Identification of High-Yielding Genotypes of Barley in the Warm Regions of Iran
Abstract
:1. Introduction
2. Results
2.1. Analysis of Variance and Genetic Parameters
2.2. Identification of Best Genotypes Using Selection Indices
2.3. BLUP-Based Adaptability and Stability Indices
2.4. AMMI
2.5. GGE Biplot Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Experiment Layouts
4.2. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT Statistical Database. Available online: http://www.fao.org/faostat/en/#home (accessed on 1 October 2023).
- Baik, B.K.; Ullrich, S.E. Barley for food: Characteristics, improvement, and renewed interest. J. Cereal Sci. 2008, 48, 233–242. [Google Scholar] [CrossRef]
- Bocianowski, J.; Warzecha, T.; Nowosad, K.; Bathelt, R. Genotype by environment interaction using AMMI model and estimation of additive and epistasis gene effects for 1000-kernel weight in spring barley (Hordeum vulgare L.). J. Appl. Genet. 2019, 60, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, F.; Kianersi, F.; Pour-Aboughadareh, A.; Poczai, P.; Jadidi, O. Overview of identified genomic regions associated with various agronomic and physiological traits in barley under abiotic stresses. Appl. Sci. 2022, 12, 5189. [Google Scholar] [CrossRef]
- Pour-Aboughadareh, A.; Ghazvini, H.; Jasemi, S.S.; Mohammadi, S.; Razavi, S.A.; Chaichi, M.; Ghasemi Kalkhoran, M.; Monirifar, H.; Tajali, H.; Fathihafshjani, A.; et al. Selection of high-yielding and stable genotypes of barley for the cold climate in Iran. Plants 2023, 12, 2410. [Google Scholar] [CrossRef]
- Nykiel, M.; Gietler, M.; Fidler, J.; Graska, J.; Rybarczyk-Płońska, A.; Prabucka, B.; Muszyńska, E.; Bocianowski, J.; Labudda, M. Differential water deficit in leaves is a principal factor modifying barley response to drought stress. Int. J. Mol. Sci. 2022, 23, 15240. [Google Scholar] [CrossRef] [PubMed]
- Ebem, E.C.; Afuape, S.O.; Chukwu, S.C.; Ubi, B.E. Genotype × environment interaction and stability analysis for root yield in sweet potato [Ipomoea batatas (L.) Lam]. Front. Agron. 2021, 3, 665564. [Google Scholar] [CrossRef]
- Linus, R.A.; Olanrewaju, O.S.; Oyatomi, O.; Idehen, E.O.; Abberton, M. Assessment of yield stability of bambara groundnut (Vigna subterranea (L.) Verdc.) using genotype and genotype–environment interaction biplot analysis. Agronomy 2023, 13, 2558. [Google Scholar] [CrossRef]
- Anderson, T.; Lee, C.-R. Strong Selection Genome-Wide Enhances Fitness Trade-Offs Across Environments and Episodes of Selection. Evolution 2014, 68, 16–31. [Google Scholar] [CrossRef]
- Rodrigues, P.C.; Malosetti, M.; Gauch, H.G.; van Eeuwijk, F.A. A Weighted AMMI Algorithm to Study Genotype-by-Environment Interaction and QTL-by-Environment Interaction. Crop Sci. 2014, 54, 1555–1570. [Google Scholar] [CrossRef]
- Van Eeuwijk, F.A.; Bustos-Korts, D.V.; Malosetti, M. What should students in plant breeding know about the statistical aspects of genotype × Environment interactions? Crop Sci. 2016, 56, 2119–2140. [Google Scholar] [CrossRef]
- Oladosu, Y.; Rafii, M.Y.; Abdullah, N.; Magaji, U.; Miah, G.; Hussin, G.; Ramli, A. Genotype × Environment interaction and stability analyses of yield and yield components of established and mutant rice genotypes tested in multiple locations in Malaysia. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2017, 67, 590–606. [Google Scholar] [CrossRef]
- Wodebo, K.Y.; Tolemariam, T.; Demeke, S.; Garedew, W.; Tesfaye, T.; Zeleke, M.; Gemiyu, D.; Bedeke, W.; Wamatu, J.; Sharma, M. AMMI and GGE biplot analyses for mega-environment identification and selection of some high-yielding oat (Avena sativa L.) genotypes for multiple environments. Plants 2023, 12, 3064. [Google Scholar] [CrossRef]
- Amelework, A.B.; Bairu, M.W.; Marx, R.; Laing, M.; Venter, S.L. Genotype × environment interaction and stability analysis of selected cassava cultivars in South Africa. Plants 2023, 12, 2490. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.A.; Sarker, U.; Azam, M.G.; Kobir, M.S.; Roychowdhury, R.; Ercisli, S.; Ali, D.; Oba, S.; Golokhvast, K.S. Integrating BLUP, AMMI, and GGE models to explore GE interactions for adaptability and stability of winter lentils (Lens culinaris Medik.). Plants 2023, 12, 2079. [Google Scholar] [CrossRef]
- Gauch, H.G. A simple protocol for AMMI analysis of yield trials. Crop Sci. 2013, 53, 1860–1869. [Google Scholar] [CrossRef]
- Gauch, H.G. Statistical analysis of yield trials by AMMI and GGE. Crop Sci. 2006, 46, 1488–1500. [Google Scholar] [CrossRef]
- Zali, H.; Barati, A.; Pour-Aboughadareh, A.; Gholipour, A.; Koohkan, S.; Marzoghiyan, A.; Bocianowski, J.; Bujak, H.; Nowosad, K. Identification of superior barley genotypes using selection index of ideal genotype (SIIG). Plants 2023, 12, 1843. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.F. A discriminant function for plant selection. Ann. Eugen. 1936, 7, 240–250. [Google Scholar] [CrossRef]
- Hazel, L.N. The genetic basis for constructing selection indexes. Genetics 1943, 28, 476–490. [Google Scholar] [CrossRef] [PubMed]
- Olivoto, T.; Licio, A.D.C.; Ada Silva, J.G.; Marchioro, V.S.; de Souza, V.Q.; Jost, E. Mean performance and stability in multi-environment trials I: Combining features of AMMI and BLUP techniques. Agron. J. 2019, 111, 2949–2960. [Google Scholar] [CrossRef]
- Olivoto, T.; Nardino, M. MGIDI: A novel multi-trait index for genotype selection in plant breeding. Bioinformatics 2021, 37, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Rocha, J.; Machado, J.C.; Carneiro, P.C.S. Multi trait index based on factor analysis and ideotype-design: Proposal and application on elephant grass breeding for bioenergy. Glob. Chang. Biol. Bioeng. 2018, 10, 52–60. [Google Scholar] [CrossRef]
- Bizari, E.H.; Val, B.H.P.; Pereira, E.M.; Mauro, A.O.D.; Trevisoli, S.H.U. Selection indices for agronomic traits in segregation populations of soybean. Rev. Cienc. Agron. 2017, 48, 110–117. [Google Scholar] [CrossRef]
- Benakanahalli, N.K.; Sridhara, S.; Ramesh, N.; Olivoto, T.; Sreekantappa, G.; Tamam, N.; Abdelbacki, A.M.M.; Elansary, H.O.; Abdelmohsen, S.A.M. A Framework for identification of stable genotypes based on MTSI and MGDII Indexes: An example in guar (Cymopsis tetragonoloba L.). Agronomy 2021, 11, 1221. [Google Scholar] [CrossRef]
- Pour-Aboughadareh, A.; Poczai, P. Dataset on the use of MGIDI index in screening drought-tolerant wild wheat accessions at the early growth stage. Data Brief 2021, 36, 107096. [Google Scholar] [CrossRef]
- Pour-Aboughadareh, A.; Poczai, P.A. A dataset on multi-trait selection approaches for screening desirable wild relatives of wheat. Data Brief 2021, 39, 107541. [Google Scholar] [CrossRef] [PubMed]
- Pour-Aboughadareh, A.; Sanjani, S.; Nikkhah-Chamanabad, H.; Asadi, A.; Amini, A. Identification of salt-tolerant barley genotypes using multiple-traits index and yield performance at the early growth and maturity stages. Bull. Natl. Res. Cent. 2021, 45, 117. [Google Scholar] [CrossRef]
- Ghaffari, M.; Gholizadeh, A.; Andarkhor, S.A.; Zareei Siahbidi, A.; Ahmadi, S.A.; Shariati, F.; Rezaeizad, A. Stability and genotype × environment analysis of oil yield of sunflower single cross hybrids in diverse environments of Iran. Euphytica 2021, 217, 187. [Google Scholar] [CrossRef]
- Ghazvini, H.; Bagherikia, S.; Pour-Aboughadareh, A.; Sharifalhossaini, M.; Razavi, S.A.; Mohammadi, S.; GhasemiKalkhoran, M.; Fathihafshejani, A.; Khakizade, G. GGE biplot analysis of promising barley lines in the cold regions of Iran. J Crop Improv. 2021, 36, 461–472. [Google Scholar] [CrossRef]
- Ahakpaz, F.; Abdi, H.; Neyestani, E.; Hesami, A.; Mohammadi, B.; Nader Mahmoudi, K.; Abedi-Asl, G.; Jazayeri Noshabadi, M.R.; Ahakpaz, F.; Alipour, H. Genotype-by-environment interaction analysis for grain yield of barley genotypes under dryland conditions and the role of monthly rainfall. Agric. Water Manag. 2021, 245, 10665. [Google Scholar] [CrossRef]
- Hilmarsson, H.S.; Rio, S.; Sanchez, J.I.Y. Genotype by environment interaction analysis of agronomic spring barley traits in Iceland using AMMI, Factorial Regression Model and Linear Mixed Model. Agronomy 2021, 11, 499. [Google Scholar] [CrossRef]
- Pour-Aboughadareh, A.; Barati, A.; Koohkan, S.A.; Jabari, M.; Marzoghian, A.; Gholipoor, A.; Shahbazi-Homonloo, K.; Zali, H.; Poodineh, O.; Kheirgo, M. Dissection of genotype-by-environment interaction and yield stability analysis in barley using AMMI model and stability statistics. Bull. Natl. Res. Cent. 2022, 46, 19. [Google Scholar] [CrossRef]
- Mortazavian, S.M.M.; Nikkhah, H.R.; Hassani, F.A.; Hosseini, S.; Taheri, M.; Mahloohi, M. GGE biplot and AMMI analysis of yield performance of barley genotypes across different environments in Iran. J. Agric. Sci. Technol. 2014, 16, 609–622. [Google Scholar]
- Dehghani, H.; Ebadi, A.; Yousefi, A. Biplot analysis of genotype by environment interaction for barley yield in Iran. Agron. J. 2006, 98, 388–393. [Google Scholar] [CrossRef]
- Moussa, S.A.M.; Hala, A.A.E.; Nashwa, I.A.E. Stability study of sweet potato yield and its component characters under different environments by joint regression analysis. J. Hortic. Sci. Ornam. Plants 2011, 3, 43–54. [Google Scholar]
- Hasan, M.J.; Kulsum, M.U.; Sarker, U.; Matin, M.Q.I.; Shahin, N.H.; Kabir, M.S.; Ercisli, S.; Marc, R.A. Assessment of GGE, AMMI, Regression, and Its Deviation Model to Identify Stable Rice Hybrids in Bangladesh. Plants 2022, 11, 2336. [Google Scholar] [CrossRef]
- Francis, T.R.; Kannenberg, L.W. Yield Stability Studies in Short-Season Maize. I. A Descriptive Method for Grouping Genotypes. Can. J. Plant Sci. 1978, 58, 1029–1034. [Google Scholar] [CrossRef]
- Tekalign, A.; Sibiya, J.; Derera, J.; Fikre, A. Analysis of Genotype × Environment Interaction and Stability for Grain Yield and Chocolate Spot (Botrytis Fabae) Disease Resistance in Faba Bean (Vicia Faba). Aust. J. Crop Sci. 2017, 11, 1228–1235. [Google Scholar] [CrossRef]
- Farshadfar, E. Incorporation of AMMI Stability Value and Grain Yield in a Single Non-Parametric Index (GSI) in Bread Wheat. Pak. J. Biol. Sci. 2008, 11, 1791. [Google Scholar] [CrossRef] [PubMed]
- Sellami, M.H.; Pulvento, C.; Lavini, A. Selection of suitable genotypes of lentil (Lens culinaris Medik.) under rainfed conditions in south italy using multi-trait stability index (MTSI). Agronomy 2021, 11, 1807. [Google Scholar] [CrossRef]
- Costa, C.S.R.; Lima, M.A.C.; Neto, F.P.L.N.; Costa, A.E.S.; Vilvert, J.C.; Martins, L.S.S.; Musser, R.S. Genetic parameters and selection of mango genotypes using the FAI-BLUP multitraits index. Sci Hortic. 2023, 317, 112049. [Google Scholar] [CrossRef]
- Hussain, T.; Akram, Z.; Shabbir, G.; Manaf, A.; Ahmed, M. Identification of drought tolerant chickpea genotypes through multi trait stability index. Saudi J. Biol Sci. 2021, 28, 6818–6828. [Google Scholar] [CrossRef] [PubMed]
- Daba, S.D.; Kiszonas, A.M.; McGee, R.J. Selecting high-performing and stable pea genotypes in multi-environmental trial (MET): Applying AMMI, GGE-biplot, and BLUP procedures. Plants 2023, 12, 2343. [Google Scholar] [CrossRef] [PubMed]
- Borges, V.; Soares, A.A.; Reis, M.S.; Resende, M.D.V.; Cornélio, V.M.O.; Leite, N.A.; Vieira, A.R. Desempenho genotipico de linhagens de arroz de terras altas utilizando metodologia de modelos mistos. Bragantia 2010, 69, 833–841. [Google Scholar] [CrossRef]
- Resende, M.D.V.; de Duarte, J.B. Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesqui Agropecu Trop. 2007, 37, 182–194. [Google Scholar]
- Yan, W.; Kang, M.S. GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists; CRC Press: Boca Raton, FL, USA, 2002; p. 287. [Google Scholar]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Alvarado, G.; Rodriguez, F.M.; Burgueno, J.; Crossa, J.; Vargas, M.; Rodriguez, P.P.; Lopez-Cruz, M.A. META-R: A software to analyze data from multi-environment plant breeding trials. Crop J. 2020, 8, 745–756. [Google Scholar] [CrossRef]
- Olivoto, T.; Lucio, A.D. Metan: An R package for multi-environment trial analysis. Methods Ecol. Evol. 2020, 11, 783–789. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
Statistic | DHE | DMA | PLH | TKW | GY |
---|---|---|---|---|---|
Environment (E) significance | 1.58 × 10−8 | 6.18 × 10−9 | 3.88 × 10−5 | 1.91 × 10−5 | 3.51 × 10−3 |
Genotype (G) significance | 9.27 × 10−6 | 2.05 × 10−4 | 3.44 × 10−5 | 1.35 × 10−3 | 1.92 × 10−1 |
G × E significance | 7.93 × 10−9 | 3.50 × 10−3 | 5.51 × 10−16 | 2.62 × 10−9 | 7.00 × 10−11 |
Genotype variance | 2.71 | 2.72 | 7.67 | 1.69 | 38,262.90 |
G × E variance | 4.12 | 2.93 | 14.39 | 3.88 | 374,092.44 |
Residual variance | 2.56 | 20.60 | 24.71 | 3.05 | 320,923.89 |
Grand mean | 107.36 | 140.31 | 86.52 | 39.97 | 4774.01 |
CVg | 1.23 | 1.18 | 3.28 | 2.52 | 3.98 |
CVp | 9.36 | 26.20 | 54.90 | 7.43 | 77.22 |
h2 | 0.17 | 0.11 | 0.14 | 0.13 | 0.10 |
h2mg | 0.57 | 0.52 | 0.55 | 0.47 | 0.22 |
RGE | 0.43 | 0.12 | 0.33 | 0.47 | 0.53 |
Acc | 0.76 | 0.72 | 0.74 | 0.68 | 0.47 |
Code | DHE | DMA | PLH | TKW | GY | HMGV | RPGV | HMRPGV | SH | MTSI |
---|---|---|---|---|---|---|---|---|---|---|
G1 | 102.67 | 139.58 | 82.58 | 40.32 | 4753.90 | 4484.00 | 0.98 | 0.98 | 2345.00 | 6.24 |
G2 | 103.58 | 141.58 | 85.25 | 38.42 | 4233.80 | 4192.00 | 0.90 | 0.90 | 2266.00 | 7.14 |
G3 | 105.25 | 141.75 | 84.92 | 39.84 | 4444.70 | 4149.00 | 0.92 | 0.91 | 2298.00 | 7.77 |
G4 | 100.00 | 127.17 | 80.25 | 39.74 | 5072.20 | 4580.00 | 1.04 | 1.01 | 2394.00 | 7.63 |
G5 | 104.08 | 139.33 | 87.42 | 40.79 | 4701.10 | 4511.00 | 0.98 | 0.97 | 2337.00 | 6.27 |
G6 | 102.75 | 139.50 | 83.17 | 39.83 | 5371.20 | 5153.00 | 1.11 | 1.11 | 2439.00 | 6.49 |
G7 | 104.75 | 141.08 | 79.67 | 39.32 | 5266.80 | 4908.00 | 1.08 | 1.06 | 2423.00 | 7.27 |
G8 | 101.42 | 138.67 | 84.08 | 36.29 | 4051.70 | 3972.00 | 0.87 | 0.86 | 2238.00 | 5.67 |
G9 | 105.08 | 140.17 | 89.08 | 36.12 | 4448.20 | 4407.00 | 0.95 | 0.94 | 2299.00 | 6.39 |
G10 | 102.67 | 139.17 | 87.33 | 38.51 | 3829.30 | 3826.00 | 0.83 | 0.83 | 2204.00 | 5.81 |
G11 | 102.58 | 140.17 | 90.33 | 38.62 | 5328.10 | 5108.00 | 1.11 | 1.09 | 2433.00 | 7.73 |
G12 | 105.08 | 141.92 | 87.00 | 37.80 | 4736.00 | 4521.00 | 0.98 | 0.98 | 2342.00 | 7.56 |
G13 | 105.92 | 141.67 | 88.00 | 38.22 | 4165.40 | 4062.00 | 0.89 | 0.87 | 2256.00 | 8.11 |
G14 | 104.58 | 141.00 | 81.75 | 40.83 | 4530.80 | 4446.00 | 0.96 | 0.95 | 2311.00 | 6.92 |
G15 | 103.75 | 140.83 | 90.00 | 36.62 | 4124.20 | 4108.00 | 0.89 | 0.88 | 2249.00 | 6.97 |
G16 | 100.25 | 137.83 | 86.33 | 38.39 | 4574.40 | 4427.00 | 0.96 | 0.96 | 2318.00 | 6.42 |
G17 | 103.33 | 139.50 | 87.17 | 40.08 | 4447.90 | 4251.00 | 0.93 | 0.93 | 2299.00 | 6.18 |
G18 | 103.83 | 138.92 | 88.00 | 38.22 | 5140.30 | 4899.00 | 1.06 | 1.06 | 2404.00 | 5.83 |
G19 | 104.92 | 141.50 | 91.08 | 38.21 | 5020.20 | 4866.00 | 1.05 | 1.05 | 2386.00 | 8.07 |
G20 | 104.67 | 141.50 | 92.08 | 37.46 | 4775.10 | 4640.00 | 1.01 | 0.99 | 2348.00 | 7.05 |
G21 | 105.50 | 141.75 | 93.25 | 39.03 | 4806.70 | 4760.00 | 1.03 | 1.01 | 2353.00 | 7.78 |
G22 | 105.50 | 142.42 | 89.92 | 40.18 | 5104.40 | 4933.00 | 1.07 | 1.06 | 2399.00 | 8.12 |
G23 | 101.92 | 140.33 | 87.75 | 38.93 | 4755.80 | 4584.00 | 1.00 | 0.98 | 2345.00 | 6.47 |
G24 | 104.67 | 139.42 | 87.75 | 38.98 | 5300.20 | 5109.00 | 1.10 | 1.10 | 2428.00 | 5.99 |
G25 | 101.75 | 139.17 | 84.83 | 38.82 | 4869.60 | 4475.00 | 0.99 | 0.98 | 2363.00 | 5.89 |
G26 | 102.83 | 139.92 | 87.50 | 39.72 | 5259.20 | 4831.00 | 1.08 | 1.05 | 2422.00 | 6.17 |
G27 | 101.75 | 138.92 | 77.00 | 38.56 | 4737.00 | 4599.00 | 1.00 | 0.98 | 2343.00 | 5.73 |
G28 | 101.58 | 138.42 | 81.58 | 38.64 | 4755.50 | 4457.00 | 0.98 | 0.97 | 2345.00 | 6.25 |
G29 | 100.75 | 137.50 | 84.17 | 39.19 | 5252.30 | 4947.00 | 1.08 | 1.07 | 2421.00 | 5.44 |
G30 | 103.00 | 139.25 | 80.00 | 38.02 | 4816.70 | 4568.00 | 1.00 | 0.99 | 2355.00 | 5.90 |
G31 | 103.42 | 140.17 | 83.75 | 37.95 | 4739.20 | 4479.00 | 0.98 | 0.97 | 2345.00 | 6.25 |
G32 | 105.58 | 141.75 | 83.58 | 36.49 | 4566.70 | 4400.00 | 0.96 | 0.95 | 2317.00 | 8.19 |
G33 | 105.08 | 143.08 | 87.92 | 36.87 | 4840.20 | 4554.00 | 1.01 | 0.99 | 2358.00 | 7.95 |
G34 | 105.67 | 143.58 | 87.00 | 37.49 | 4010.00 | 4028.00 | 0.87 | 0.86 | 2232.00 | 9.40 |
G35 | 105.25 | 142.42 | 80.83 | 37.81 | 4507.70 | 4384.00 | 0.95 | 0.94 | 2308.00 | 8.22 |
G36 | 105.58 | 142.25 | 84.17 | 36.55 | 4875.00 | 4476.00 | 1.00 | 0.98 | 2364.00 | 7.89 |
G37 | 105.50 | 142.00 | 88.08 | 37.53 | 4346.50 | 4308.00 | 0.93 | 0.92 | 2283.00 | 7.88 |
G38 | 105.25 | 143.17 | 86.33 | 36.94 | 5221.50 | 4940.00 | 1.08 | 1.07 | 2416.00 | 7.46 |
G39 | 106.50 | 143.17 | 79.75 | 37.08 | 4696.40 | 4492.00 | 0.98 | 0.97 | 2336.00 | 9.77 |
G40 | 102.83 | 141.92 | 90.00 | 39.74 | 5053.10 | 4819.00 | 1.05 | 1.04 | 2391.00 | 7.85 |
G41 | 101.17 | 137.92 | 90.00 | 40.93 | 5105.40 | 4918.00 | 1.06 | 1.06 | 2399.00 | 5.86 |
G42 | 104.08 | 138.50 | 87.50 | 36.37 | 5117.50 | 4842.00 | 1.06 | 1.05 | 2401.00 | 5.90 |
G43 | 103.42 | 139.83 | 94.17 | 37.73 | 4644.80 | 4509.00 | 0.98 | 0.96 | 2329.00 | 7.32 |
G44 | 102.08 | 139.33 | 88.42 | 39.95 | 5126.70 | 4721.00 | 1.05 | 1.04 | 2402.00 | 6.38 |
G45 | 105.50 | 143.17 | 90.00 | 37.37 | 4883.60 | 4810.00 | 1.03 | 1.03 | 2365.00 | 7.78 |
G46 | 102.00 | 140.42 | 81.92 | 37.29 | 4797.90 | 4718.00 | 1.02 | 1.01 | 2352.00 | 6.35 |
G47 | 104.67 | 140.08 | 83.00 | 36.37 | 4636.60 | 4481.00 | 0.97 | 0.97 | 2327.00 | 6.53 |
G48 | 103.58 | 139.92 | 93.25 | 39.78 | 5201.50 | 4919.00 | 1.07 | 1.07 | 2413.00 | 6.68 |
G49 | 105.17 | 140.42 | 90.75 | 39.32 | 3545.80 | 3697.00 | 0.79 | 0.79 | 2161.00 | 7.49 |
G50 | 103.92 | 139.00 | 88.83 | 39.47 | 4320.20 | 4248.00 | 0.93 | 0.91 | 2279.00 | 6.18 |
G51 | 106.08 | 142.67 | 89.83 | 39.62 | 4534.10 | 4408.00 | 0.95 | 0.95 | 2312.00 | 9.79 |
G52 | 104.75 | 140.00 | 91.25 | 40.30 | 5434.90 | 5127.00 | 1.12 | 1.11 | 2449.00 | 6.99 |
G53 | 101.67 | 139.50 | 84.83 | 39.14 | 4897.90 | 4710.00 | 1.02 | 1.02 | 2367.00 | 7.29 |
G54 | 103.92 | 140.50 | 86.00 | 39.26 | 4898.80 | 4634.00 | 1.01 | 1.01 | 2367.00 | 6.42 |
G55 | 105.25 | 141.33 | 90.42 | 37.16 | 4581.20 | 4505.00 | 0.97 | 0.97 | 2319.00 | 6.55 |
G56 | 103.33 | 138.92 | 88.58 | 37.53 | 4925.30 | 4494.00 | 1.01 | 0.99 | 2371.00 | 5.98 |
G57 | 101.67 | 140.92 | 87.50 | 39.98 | 5407.10 | 5079.00 | 1.10 | 1.10 | 2445.00 | 6.15 |
G58 | 101.08 | 140.25 | 88.67 | 36.60 | 4825.20 | 4593.00 | 1.00 | 1.00 | 2356.00 | 6.89 |
G59 | 106.25 | 141.00 | 82.00 | 41.71 | 5089.80 | 4719.00 | 1.04 | 1.03 | 2396.00 | 8.12 |
G60 | 105.75 | 141.17 | 83.75 | 41.17 | 4938.50 | 4728.00 | 1.04 | 1.01 | 2373.00 | 7.52 |
±SD | 1.68 | 2.27 | 3.82 | 1.41 | 402.82 |
Source of Variation | df | Sum of Square | Mean Square | F-Value | Variability Explained (%) | ||
---|---|---|---|---|---|---|---|
Total | 719 | 1.16 × 109 | 1.62 × 106 | ||||
Treatments | 239 | 9.67 × 108 | 4.05 × 107 | 11.65 ** | |||
Genotypes | 59 | 1.15 × 108 | 1.95 × 106 | 5.61 ** | 9.87% | ||
Environments | 3 | 5.84 × 108 | 1.95 × 108 | 48.01 ** | 50.22% | ||
Block | 8 | 3.25 × 107 | 4.06 × 106 | 11.68 ** | |||
Interactions | 177 | 2.68 × 108 | 1.51 × 106 | 4.36 ** | 23.02% | ||
IPCA1 | 61 | 1.36 × 108 | 2.24 × 106 | 6.44 ** | 50.93% | ||
IPCA2 | 59 | 8.20 × 107 | 1.39 × 106 | 4.00 ** | 30.60% | ||
IPCA3 | 57 | 4.95 × 107 | 8.68 × 106 | 2.50 ** | 18.47% | ||
Error | 472 | 1.64 × 108 | 3.47 × 105 | ||||
First four AMMI selections per location | |||||||
Location | Mean | Score | 1 | 2 | 3 | 4 | |
Zabol (E3) | 4951 | 66.92 | G4 | G60 | G59 | G52 | |
Gonbad (E2) | 4116 | −10.94 | G26 | G22 | G38 | G6 | |
Ahvaz (E1) | 3859 | −10.96 | G11 | G43 | G7 | G52 | |
Darab (E4) | 6169 | −45.01 | G25 | G7 | G26 | G57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pour-Aboughadareh, A.; Koohkan, S.; Zali, H.; Marzooghian, A.; Gholipour, A.; Kheirgo, M.; Barati, A.; Bocianowski, J.; Askari-Kelestani, A. Identification of High-Yielding Genotypes of Barley in the Warm Regions of Iran. Plants 2023, 12, 3837. https://doi.org/10.3390/plants12223837
Pour-Aboughadareh A, Koohkan S, Zali H, Marzooghian A, Gholipour A, Kheirgo M, Barati A, Bocianowski J, Askari-Kelestani A. Identification of High-Yielding Genotypes of Barley in the Warm Regions of Iran. Plants. 2023; 12(22):3837. https://doi.org/10.3390/plants12223837
Chicago/Turabian StylePour-Aboughadareh, Alireza, Shirali Koohkan, Hassan Zali, Akbar Marzooghian, Ahmad Gholipour, Masoome Kheirgo, Ali Barati, Jan Bocianowski, and Alireza Askari-Kelestani. 2023. "Identification of High-Yielding Genotypes of Barley in the Warm Regions of Iran" Plants 12, no. 22: 3837. https://doi.org/10.3390/plants12223837
APA StylePour-Aboughadareh, A., Koohkan, S., Zali, H., Marzooghian, A., Gholipour, A., Kheirgo, M., Barati, A., Bocianowski, J., & Askari-Kelestani, A. (2023). Identification of High-Yielding Genotypes of Barley in the Warm Regions of Iran. Plants, 12(22), 3837. https://doi.org/10.3390/plants12223837