Selection of High-Yielding and Stable Genotypes of Barley for the Cold Climate in Iran
Abstract
:1. Introduction
2. Results
2.1. Response of Investigated Barley Genotypes to the Freezing Test
2.2. AMMI Analysis
2.3. GGE Biplots to Visualize GEI
3. Discussion
4. Materials and Methods
4.1. Plant Materials, Field Layout, and Experimental Design
4.2. Evaluation of the Lethal Temperature (LT50) for Genotypes
4.3. Statistical Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaezi, B.; Pour-Aboughadareh, A.; Mehraban, A.; Hossein-Pour, T.; Mohammadi, R.; Armion, M.; Dorri, M. The use of parametric and non-parametric measures for selecting stable and adapted barley lines. Arch. Agron. Soil Sci. 2018, 64, 597–611. [Google Scholar] [CrossRef]
- Fatemi, F.; Kianersi, F.; Pour-Aboughadareh, A.; Poczai, P.; Jadidi, O. Overview of identified genomic regions associated with various agronomic and physiological traits in barley under abiotic stresses. Appl. Sci. 2022, 12, 5189. [Google Scholar] [CrossRef]
- Warzecha, T.; Skrzypek, E.; Bocianowski, J.; Sutkowska, A. Impact of selected PSII parameters on barley DH lines biomass and yield elements. Agronomy 2021, 11, 1705. [Google Scholar] [CrossRef]
- FAOSTAT Statistical Database. Available online: http://www.fao.org/faostat/en/#home (accessed on 1 May 2022).
- Agricultural Statistics (2020–2021 Cropping Year); Crop Plants; Ministry of Agriculture-Jahad: Jahad, Iran, 2022; pp. 1–100.
- Ghazvini, H.; Bagherikia, S.; Pour-Aboughadareh, A.; Sharifalhossaini, M.; Razavi, S.A.; Mohammadi, S.; GhasemiKalkhoran, M.; Fathihafshejani, A.; Khakizade, G. GGE biplot analysis of promising barley lines in the cold regions of Iran. J. Crop Improv. 2022, 36, 461–547. [Google Scholar] [CrossRef]
- Ghazvini, H.; Pour-Aboughadareh, A.; Sharifalhosseini, M.; Razavi, S.A.; Mohammadi, S.; Ghasemi Kalkhoran, M.; Fathi Hafshejani, A.; Khakizadeh, G. Phenotypic stability analysis of barley promising lines in the cold regions of Iran. Crop Breed J. 2018, 8, 17–29. [Google Scholar]
- Ebem, E.C.; Afuape, S.O.; Chukwu, S.C.; Ubi, B.E. Genotype × environment interaction and stability analysis for root yield in sweet potato [Ipomoea batatas (L.) Lam]. Front. Agron. 2021, 3, 665564. [Google Scholar] [CrossRef]
- Jędzura, S.; Bocianowski, J.; Matysik, P. The AMMI model application to analyze the genotype–environmental interaction of spring wheat grain yield for the breeding program purposes. Cereal Res. Commun. 2023, 51, 197–205. [Google Scholar] [CrossRef]
- Bocianowski, J.; Księżak, J.; Nowosad, K. Genotype by environment interaction for seeds yield in pea (Pisum sativum L.) using additive main effects and multiplicative interaction model. Euphytica 2019, 215, 191. [Google Scholar] [CrossRef] [Green Version]
- Moussa, S.A.M.; Hala, A.A.E.; Nashwa, I.A.E. Stability study of sweet potato yield and its component characters under different environments by joint regression analysis. J. Hortic. Sci. Ornam. Plants 2011, 3, 43–54. [Google Scholar]
- Khalili, M.; Pour-Aboughadareh, A. Parametric and nonparametric measures for evaluating yield stability and adaptability in barley doubled haploid lines. J. Agric Sci. Technol. 2016, 18, 789–803. [Google Scholar]
- Vaezi, B.; Pour-Aboughadareh, A.; Mohammadi, R.; Mehraban, A.; Hossein-Pour, T.; Koohkan, E.; Ghasemi, S.; Moradkhani, H.; Siddique, K.H.M. Integrating different stability models to investigate genotype × environment interactions and identify stable and highyielding barley genotypes. Euphytica 2019, 215, 63. [Google Scholar] [CrossRef]
- Ahakpaz, F.; Abdi, H.; Neyestani, E.; Hesami, A.; Mohammadi, B.; Nader Mahmoudi, K.; Abedi-Asl, G.; Jazayeri Noshabadi, M.R.; Ahakpaz, F.; Alipour, H. Genotype-by-environment interaction analysis for grain yield of barley genotypes under dryland conditions and the role of monthly rainfall. Agric. Water Manag. 2021, 245, 10665. [Google Scholar] [CrossRef]
- Hilmarsson, H.S.; Rio, S.; Sanchez, J.I.Y. Genotype by environment interaction analysis of agronomic spring barley traits in Iceland using AMMI, Factorial Regression Model and Linear Mixed Model. Agronomy 2021, 11, 499. [Google Scholar] [CrossRef]
- Nykiel, M.; Gietler, M.; Fidler, J.; Graska, J.; Rybarczyk-Płońska, A.; Prabucka, B.; Muszyńska, E.; Bocianowski, J.; Labudda, M. Differential water deficit in leaves is a principal factor modifying barley response to drought stress. Int. J. Mol. Sci. 2022, 23, 15240. [Google Scholar] [CrossRef] [PubMed]
- Pour-Aboughadareh, A.; Yousefian, M.; Moradkhani, H.; Poczai, P.; Siddique, K.H.M. STABILITYSOFT: A new online program to calculate parametric and non-parametric stability statistics for crop traits. Appl. Plant Sci. 2019, 7, e01211. [Google Scholar] [CrossRef] [Green Version]
- Bocianowski, J.; Radkowski, A.; Nowosad, K.; Radkowska, I.; Zieliński, A. The impact of genotype-by-environment interaction on the dry matter yield and chemical composition in timothy (Phleum pratense L.) examined by using the additive main effects and multiplicative interaction model. Grass Forage Sci. 2021, 76, 463–484. [Google Scholar] [CrossRef]
- Gauch, H.G. Statistical Analysis of Regional Trials. AMMI Analysis of Factorial Design, 1st ed.; Elsevier: New York, NY, USA, 1992; p. 278. [Google Scholar]
- Yan, W.; Kang, M.S. GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists; CRC Press: Boca Raton, FL, USA, 2002; p. 287. [Google Scholar]
- Gauch, H.G. Statistical analysis of yield trials by AMMI and GGE. Crop Sci. 2006, 46, 1488–1500. [Google Scholar] [CrossRef]
- Gauch, H.G. A simple protocol for AMMI analysis of yield trials. Crop Sci. 2013, 53, 1860–1869. [Google Scholar] [CrossRef]
- Dehghani, H.; Ebadi, A.; Yousefi, A. Biplot analysis of genotype by environment interaction for barley yield in Iran. Agron. J. 2006, 98, 388–393. [Google Scholar] [CrossRef]
- Ahmadi, J.; Vaezi, B.; Fotokian, M.H. Graphical analysis of multi-environment trials for barley yield using AMMI and GGE-biplot under rain-fed conditions. JPPB 2012, 2, 43–54. [Google Scholar]
- Mortazavian, S.M.M.; Nikkhah, H.R.; Hassani, F.A.; Hosseini, S.; Taheri, M.; Mahloohi, M. GGE biplot and AMMI analysis of yield performance of barley genotypes across different environments in Iran. J. Agric. Sci. Technol. 2014, 16, 609–622. [Google Scholar]
- Vaezi, B.; Pour-Aboughadareh, A.; Mohammadi, R.; Armion, M.; Mehraban, A.; Hossein-Pour, T.; Dorri, M. GGE biplot and AMMI analysis of barley yield performance in Iran. Cereal Res. Commun. 2017, 45, 500–511. [Google Scholar] [CrossRef] [Green Version]
- Pour-Aboughadareh, A.; Barati, A.; Koohkan, S.A.; Jabari, M.; Marzoghian, A.; Gholipoor, A.; Shahbazi-Homonloo, K.; Zali, H.; Poodineh, O.; Kheirgo, M. Dissection of genotype-by-environment interaction and yield stability analysis in barley using AMMI model and stability statistics. Bull. Natl. Res. Cent. 2022, 46, 19. [Google Scholar] [CrossRef]
- Pour-Aboughadareh, A.; Barati, A.; Gholipoor, A.; Zali, H.; Marzooghian, A.; Koohkan, S.A.; Shahbazi-Homonloo, K.; Houseinpour, A. Deciphering genotype-by-environment interaction in barley genotypes using different adaptability and stability methods. J. Crop Sci. Biotechnol. 2023, 1–16. [Google Scholar] [CrossRef]
- Pour-Aboughadareh, A.; Khalili, M.; Poczai, P.; Olivoto, T. Stability indices to deciphering the genotype-by-environment interaction (GEI) effect: An applicable review for use in plant breeding programs. Plants 2022, 11, 414. [Google Scholar] [CrossRef]
- Ghaffari, M.; Gholizadeh, A.; Andarkhor, S.A.; Zareei Siahbidi, A.; Ahmadi, S.A.; Shariati, F.; Rezaeizad, A. Stability and genotype × environment analysis of oil yield of sunflower single cross hybrids in diverse environments of Iran. Euphytica 2021, 217, 187. [Google Scholar] [CrossRef]
- Tai, G.C. Genotypic stability analysis and its application to potato regional trials. Crop Sci. 1971, 11, 184–190. [Google Scholar] [CrossRef]
- Nowosad, K.; Tratwal, A.; Bocianowski, J. Genotype by environment interaction for grain yield in spring barley using additive main effects and multiplicative interaction model. Cereal Res. Commun. 2018, 46, 729–738. [Google Scholar] [CrossRef]
- Bocianowski, J.; Warzecha, T.; Nowosad, K.; Bathelt, R. Genotype by environment interaction using AMMI model and estimation of additive and epistasis gene effects for 1000-kernel weight in spring barley (Hordeum vulgare L.). J. Appl. Genet. 2019, 60, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Bocianowski, J.; Tratwal, A.; Nowosad, K. Genotype by environment interaction for area under the disease-progress curve (AUDPC) value in spring barley using additive main effects and multiplicative interaction model. Australas. Plant Pathol. 2020, 49, 525–529. [Google Scholar] [CrossRef]
- Kandel, M.; Rijal, T.R.; Kandel, P. Evaluation and identification of stable and high yielding genotypes for varietal development in amaranthus (Amaranthus hypochondriacus L.) under hilly region of Nepal. J. Agric. Food Res. 2021, 5, 100158. [Google Scholar] [CrossRef]
- Wanga, M.A.; Shimelis, H.; Mashilo, J. Genotype by environment interaction of newly developed sorghum lines in Naminia. Euphytica 2021, 218, 147. [Google Scholar] [CrossRef]
- Lin, C.S.; Binns, M.R.; Lefkovitch, L.P. Stability analysis: Where do we stand? Crop Sci. 1986, 26, 894–900. [Google Scholar] [CrossRef] [Green Version]
- Yan, W. GGE biplot: A windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agron. J. 2001, 93, 1111–1118. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, P.; Aminpanah, H.; Erfani, R.; Mohaddesi, A.; Abbasian, A. Evaluation of genotype × environments interaction in rice based on AMMI model in Iran. Rice Sci. 2017, 24, 173–180. [Google Scholar] [CrossRef]
- Jamshidmoghaddam, M.; Pourdad, S.S. Genotype × environment interactions for seed yield in rainfed winter safflower (Carthamus tinctorius L.) multi-environment trials in Iran. Euphytica 2013, 190, 357–369. [Google Scholar] [CrossRef]
- Dehghani, M.R.; Majidi, M.M.; Mirlohi, A.; Saeidi, G. Integrating parametric and non-parametric measures to investigate genotype ×environment interactions in tall fescue. Euphytica 2016, 208, 583–596. [Google Scholar] [CrossRef]
- Bocianowski, J.; Prażak, R. Genotype by year interaction for selected quantitative traits in hybrid lines of Triticum aestivum L. with Aegilops kotschyi Boiss. and Ae. variabilis Eig. using the additive main effects and multiplicative interaction model. Euphytica 2022, 218, 11. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Limin, A.E.; Fowler, D.B. Cold hardiness expression in interspecific hybrids and amphiploids of the Triticeae. Genome 1988, 30, 261–265. [Google Scholar] [CrossRef]
- Kolde, R. Pheatmap: Pretty Heatmaps. R Package Version 1.0.12. Available online: https://cran.rproject.org/web/packages/pheatmap/index.html (accessed on 1 August 2022).
- Olivoto, T.; Lucio, A.D. Metan: An R package for multi environment trial analysis. Methods Ecol. Evol. 2020, 11, 783–789. [Google Scholar] [CrossRef] [Green Version]
- Husson, F.; Josse, J.; Le, S.; Mazet, J. FactoMineR: Multivariateexploratory Data Analysis and Data Mining. R Package Version 2.4. Available online: http://factominer.free.fr (accessed on 1 August 2022).
- Kassambara, A. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses, R Package Version 1:7. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 1 August 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
Genotype Code | LT50 (°C) | Thousand-Grain Weight (g) | Grain Yield (Tons ha−1) |
---|---|---|---|
G1 | −8 | 40.20 | 8.71 |
G2 | −8 | 37.80 | 5.27 |
G3 | −8 | 39.00 | 7.01 |
G4 | −10 | 38.80 | 7.62 |
G5 | −8 | 38.80 | 7.87 |
G6 | −7.5 | 41.30 | 6.20 |
G7 | −7 | 34.50 | 8.32 |
G8 | −8 | 42.00 | 6.90 |
G9 | −7.5 | 42.50 | 7.02 |
G10 | −8 | 35.90 | 5.94 |
G11 | −8 | 39.40 | 7.33 |
G12 | −6 | 42.60 | 6.56 |
G13 | −7.5 | 39.30 | 6.69 |
G14 | −8 | 40.40 | 7.06 |
G15 | −6 | 37.90 | 6.44 |
G16 | −6.5 | 45.20 | 7.10 |
G17 | −6 | 46.60 | 7.04 |
G18 | −8.5 | 35.90 | 7.21 |
G19 | −7 | 43.10 | 7.86 |
G20 | −8 | 41.50 | 8.51 |
LSD (0.05) | 3.68 | 6.46 | 2.02 |
Source | df | SS | MS | F-Value | Probability | % TSS |
---|---|---|---|---|---|---|
Total | 959 | 1972.3 | 2.057 | |||
Treatments | 319 | 1400 | 4.389 | 5.61 | ** | |
Genotype (G) | 19 | 98.4 | 5.18 | 6.62 | ** | 4.99 |
Environment (E) | 15 | 975.2 | 65.011 | 21.56 | ** | 49.44 |
Replication | 32 | 96.5 | 3.015 | 3.85 | ** | |
GEI | 285 | 326.4 | 1.145 | 1.46 | ** | 16.55 |
IPCA1 | 33 | 75 | 2.273 | 2.9 | ** | 22.98 |
IPCA2 | 31 | 59.4 | 1.916 | 2.45 | ** | 18.20 |
IPCA3 | 29 | 44 | 1.516 | 1.94 | ** | 13.48 |
IPCA4 | 27 | 37.5 | 1.388 | 1.77 | ** | 11.49 |
IPCA5 | 25 | 30 | 1.2 | 1.53 | * | 9.19 |
Residuals | 140 | 80.6 | 0.576 | 0.74 | ||
Error | 608 | 475.9 | 0.783 |
Environment | Mean | IPCA1 Score | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|---|
ARD1 | 7.86 | −0.4858 | G20 | G15 | G2 | G1 |
ARD2 | 6.212 | −0.4278 | G11 | G15 | G2 | G13 |
ARK1 | 7.558 | −0.0473 | G7 | G20 | G8 | G2 |
ARK2 | 5.579 | −0.4088 | G2 | G3 | G1 | G4 |
HAM1 | 7.289 | −0.3568 | G2 | G6 | G3 | G9 |
HAM2 | 10.014 | −0.5616 | G2 | G1 | G15 | G11 |
JOL1 | 6.244 | −0.4681 | G6 | G3 | G10 | G18 |
JOL2 | 6.838 | −0.3916 | G2 | G6 | G7 | G3 |
KAJ1 | 7.306 | 0.0286 | G15 | G13 | G20 | G12 |
KAJ2 | 6.614 | 0.2851 | G4 | G1 | G20 | G19 |
MAS1 | 6.85 | 0.3332 | G7 | G20 | G16 | G13 |
MAS2 | 6.379 | 0.1469 | G18 | G1 | G20 | G4 |
MIN1 | 6.827 | −0.6028 | G2 | G15 | G20 | G5 |
MIN2 | 6.546 | 0.8114 | G16 | G13 | G15 | G18 |
TAB1 | 7.46 | 1.2446 | G4 | G13 | G19 | G1 |
TAB2 | 8.393 | 0.9007 | G1 | G18 | G16 | G20 |
Genotype Code | GY | ASTAB | ASI | ASV | AVAMGE | DA | DZ | EV | FA |
---|---|---|---|---|---|---|---|---|---|
G1 | 7.63 | 1.330 | 0.136 | 0.745 | 7.190 | 2.260 | 0.594 | 0.071 | 5.110 |
G2 | 7.49 | 0.990 | 0.193 | 1.060 | 7.250 | 2.140 | 0.467 | 0.043 | 4.570 |
G3 | 7.39 | 0.510 | 0.105 | 0.576 | 4.550 | 1.470 | 0.353 | 0.025 | 2.160 |
G4 | 7.39 | 1.440 | 0.153 | 0.841 | 6.620 | 2.380 | 0.612 | 0.075 | 5.670 |
G5 | 7.11 | 0.620 | 0.136 | 0.745 | 5.220 | 1.670 | 0.377 | 0.028 | 2.770 |
G6 | 7.1 | 1.310 | 0.218 | 1.200 | 7.740 | 2.410 | 0.552 | 0.061 | 5.810 |
G7 | 7.18 | 1.010 | 0.083 | 0.457 | 5.760 | 1.890 | 0.543 | 0.059 | 3.570 |
G8 | 6.77 | 0.790 | 0.084 | 0.464 | 5.090 | 1.700 | 0.473 | 0.044 | 2.880 |
G9 | 7.08 | 0.480 | 0.084 | 0.463 | 4.510 | 1.380 | 0.351 | 0.025 | 1.910 |
G10 | 6.41 | 1.840 | 0.101 | 0.556 | 8.060 | 2.640 | 0.700 | 0.098 | 6.960 |
G11 | 6.93 | 1.660 | 0.194 | 1.070 | 8.120 | 2.610 | 0.646 | 0.083 | 6.820 |
G12 | 6.98 | 0.410 | 0.071 | 0.392 | 3.920 | 1.280 | 0.323 | 0.021 | 1.630 |
G13 | 7.22 | 1.440 | 0.231 | 1.270 | 8.230 | 2.570 | 0.563 | 0.063 | 6.600 |
G14 | 6.64 | 0.340 | 0.047 | 0.258 | 3.600 | 1.120 | 0.304 | 0.018 | 1.250 |
G15 | 7.16 | 1.770 | 0.112 | 0.613 | 8.810 | 2.600 | 0.686 | 0.094 | 6.760 |
G16 | 6.97 | 1.540 | 0.242 | 1.330 | 8.990 | 2.660 | 0.584 | 0.068 | 7.070 |
G17 | 6.69 | 0.380 | 0.072 | 0.395 | 3.910 | 1.220 | 0.316 | 0.020 | 1.490 |
G18 | 7.43 | 1.310 | 0.185 | 1.020 | 6.910 | 2.360 | 0.558 | 0.062 | 5.580 |
G19 | 7.33 | 0.420 | 0.117 | 0.643 | 4.290 | 1.390 | 0.308 | 0.019 | 1.920 |
G20 | 7.59 | 0.380 | 0.039 | 0.214 | 3.580 | 1.190 | 0.321 | 0.021 | 1.430 |
Genotype Code | Line/Pedigree | Spike Type | Growth Type |
---|---|---|---|
G1 | Jolge (Reference 1) | Six-row | Winter |
G2 | Bahman/3/Makouee//Zarjow/80-5151 | Six-row | Winter |
G3 | Alger//CI10117/Choyo/3/Makouee/4/STB-12 | Six-row | Winter |
G4 | Comp.Cr229//As46/Pro/3/Srs/4/Express/5/Goharan/6/Goharan | Six-row | Facultative |
G5 | Zarjow/80-5151//Makouee/3/Makouee | Six-row | Winter |
G6 | Makouee//Zarjow/80-5151/3/Bahman | Six-row | Winter |
G7 | Radical/Birgit//Pamir-154/3/Goharan | Six-row | Facultative |
G8 | Cali92/Robust//ND16301 | Two-row | Spring |
G9 | Radical/Birgit//Pamir-154/3/Goharan | Six-row | Facultative |
G10 | Yousef/4/82S:510/3/Arinar/Aths//DS 29 | Six-row | Facultative |
G11 | Courlis/Rhn-03//Karoon | Six-row | Spring |
G12 | Mahtab/Goharan | Six-row | Spring |
G13 | Comp.Cr229//As46/Pro/3/Srs/4/Express/5/Goharan/6/Goharan | Six-row | Spring |
G14 | Pamir-147/Sonata/8/Alpha/Durra/7/P101/5/3896/1-15/3/3896/28//584/28/4/5050/6/Tipper | Two-row | Winter |
G15 | Courlis/Rhn-03//Karoon | Six-row | Winter |
G16 | Bda/Rhn-03//ICB-107766/3/Yousef | Six-row | Facultative |
G17 | Sonata/8/Api/CM67//Hma-03/4/Cq/Cm//Apm/3/RM1508/5/Attiki/6/Aths/7/SP(6H) /Apro//Ca1Mr/3/ROD586/Apm/4/Aths/9/Sararood | Two-row | Winter |
G18 | Nadawa/Rhn-03//Birka | Six-row | Spring |
G19 | Mahtab (Reference 2) | Six-row | Facultative |
G20 | Bahman/3/Alger//CI10117/Choyo | Six-row | Winter |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pour-Aboughadareh, A.; Ghazvini, H.; Jasemi, S.S.; Mohammadi, S.; Razavi, S.A.; Chaichi, M.; Ghasemi Kalkhoran, M.; Monirifar, H.; Tajali, H.; Fathihafshjani, A.; et al. Selection of High-Yielding and Stable Genotypes of Barley for the Cold Climate in Iran. Plants 2023, 12, 2410. https://doi.org/10.3390/plants12132410
Pour-Aboughadareh A, Ghazvini H, Jasemi SS, Mohammadi S, Razavi SA, Chaichi M, Ghasemi Kalkhoran M, Monirifar H, Tajali H, Fathihafshjani A, et al. Selection of High-Yielding and Stable Genotypes of Barley for the Cold Climate in Iran. Plants. 2023; 12(13):2410. https://doi.org/10.3390/plants12132410
Chicago/Turabian StylePour-Aboughadareh, Alireza, Habibollah Ghazvini, Seyed Shahriyar Jasemi, Solaiman Mohammadi, Sayed Alireza Razavi, Mehrdad Chaichi, Marefat Ghasemi Kalkhoran, Hassan Monirifar, Hamid Tajali, Asadollah Fathihafshjani, and et al. 2023. "Selection of High-Yielding and Stable Genotypes of Barley for the Cold Climate in Iran" Plants 12, no. 13: 2410. https://doi.org/10.3390/plants12132410
APA StylePour-Aboughadareh, A., Ghazvini, H., Jasemi, S. S., Mohammadi, S., Razavi, S. A., Chaichi, M., Ghasemi Kalkhoran, M., Monirifar, H., Tajali, H., Fathihafshjani, A., & Bocianowski, J. (2023). Selection of High-Yielding and Stable Genotypes of Barley for the Cold Climate in Iran. Plants, 12(13), 2410. https://doi.org/10.3390/plants12132410