In Soil Biochemistry; Jenkinson, D.S., Ladd, J.N., Eds.; CRC Press: Boca Raton, FL, USA, 1981; Volume 5, pp. 415–471. [Google Scholar]
- Paul, E.A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biol. Biochem. 2016, 98, 109–126. [Google Scholar] [CrossRef] [Green Version]
- Yoshitomi, K.J.; Shann, J.R. Corn (Zea mays L.) root exudates and their impact on 14C-pyrene mineralization. Soil Biol. Biochem. 2001, 33, 1769–1776. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.W.; Yang, L.X. A long-term effect of Larix monocultures on soil physicochemical properties and microbes in northeast China. Eur. J. Soil Biol. 2020, 96, 103–149. [Google Scholar] [CrossRef]
- Mohammad, B.; Falk, H.; Sofia, K.F.; Jennifer, L.A.; Nadejda, A.S.; Peter, M.B.; Johan, B.P.; Sten, A.; Luis, P.C.; Helery, H. Structure and function of the global topsoil microbiome. Struct. Funct. Glob. Topsoil Microbiome Nat. 2018, 560, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Stepniewska, Z.; Wolinska, A.; Ziomek, J. Response of soil catalase activity to chromium contamination. J. Environ. Sci. 2009, 21, 1142–1147. [Google Scholar] [CrossRef] [PubMed]
- Tian, P.; Razavi, B.S.; Zhang, X.C.; Wang, Q.K.; Blagodatskaya, E. Microbial growth and enzyme kinetics in rhizosphere hotspots are modulated by soil organics and nutrient availability. Soil Biol. Biochem. 2020, 141, 107662. [Google Scholar] [CrossRef]
- Xu, G.; Long, Z.J.; Ren, P.; Ren, C.J.; Cao, Y.; Huang, Y.; Hu, S.L. Differential responses of soil hydrolytic and oxidative enzyme activities to the natural forest conversion. Sci. Total Environ. 2020, 716, 136414. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.Y.; Wu, N.; Liu, Q.; Bao, W.K. The relation among soil microorganism, enzyme activity and soil nutrients under subalpine coniferous forest in Western Sichuan. Acta Ecol. Sin. 2009, 29, 286–292. [Google Scholar] [CrossRef]
Plantation | Soil Layer (cm) | pH | SM (%) | SBD (g/cm3) | TOC (g/kg) | TN (g/kg) | TP (g/kg) |
---|---|---|---|---|---|---|---|
CHPF | 0–20 | 4.32 ± 0.07A | 19.90 ± 0.37AB | 1.42 ± 0.04ABC | 15.89 ± 2.71B | 0.46 ± 0.02B | 1.47 ± 0.31AB |
20–40 | 4.30 ± 0.01AB | 17.95 ± 0.49BC | 1.57 ± 0.02A | 9.29 ± 1.53D | 0.33 ± 0.04C | 1.41 ± 0.47AB | |
CHPEF | 0–20 | 4.11 ± 0.04C | 20.86 ± 0.59A | 1.33 ± 0.06CD | 17.62 ± 1.51AB | 0.47 ± 0.01B | 0.97 ± 0.20B |
20–40 | 4.13 ± 0.10C | 18.89 ± 0.72ABC | 1.46 ± 0.05ABC | 11.18 ± 0.70CD | 0.33 ± 0.02C | 1.26 ± 0.22AB | |
CHMMF | 0–20 | 4.06 ± 0.03C | 19.87 ± 1.06AB | 1.25 ± 0.06D | 21.01 ± 1.44A | 0.66 ± 0.06A | 1.81 ± 0.06A |
20–40 | 4.10 ± 0.01C | 19.54 ± 0.51AB | 1.38 ± 0.06BCD | 15.20 ± 1.91BC | 0.52 ± 0.06B | 1.30 ± 0.11AB | |
CHMLF | 0–20 | 4.32 ± 0.04A | 20.22 ± 1.16A | 1.23 ± 0.01D | 18.95 ± 0.43AB | 0.51 ± 0.02B | 1.31 ± 0.04AB |
20–40 | 4.16 ± 0.04BC | 16.79 ± 0.69C | 1.53 ± 0.09AB | 8.89 ± 0.67D | 0.34 ± 0.04C | 0.88 ± 0.11B |
Parameter | Catalase | Invertase | Urease | Phosphatase | MBC | MBN | pH | SM | SBD | TOC | TN | TP |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Invertase | 0.153 | 1 | ||||||||||
Urease | 0.509 * | 0.683 ** | 1 | |||||||||
Phosphatase | 0.552 ** | 0.143 | 0.609 ** | 1 | ||||||||
MBC | 0.357 | 0.732 ** | 0.520 ** | 0.117 | 1 | |||||||
MBN | 0.461 * | 0.583 ** | 0.654 ** | 0.573 ** | 0.673 ** | 1 | ||||||
pH | −0.091 | 0.022 | −0.004 | −0.198 | −0.247 | 0.034 | 1 | |||||
SM | 0.312 | 0.404 | 0.277 | 0.161 | 0.745 ** | 0.730 ** | −0.015 | 1 | ||||
SBD | −0.559 ** | −0.331 | −0.454 * | −0.497 * | −0.565 ** | −0.775 ** | 0.065 | −0.658 ** | 1 | |||
TOC | 0.640 ** | 0.490 * | 0.572 ** | 0.500 * | 0.715 ** | 0.860 ** | −0.090 | 0.662 ** | −0.860 ** | 1 | ||
TN | 0.793 ** | 0.406 * | 0.681 ** | 0.555 ** | 0.644 ** | 0.683 ** | −0.168 | 0.557 ** | −0.803 ** | 0.826 ** | 1 | |
TP | 0.368 | 0.324 | 0.340 | 0.033 | 0.336 | 0.189 | 0.246 | 0.118 | −0.239 | 0.375 | 0.432 * | 1 |
MBC/MBN | −0.305 | −0.101 | −0.352 | −0.623 ** | 0.083 | −0.573 ** | −0.170 | −0.154 | 0.332 | −0.389 | −0.285 | 0.184 |
Forest Type | Main Tree Species | Canopy Density (%) | Mean Height (m) | Mean DBH (cm) |
---|---|---|---|---|
CHPF | C. hystrix | 85 | 14.4 ± 0.2A | 17.2 ± 0.3A |
CHPEF | C. hystrix + | 85 | 15.6 ± 0.4A | 18.6 ± 0.5B |
Pinus elliottii | 15.2 ± 0.3A | 21.1 ± 0.2C | ||
CHMMF | C. hystrix + | 90 | 15.6 ± 0.1A | 14.7 ± 0.1D |
Michelia macclurei | 14.3 ± 0.1A | 14.8 ± 0.2D | ||
CHMLF | C. hystrix + | 90 | 15.2 ± 0.2A | 12.4 ± 0.2E |
Mytilaria laosensis | 17.9 ± 0.1B | 15.6 ± 0.7D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Ma, J.; Liang, H.; Zhang, Y.; Yang, J.; Chen, F.; Wang, Y.; Yan, W. Changes in Soil Properties, Microbial Quantity and Enzyme Activities in Four Castanopsis hystrix Forest Types in Subtropical China. Plants 2023, 12, 2411. https://doi.org/10.3390/plants12132411
Wang R, Ma J, Liang H, Zhang Y, Yang J, Chen F, Wang Y, Yan W. Changes in Soil Properties, Microbial Quantity and Enzyme Activities in Four Castanopsis hystrix Forest Types in Subtropical China. Plants. 2023; 12(13):2411. https://doi.org/10.3390/plants12132411
Chicago/Turabian StyleWang, Renjie, Jianwei Ma, Huizi Liang, Yubao Zhang, Jisheng Yang, Fengfan Chen, Yong Wang, and Wende Yan. 2023. "Changes in Soil Properties, Microbial Quantity and Enzyme Activities in Four Castanopsis hystrix Forest Types in Subtropical China" Plants 12, no. 13: 2411. https://doi.org/10.3390/plants12132411
APA StyleWang, R., Ma, J., Liang, H., Zhang, Y., Yang, J., Chen, F., Wang, Y., & Yan, W. (2023). Changes in Soil Properties, Microbial Quantity and Enzyme Activities in Four Castanopsis hystrix Forest Types in Subtropical China. Plants, 12(13), 2411. https://doi.org/10.3390/plants12132411