Integrated Molecular and Bioinformatics Approaches for Disease-Related Genes in Plants
Abstract
:1. Background
2. Genome Databases of Plant Pathogens
3. Identification and Isolation of Resistance (R) genes and Plant NLRs
3.1. Plant NLRs
3.2. Resistance (R) Genes in Rice (O. sativa)
3.3. Resistance (R) Genes in Wheat (T. aestivum)
3.4. Resistance (R) Genes in Maize (Z. mays)
3.5. Resistance (R) Genes in Arabidopsis (A. thaliana)
3.6. Resistance (R) Genes in Tomato (S. lycopersicum)
4. NLR Annotation Tools
4.1. NLR-Parser
4.2. NLR-Annotator
4.3. NLGenomeSweeper
4.4. DRAGO2
4.5. NLRtracker
5. CRISPR Gene Editing for the Generation of Disease Resistance
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, Q.; Zheng, H.; Rao, M.J.; Ali, M.; Hussain, A.; Saleem, M.H.; Nehela, Y.; Sohail, M.A.; Ahmed, A.M.; Kubar, K.A.; et al. Advances, limitations, and prospects of biosensing technology for detecting phytopathogenic bacteria. Chemosphere 2022, 296, 133773. [Google Scholar] [CrossRef]
- Mu, H.; Wang, B.; Yuan, F. Bioinformatics in Plant Breeding and Research on Disease Resistance. Plants 2022, 11, 3118. [Google Scholar] [CrossRef]
- Boutrot, F.; Zipfel, C. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu. Rev. Phytopathol. 2017, 55, 257–286. [Google Scholar] [CrossRef]
- Yuan, M.; Jiang, Z.; Bi, G.; Nomura, K.; Liu, M.; Wang, Y.; Cai, B.; Zhou, J.M.; He, S.Y.; Xin, X.F. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 2021, 592, 105–109. [Google Scholar] [CrossRef]
- Srivastava, D.; Shamim, M.; Kumar, M.; Mishra, A.; Pandey, P.; Kumar, D.; Yadav, P.; Siddiqui, M.H.; Singh, K.N. Current status of conventional and molecular interventions for blast resistance in rice. Rice Sci. 2017, 24, 299–321. [Google Scholar] [CrossRef]
- Wei, C.; Kuang, H.; Li, F.; Chen, J. The I2 resistance gene homologues in Solanum have complex evolutionary patterns and are targeted by miRNAs. BMC Genom. 2014, 15, 743. [Google Scholar] [CrossRef] [Green Version]
- Hatsugai, N.; Hillmer, R.; Yamaoka, S.; Hara-Nishimura, I.; Katagiri, F. The μ Subunit of Arabidopsis Adaptor Protein-2 Is Involved in Effector-Triggered Immunity Mediated by Membrane-Localized Resistance Proteins. Mol. Plant Microbe Interact. 2016, 29, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Whitham, S.; Dinesh-Kumar, S.P.; Choi, D.; Hehl, R.; Corr, C.; Baker, B. The product of the tobacco mosaic virus resistance gene N: Similarity to toll and the interleukin-1 receptor. Cell 1995, 78, 1101–1115. [Google Scholar] [CrossRef]
- Ayliffe, M.A.; Frost, D.V.; Finnegan, E.J.; Lawrence, G.J.; Anderson, P.A.; Ellis, J.G. Analysis of alternative transcripts of the flax L6 rust resistance gene. Plant J. 1999, 17, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.A.; Thomas, C.M.; Hammond-Kosack, K.E.; Balint-Kurti, P.J.; Jones, J.D. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 1994, 266, 789–793. [Google Scholar] [CrossRef]
- Dixon, M.S.; Jones, D.A.; Keddie, J.S.; Thomas, C.M.; Harrison, K.; Jones, J.D. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 1996, 84, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Parniske, M.; Hammond-Kosack, K.E.; Golstein, C.; Thomas, C.M.; Jones, D.A.; Harrison, K.; Wulff, B.B.; Jones, J.D. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell 1997, 91, 821–832. [Google Scholar] [CrossRef] [Green Version]
- Song, W.Y.; Wang, G.L.; Chen, L.L.; Kim, H.S.; Pi, L.Y.; Holsten, T.; Gardner, J.; Wang, B.; Zhai, W.X.; Zhu, L.H.; et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 1995, 270, 1804–1806. [Google Scholar] [CrossRef] [Green Version]
- Kawchuk, L.M.; Hachey, J.; Lynch, D.R.; Kulcsar, F.; van Rooijen, G.; Waterer, D.R.; Robertson, A.; Kokko, E.; Byers, R.; Howard, R.J.; et al. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc. Natl. Acad. Sci. USA 2001, 98, 6511–6515. [Google Scholar] [CrossRef] [Green Version]
- Johal, G.S.; Briggs, S.P. Reductase activity encoded by the HM1 disease resistance gene in maize. Science 1992, 258, 985–987. [Google Scholar] [CrossRef]
- Wang, Z.X.; Yano, M.; Yamanouchi, U.; Iwamoto, M.; Monna, L.; Hayasaka, H.; Katayose, Y.; Sasaki, T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J. 1999, 19, 55–64. [Google Scholar] [CrossRef]
- Qu, S.; Liu, G.; Zhou, B.; Bellizzi, M.; Zeng, L.; Dai, L.; Han, B.; Wang, G.L. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 2006, 172, 1901–1914. [Google Scholar] [CrossRef] [Green Version]
- Yadav, M.K.; Aravindan, S.; Ngangkham, U.; Raghu, S.; Prabhukarthikeyan, S.R.; Keerthana, U.; Marndi, B.C.; Adak, T.; Munda, S.; Deshmukh, R.; et al. Blast resistance in Indian rice landraces: Genetic dissection by gene specific markers. PLoS ONE 2019, 14, e0211061. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Lin, F.; Wang, L.; Pan, Q. The in silico map-based cloning of Pi36, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics 2007, 176, 2541–2549. [Google Scholar] [CrossRef] [Green Version]
- Hurni, S.; Brunner, S.; Buchmann, G.; Herren, G.; Jordan, T.; Krukowski, P.; Wicker, T.; Yahiaoui, N.; Mago, R.; Keller, B. Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant J. 2013, 76, 957–969. [Google Scholar] [CrossRef]
- Sánchez-Martín, J.; Steuernagel, B.; Ghosh, S.; Herren, G.; Hurni, S.; Adamski, N.; Vrána, J.; Kubaláková, M.; Krattinger, S.G.; Wicker, T.; et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 2016, 17, 221. [Google Scholar] [CrossRef] [Green Version]
- Steuernagel, B.; Vrána, J.; Karafiátová, M.; Wulff, B.B.H.; Doležel, J. Rapid Gene Isolation Using MutChromSeq. Methods Mol. Biol. 2017, 1659, 231–243. [Google Scholar]
- Xing, L.; Hu, P.; Liu, J.; Witek, K.; Zhou, S.; Xu, J.; Zhou, W.; Gao, L.; Huang, Z.; Zhang, R.; et al. Pm21 from Haynaldia villosa Encodes a CC-NBS-LRR Protein Conferring Powdery Mildew Resistance in Wheat. Mol. Plant. 2018, 11, 874–878. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Guo, G.; Wang, Y.; Hu, T.; Wang, L.; Li, J.; Qiu, D.; Li, Y.; Wu, Q.; Lu, P.; et al. A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat. New Phytol. 2020, 228, 1011–1026. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Y.; Sun, J.; Liang, W.; Chen, X.; Wang, X.; Zhou, J.; Yu, C.; Wang, J.; Wu, S.; et al. Research Progress on Cloning and Function of Xa Genes Against Rice Bacterial Blight. Front Plant Sci. 2022, 13, 847199. [Google Scholar] [CrossRef]
- Karmakar, S.; Das, P.; Panda, D.; Xie, K.; Baig, M.J.; Molla, K.A. A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. Plant Sci. 2022, 323, 111376. [Google Scholar] [CrossRef]
- Nekrasov, V.; Wang, C.; Win, J.; Lanz, C.; Weigel, D.; Kamoun, S. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci. Rep. 2017, 7, 482. [Google Scholar] [CrossRef] [Green Version]
- Mazier, M.; Flamain, F.; Nicolaï, M.; Sarnette, V.; Caranta, C. Knock-down of both eIF4E1 and eIF4E2 genes confers broad-spectrum resistance against potyviruses in tomato. PLoS ONE 2011, 6, e29595. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, A.M.; Gosalvez, B.; Sempere, R.N.; Burgos, L.; Aranda, M.A.; Truniger, V. Melon RNA interference (RNAi) lines silenced for Cm-eIF4E show broad virus resistance. Mol. Plant Pathol. 2012, 13, 755–763. [Google Scholar] [CrossRef]
- Pedro, H.; Maheswari, U.; Urban, M.; Irvine, A.G.; Cuzick, A.; McDowall, M.D.; Staines, D.M.; Kulesha, E.; Hammond-Kosack, K.E.; Kersey, P.J. PhytoPath: An integrative resource for plant pathogen genomics. Nucleic Acids Res. 2016, 44, D688–D693. [Google Scholar] [CrossRef] [Green Version]
- Takeya, M.; Yamasaki, F.; Uzuhashi, S.; Aoki, T.; Sawada, H.; Nagai, T.; Tomioka, K.; Tomooka, N.; Sato, T.; Kawase, M. NIASGBdb: NIAS Genebank databases for genetic resources and plant disease information. Nucleic Acids Res. 2011, 39, D1108–D1113. [Google Scholar] [CrossRef] [Green Version]
- Bülow, L.; Schindler, M.; Hehl, R. PathoPlant: A platform for microarray expression data to analyze co-regulated genes involved in plant defense responses. Nucleic Acids Res. 2007, 35, D841–D845. [Google Scholar] [CrossRef] [Green Version]
- Urban, M.; Cuzick, A.; Seager, J.; Wood, V.; Rutherford, K.; Venkatesh, S.Y.; Sahu, J.; Iyer, S.V.; Khamari, L.; De Silva, N.; et al. PHI-base in 2022: A multi-species phenotype database for Pathogen-Host Interactions. Nucleic Acids Res. 2022, 50, D837–D847. [Google Scholar] [CrossRef]
- Ammari, M.G.; Gresham, C.R.; McCarthy, F.M.; Nanduri, B. HPIDB 2.0: A curated database for host-pathogen interactions. Database 2016, 2016, baw103. [Google Scholar] [CrossRef]
- Calderone, A.; Licata, L.; Cesareni, G. VirusMentha: A new resource for virus-host protein interactions. Nucleic Acids Res. 2015, 43, D588–D592. [Google Scholar] [CrossRef] [Green Version]
- Yue, J.; Zhang, D.; Ban, R.; Ma, X.; Chen, D.; Li, G.; Liu, J.; Wisniewski, M.; Droby, S.; Liu, Y. PCPPI: A comprehensive database for the prediction of Penicillium-crop protein-protein interactions. Database 2017, 2017, baw170. [Google Scholar] [CrossRef] [Green Version]
- Dong, A.Y.; Wang, Z.; Huang, J.J.; Song, B.A.; Hao, G.F. Bioinformatic tools support decision-making in plant disease management. Trends Plant Sci. 2021, 26, 953–967. [Google Scholar] [CrossRef]
- Martin, G.B.; Brommonschenkel, S.H.; Chunwongse, J.; Frary, A.; Ganal, M.W.; Spivey, R.; Wu, T.; Earle, E.D.; Tanksley, S.D. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 1993, 262, 1432–1436. [Google Scholar] [CrossRef]
- Bent, A.F.; Kunkel, B.N.; Dahlbeck, D.; Brown, K.L.; Schmidt, R.; Giraudat, J.; Leung, J.; Staskawicz, B.J. RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease resistance genes. Science 1994, 265, 1856–1860. [Google Scholar] [CrossRef]
- Grant, M.R.; Godiard, L.; Straube, E.; Ashfield, T.; Lewald, J.; Sattler, A.; Innes, R.W.; Dangl, J.L. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 1995, 269, 843–846. [Google Scholar] [CrossRef]
- Lawrence, G.J.; Finnegan, E.J.; Ayliffe, M.A.; Ellis, J.G. The L6 Gene for Flax Rust Resistance Is Related to the Arabidopsis Bacterial Resistance Gene RPS2 and the Tobacco Viral Resistance Gene N. Plant Cell 1995, 7, 1195–1206. [Google Scholar]
- Kourelis, J.; van der Hoorn, R.A.L. Defended to the Nines: 25 Years of Resistance Gene Cloning Identifies Nine Mechanisms for R Protein Function. Plant Cell 2018, 30, 285–299. [Google Scholar] [CrossRef] [Green Version]
- Barragan, A.C.; Weigel, D. Plant NLR Diversity: The Known Unknowns of Pan-NLRomes. Plant Cell. 2021, 33, 814–831. [Google Scholar] [CrossRef]
- Huang, Z.; Qiao, F.; Yang, B.; Liu, J.; Liu, Y.; Wulff, B.B.H.; Hu, P.; Lv, Z.; Zhang, R.; Chen, P.; et al. Genome-wide identification of the NLR gene family in Haynaldia villosa by SMRT-RenSeq. BMC Genom. 2022, 23, 118. [Google Scholar] [CrossRef]
- Jia, Y.; Yuan, Y.; Zhang, Y.; Yang, S.; Zhang, X. Extreme expansion of NBS-encoding genes in Rosaceae. BMC Genet. 2015, 16, 48. [Google Scholar] [CrossRef] [Green Version]
- Velasco, R.; Zharkikh, A.; Affourtit, J.; Dhingra, A.; Cestaro, A.; Kalyanaraman, A.; Fontana, P.; Bhatnagar, S.K.; Troggio, M.; Pruss, D.; et al. The genome of the domesticated apple (Malus × domestica Borkh.). Nat. Genet. 2010, 42, 833–839. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Zhang, M.; Zhai, W.; Meng, J.; Gao, H.; Zhang, W.; Han, R.; Qi, F. Genome-wide analysis of nucleotide binding site-leucine-rich repeats (NBS-LRR) disease resistance genes in Gossypium hirsutum. Physiol. Mol. Plant Pathol. 2018, 104, 1–8. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, X.; Yue, J.X.; Tian, D.; Chen, J.Q. Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol. Gen Genom. 2008, 280, 187–198. [Google Scholar] [CrossRef]
- Kang, Y.J.; Kim, K.H.; Shim, S.; Yoon, M.Y.; Sun, S.; Kim, M.Y.; Van, K.; Lee, S.H. Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biol. 2012, 12, 139. [Google Scholar] [CrossRef] [Green Version]
- Maekawa, T.; Kracher, B.; Vernaldi, S.; Ver Loren van Themaat, E.; Schulze-Lefert, P. Conservation of NLR-triggered immunity across plant lineages. Proc. Natl. Acad. Sci. USA 2012, 109, 20119–20123. [Google Scholar] [CrossRef] [Green Version]
- Shao, Z.Q.; Zhang, Y.M.; Hang, Y.Y.; Xue, J.Y.; Zhou, G.C.; Wu, P.; Wu, X.Y.; Wu, X.Z.; Wang, Q.; Wang, B.; et al. Long-term evolution of nucleotide-binding site-leucine-rich repeat genes: Understanding gained from and beyond the legume family. Plant Physiol. 2014, 166, 217–234. [Google Scholar] [CrossRef] [Green Version]
- Porter, B.W.; Paidi, M.; Ming, R.; Alam, M.; Nishijima, W.T.; Zhu, Y.J. Genome-wide analysis of Carica papaya reveals a small NBS resistance gene family. Mol. Genet. Genom. 2009, 281, 609–626. [Google Scholar] [CrossRef]
- Meyers, B.C.; Kozik, A.; Griego, A.; Kuang, H.; Michelmore, R.W. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 2005, 15, 809–834. [Google Scholar] [CrossRef] [Green Version]
- Wan, H.; Yuan, W.; Bo, K.; Shen, J.; Pang, X.; Chen, J. Genome-wide analysis of NBS-encoding disease resistance genes in Cucumis sativus and phylogenetic study of NBS-encoding genes in Cucurbitaceae crops. BMC Genom. 2013, 14, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Zhang, Y.; Kuang, H.; Chen, J. Frequent loss of lineages and deficient duplications accounted for low copy number of disease resistance genes in Cucurbitaceae. BMC Genom. 2013, 14, 335. [Google Scholar] [CrossRef] [Green Version]
- Baggs, E.; Dagdas, G.; Krasileva, K.V. NLR diversity, helpers and integrated domains: Making sense of the NLR identity. Curr. Opin. Plant Biol. 2017, 38, 59–67. [Google Scholar] [CrossRef]
- Bashir, S.; Rehman, N.; Fakhar Zaman, F.; Naeem, M.K.; Jamal, A.; Tellier, A.; Ilyas, M.; Silva Arias, G.A.; Khan, M.R. Genome-wide characterization of the NLR gene family in tomato (Solanum lycopersicum) and their relatedness to disease resistance. Front. Genet. 2022, 13, 931580. [Google Scholar] [CrossRef]
- Chen, L.; Yin, F.; Zhang, D.; Xiao, S.; Zhong, Q.; Wang, B.; Ke, X.; Ji, Z.; Wang, L.; Zhang, Y.; et al. Unveiling a Novel Source of Resistance to Bacterial Blight in Medicinal Wild Rice, Oryza officinalis. Life 2022, 12, 827. [Google Scholar] [CrossRef]
- Sun, X.; Cao, Y.; Wang, S. Point mutations with positive selection were a major force during the evolution of a receptor-kinase resistance gene family of rice. Plant Physiol. 2006, 140, 998–1008. [Google Scholar] [CrossRef] [Green Version]
- Hu, K.; Cao, J.; Zhang, J.; Xia, F.; Ke, Y.; Zhang, H.; Xie, W.; Liu, H.; Cui, Y.; Cao, Y.; et al. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nat. Plants. 2017, 3, 17009. [Google Scholar] [CrossRef]
- Chu, Z.; Yuan, M.; Yao, J.; Ge, X.; Yuan, B.; Xu, C.; Li, X.; Fu, B.; Li, Z.; Bennetzen, J.L.; et al. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev. 2006, 20, 1250–1255. [Google Scholar] [CrossRef] [Green Version]
- Hutin, M.; Sabot, F.; Ghesquière, A.; Koebnik, R.; Szurek, B. A knowledge-based molecular screen uncovers a broad spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. Plant J. 2015, 84, 694–703. [Google Scholar] [CrossRef]
- Tian, D.; Wang, J.; Zeng, X.; Gu, K.; Qiu, C.; Yang, X.; Zhou, Z.; Goh, M.; Luo, Y.; Murata-Hori, M.; et al. The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum. Plant Cell 2014, 26, 497–515. [Google Scholar] [CrossRef] [Green Version]
- Bimolata, W.; Kumar, A.; Sundaram, R.M.; Laha, G.S.; Qureshi, I.A.; Reddy, G.A.; Ghazi, I.A. Analysis of nucleotide diversity among alleles of the major bacterial blight resistance gene Xa27 in cultivars of rice (Oryza sativa) and its wild relatives. Planta 2013, 238, 293–305. [Google Scholar] [CrossRef]
- Ji, C.; Ji, Z.; Liu, B.; Cheng, H.; Liu, H.; Liu, S.; Yang, B.; Chen, G. llelic R Genes Activate Rice Blight Resistance Suppressed by Interfering TAL Effectors. Plant Commun. 2020, 1, 100087. [Google Scholar] [CrossRef]
- Iyer, A.S.; McCouch, S.R. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol. Plant Microbe Interact. 2004, 17, 1348–1354. [Google Scholar] [CrossRef] [Green Version]
- Bryan, G.T.; Wu, K.S.; Farrall, L.; Jia, Y.; Hershey, H.P.; McAdams, S.A.; Faulk, K.N.; Donaldson, G.K.; Tarchini, R.; Valent, B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 2000, 12, 2033–2046. [Google Scholar] [CrossRef]
- Sharma, T.R.; Madhav, M.S.; Singh, B.K.; Shanker, P.; Jana, T.K.; Dalal, V.; Pandit, A.; Singh, A.; Gaikwad, K.; Upreti, H.C.; et al. High-resolution mapping, cloning and molecular characterization of the Pi-k (h) gene of rice, which confers resistance to Magnaporthe grisea. Mol. Genet Genom. 2005, 274, 569–578. [Google Scholar] [CrossRef]
- Lin, F.; Chen, S.; Que, Z.; Wang, L.; Liu, X.; Pan, Q. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics 2007, 177, 1871–1880. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Lu, G.; Zeng, L.; Wang, G.L. Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Mol. Genet Genom. 2002, 267, 472–480. [Google Scholar] [CrossRef]
- Shang, J.; Tao, Y.; Chen, X.; Zou, Y.; Lei, C.; Wang, J.; Li, X.; Zhao, X.; Zhang, M.; Lu, Z.; et al. Identification of a new rice blast resistance gene, Pid3, by genome wide comparison of paired nucleotide-binding site--leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics 2009, 182, 1303–1311. [Google Scholar] [CrossRef] [Green Version]
- Okuyama, Y.; Kanzaki, H.; Abe, A.; Yoshida, K.; Tamiru, M.; Saitoh, H.; Fujibe, T.; Matsumura, H.; Shenton, M.; Galam, D.C.; et al. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J. 2011, 66, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Soubam, D.; Singh, P.K.; Thakur, S.; Singh, N.K.; Sharma, T.R. A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae. Funct. Integr. Genom. 2012, 12, 215–228. [Google Scholar] [CrossRef]
- Chen, J.; Shi, Y.; Liu, W.; Chai, R.; Fu, Y.; Zhuang, J.; Wu, J. A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. J. Genet Genom. 2011, 38, 209–216. [Google Scholar] [CrossRef]
- Feuillet, C.; Travella, S.; Stein, N.; Albar, L.; Nublat, A.; Keller, B. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc. Natl. Acad. Sci. USA 2003, 100, 15253–15258. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Brooks, S.A.; Li, W.; Fellers, J.P.; Trick, H.N.; Gill, B.S. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 2003, 164, 655–664. [Google Scholar] [CrossRef]
- Cloutier, S.; McCallum, B.D.; Loutre, C.; Banks, T.W.; Wicker, T.; Feuillet, C.; Keller, B.; Jordan, M.C. Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol. Biol. 2007, 65, 93–106. [Google Scholar] [CrossRef]
- Moore, J.W.; Herrera-Foessel, S.; Lan, C.; Schnippenkoetter, W.; Ayliffe, M.; Huerta-Espino, J.; Lillemo, M.; Viccars, L.; Milne, R.; Periyannan, S.; et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat. Genet. 2015, 47, 1494–1498. [Google Scholar] [CrossRef]
- Krattinger, S.G.; Kang, J.; Bräunlich, S.; Boni, R.; Chauhan, H.; Selter, L.L.; Robinson, M.D.; Schmid, M.W.; Wiederhold, E.; Hensel, G.; et al. Abscisic acid is a substrate of the ABC transporter encoded by the durable wheat disease resistance gene Lr34. New Phytol. 2019, 223, 853–866. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.; Jan, I.; Saripalli, G.; Sharma, P.K.; Mir, R.R.; Balyan, H.S.; Gupta, P.K. An Update on Resistance Genes and Their Use in the Development of Leaf Rust Resistant Cultivars in Wheat. Front Genet. 2022, 13, 816057. [Google Scholar] [CrossRef]
- Rouse, M.N.; Olson, E.L.; Gill, B.S.; Pumphrey, M.O.; Jin, Y. Stem rust resistance in Aegilops tauschii germplasm. Crop. Sci. 2011, 51, 2074–2078. [Google Scholar] [CrossRef]
- Periyannan, S.; Moore, J.; Ayliffe, M.; Bansal, U.; Wang, X.; Huang, L.; Deal, K.; Luo, M.; Kong, X.; Bariana, H.; et al. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 2013, 341, 786–788. [Google Scholar] [CrossRef]
- Saintenac, C.; Zhang, W.; Salcedo, A.; Rouse, M.N.; Trick, H.N.; Akhunov, E.; Dubcovsky, J. Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 2013, 341, 783–786. [Google Scholar] [CrossRef] [Green Version]
- Mago, R.; Zhang, P.; Vautrin, S.; Šimková, H.; Bansal, U.; Luo, M.C.; Rouse, M.; Karaoglu, H.; Periyannan, S.; Kolmer, J.; et al. The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat. Plants. 2015, 1, 15186. [Google Scholar] [CrossRef]
- Steuernagel, B.; Periyannan, S.K.; Hernández-Pinzón, I.; Witek, K.; Rouse, M.N.; Yu, G.; Hatta, A.; Ayliffe, M.; Bariana, H.; Jones, J.D.; et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 2016, 34, 652–655. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, S.; Abate, Z.; Nirmala, J.; Rouse, M.N.; Dubcovsky, J. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proc. Natl. Acad. Sci. USA. 2017, 114, E9483–E9492. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhang, W.; Bolus, S.; Rouse, M.N.; Dubcovsky, J. Identification and characterization of wheat stem rust resistance gene Sr21 effective against the Ug99 race group at high temperature. PLoS Genet. 2018, 14, e1007287. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Rouse, M.N.; Zhang, W.; Zhang, X.; Guo, Y.; Briggs, J.; Dubcovsky, J. Wheat gene Sr60 encodes a protein with two putative kinase domains that confers resistance to stem rust. New Phytol. 2020, 225, 948–959. [Google Scholar] [CrossRef] [Green Version]
- Karelov, A.; Kozub, N.; Sozinova, O.; Pirko, Y.; Sozinov, I.; Yemets, A.; Blume, Y. Wheat Genes Associated with Different Types of Resistance against Stem Rust (Puccinia graminis Pers.). Pathogens 2022, 11, 1157. [Google Scholar] [CrossRef]
- Ali, M.A.; Shahzadi, M.; Zahoor, A.; Dababat, A.A.; Toktay, H.; Bakhsh, A.; Nawaz, M.A.; Li, H. Resistance to Cereal Cyst Nematodes in Wheat and Barley: An Emphasis on Classical and Modern Approaches. Int. J. Mol. Sci. 2019, 20, 432. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Chen, Y.; Li, B.; Li, J.; Zhang, P.; Xie, J.; Zhang, H.; Guo, G.; Lu, P.; Li, M.; et al. Functional characterization of powdery mildew resistance gene MlIW172, a new Pm60 allele and its allelic variation in wild emmer wheat. J. Genet Genom. 2022, 49, 787–795. [Google Scholar] [CrossRef]
- Brunner, S.; Hurni, S.; Streckeisen, P.; Mayr, G.; Albrecht, M.; Yahiaoui, N.; Keller, B. Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles. Plant J. 2010, 64, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Yahiaoui, N.; Srichumpa, P.; Dudler, R.; Keller, B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J. 2004, 37, 528–538. [Google Scholar] [CrossRef]
- Srichumpa, P.; Brunner, S.; Keller, B.; Yahiaoui, N. Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiol. 2004, 139, 885–895. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.P.; Hurni, S.; Ruinelli, M.; Brunner, S.; Sanchez-Martin, J.; Krukowski, P.; Peditto, D.; Buchmann, G.; Zbinden, H.; Keller, B. Evolutionary divergence of the rye Pm17 and Pm8 resistance genes reveals ancient diversity. Plant Mol. Biol. 2018, 98, 249–260. [Google Scholar] [CrossRef]
- Lu, P.; Guo, L.; Wang, Z.; Li, B.; Li, J.; Li, Y.; Qiu, D.; Shi, W.; Yang, L.; Wang, N.; et al. A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nat. Commun. 2020, 11, 680. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Dong, L.; Li, B.; Wang, Z.; Xie, J.; Qiu, D.; Li, Y.; Shi, W.; Yang, L.; Wu, Q.; et al. A CNL protein in wild emmer wheat confers powdery mildew resistance. New Phytol. 2020, 228, 1027–1037. [Google Scholar] [CrossRef]
- Zou, S.; Shi, W.; Ji, J.; Wang, H.; Tang, Y.; Yu, D.; Tang, D. Diversity and similarity of wheat powdery mildew resistance among three allelic functional genes at the Pm60 locus. Plant J. 2022, 110, 1781–1790. [Google Scholar] [CrossRef]
- Zou, S.; Wang, H.; Li, Y.; Kong, Z.; Tang, D. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol. 2018, 218, 298–309. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Liu, H.; Tiantian, G.; Xing, L.; Han, G.; Ma, P.; Li, X.; Zhou, Y.; Fan, J.; Li, L.; et al. PM2b, a CCNBS-LRR protein, interacts with TaWRKY76-d to regulate powdery mildew resistance in common wheat. Front. Plant Sci. 2022, 13, 973065. [Google Scholar] [CrossRef]
- Fu, D.; Uauy, C.; Distelfeld, A.; Blechl, A.; Epstein, L.; Chen, X.; Sela, H.; Fahima, T.; Dubcovsky, J. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 2009, 323, 1357–1360. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Frick, M.; Huel, R.; Nykiforuk, C.L.; Wang, X.; Gaudet, D.A.; Eudes, F.; Conner, R.L.; Kuzyk, A.; Chen, Q.; et al. The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. Mol. Plant. 2014, 7, 1740–1755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewitt, T.; Müller, M.C.; Molnár, I.; Mascher, M.; Holušová, K.; Šimková, H.; Kunz, L.; Zhang, J.; Li, J.; Bhatt, D.; et al. A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis. New Phytol. 2021, 229, 2812–2826. [Google Scholar] [CrossRef]
- Sánchez-Martín, J.; Widrig, V.; Herren, G.; Wicker, T.; Zbinden, H.; Gronnier, J.; Spörri, L.; Praz, C.R.; Heuberger, M.; Kolodziej, M.C.; et al. Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins. Nat. Plants. 2021, 7, 327–341. [Google Scholar] [CrossRef] [PubMed]
- Hurni, S.; Scheuermann, D.; Krattinger, S.G.; Kessel, B.; Wicker, T.; Herren, G.; Fitze, M.N.; Breen, J.; Presterl, T.; Ouzunova, M.; et al. The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proc. Natl. Acad. Sci. USA 2015, 112, 8780–8785. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Wang, Q.; Yang, J.; Jin, D.; Wang, F.; Wang, B.; Zhang, J. Fine mapping of the Ht2 (Helminthosporium turcicum resistance 2) gene in maize. Chin. Sci. Bull. 2003, 48, 165–169. [Google Scholar] [CrossRef]
- Collins, N.; Drake, J.; Ayliffe, M.; Sun, Q.; Ellis, J.; Hulbert, S.; Pryor, T. Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell 1999, 11, 1365–1376. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.; Leonard, A.; Cahill, J.; Lv, M.; Li, Y.; Thatcher, S.; Li, X.; Zhao, X.; Du, W.; Li, Z.; et al. The RppC-AvrRppC NLR-effector interaction mediates the resistance to southern corn rust in maize. Mol. Plant. 2022, 15, 904–912. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Z.; Tian, L.; Ding, Y.; Zhang, J.; Zhou, J.; Liu, P.; Chen, Y.; Wu, L. Comparative proteomics combined with analyses of transgenic plants reveal ZmREM1.3 mediates maize resistance to southern corn rust. Plant Biotechnol. J. 2019, 17, 2153–2168. [Google Scholar] [CrossRef]
- Mei, J.; Zhou, S.; Liu, W. Gene-for-gene-mediated resistance to southern corn rust in maize. Trends Plant Sci. 2023, 28, 255–258. [Google Scholar] [CrossRef]
- Liu, Q.; Deng, S.; Liu, B.; Tao, Y.; Ai, H.; Liu, J.; Zhang, Y.; Zhao, Y.; Xu, M. A helitron-induced RabGDIα variant causes quantitative recessive resistance to maize rough dwarf disease. Nat. Commun. 2020, 11, 495. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Zhong, T.; Zhang, D.; Ma, C.; Wang, L.; Yao, L.; Zhang, Q.; Zhu, M.; Xu, M. The Auxin-Regulated Protein ZmAuxRP1 Coordinates the Balance between Root Growth and Stalk Rot Disease Resistance in Maize. Mol. Plant. 2019, 12, 360–373. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Yang, Q.; Wang, W.; Li, Y.; Guo, Y.; Zhang, D.; Ma, X.; Song, W.; Zhao, J.; Xu, M. A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to gibberella stalk rot in maize. N. Phytol. 2017, 215, 1503–1515. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Lin, B.; Wang, H.; Li, X.; Yang, F.; Ding, X.; Yan, J.; Chu, Z. Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize. Nat. Genet. 2019, 51, 1540–1548. [Google Scholar] [CrossRef]
- Wang, H.; Hou, J.; Ye, P.; Hu, L.; Huang, J.; Dai, Z.; Zhang, B.; Dai, S.; Que, J.; Min, H.; et al. A teosinte-derived allele of a MYB transcription repressor confers multiple disease resistance in maize. Mol. Plant. 2021, 14, 1846–1863. [Google Scholar] [CrossRef]
- Yang, Q.; He, Y.; Kabahuma, M.; Chaya, T.; Kelly, A.; Borrego, E.; Bian, Y.; El Kasmi, F.; Yang, L.; Teixeira, P.; et al. A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nat. Genet. 2017, 49, 1364–1372. [Google Scholar] [CrossRef]
- Zuo, W.; Chao, Q.; Zhang, N.; Ye, J.; Tan, G.; Li, B.; Xing, Y.; Zhang, B.; Liu, H.; Fengler, K.A.; et al. A maize wall-associated kinase confers quantitative resistance to head smut. Nat. Genet. 2015, 47, 151–157. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, H.; Gong, Y.; Tao, Y.; Jiang, L.; Zuo, W.; Yang, Q.; Ye, J.; Lai, J.; Wu, J.; et al. An Atypical Thioredoxin Imparts Early Resistance to Sugarcane Mosaic Virus in Maize. Mol. Plant. 2017, 10, 483–497. [Google Scholar] [CrossRef] [Green Version]
- Leng, P.; Ji, Q.; Asp, T.; Frei, U.K.; Ingvardsen, C.R.; Xing, Y.; Studer, B.; Redinbaugh, M.; Jones, M.; Gajjar, P.; et al. Auxin Binding Protein 1 Reinforces Resistance to Sugarcane Mosaic Virus in Maize. Mol. Plant. 2017, 10, 1357–1360. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Gómez, L.; Boller, T. FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 2000, 5, 1003–1011. [Google Scholar] [CrossRef]
- Kim, M.H.; Kim, Y.; Kim, J.W.; Lee, H.S.; Lee, W.S.; Kim, S.K.; Wang, Z.Y.; Kim, S.H. Identification of Arabidopsis BAK1-associating receptor-like kinase 1 (BARK1) and characterization of its gene expression and brassinosteroid-regulated root phenotypes. Plant Cell Physiol. 2013, 54, 1620–1634. [Google Scholar] [CrossRef] [Green Version]
- Botella, M.A.; Parker, J.E.; Frost, L.N.; Bittner-Eddy, P.D.; Beynon, J.L.; Daniels, M.J.; Holub, E.B.; Jones, J.D. Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. Plant Cell 1998, 10, 1847–1860. [Google Scholar] [CrossRef] [Green Version]
- Noël, L.; Moores, T.L.; van Der Biezen, E.A.; Parniske, M.; Daniels, M.J.; Parker, J.E.; Jones, J.D. Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell 1999, 11, 2099–2112. [Google Scholar] [CrossRef] [Green Version]
- van der Biezen, E.A.; Freddie, C.T.; Kahn, K.; Parker, J.E.; Jones, J.D. Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components. Plant J. 2002, 29, 439–451. [Google Scholar] [CrossRef] [Green Version]
- McDowell, J.M.; Dhandaydham, M.; Long, T.A.; Aarts, M.G.; Goff, S.; Holub, E.B.; Dangl, J.L. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 1998, 10, 1861–1874. [Google Scholar] [CrossRef] [Green Version]
- Bittner-Eddy, P.D.; Crute, I.R.; Holub, E.B.; Beynon, J.L. RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. Plant J. 2000, 21, 177–188. [Google Scholar] [CrossRef]
- Xiao, S.; Ellwood, S.; Calis, O.; Patrick, E.; Li, T.; Coleman, M.; Turner, J.G. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 2000, 291, 118–120. [Google Scholar] [CrossRef]
- Aarts, N.; Metz, M.; Holub, E.; Staskawicz, B.J.; Daniels, M.J.; Parker, J.E. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc. Natl. Acad. Sci. USA 1998, 95, 10306–10311. [Google Scholar] [CrossRef] [Green Version]
- Century, K.S.; Shapiro, A.D.; Repetti, P.P.; Dahlbeck, D.; Holub, E.; Staskawicz, B.J. NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 1997, 278, 1963–1965. [Google Scholar] [CrossRef]
- Pottinger, S.E.; Innes, R.W. RPS5-Mediated Disease Resistance: Fundamental Insights and Translational Applications. Annu. Rev. Phytopathol. 2020, 58, 139–160. [Google Scholar] [CrossRef] [Green Version]
- Heidrich, K.; Wirthmueller, L.; Tasset, C.; Pouzet, C.; Deslandes, L.; Parker, J.E. Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science 2011, 334, 1401–1404. [Google Scholar] [CrossRef]
- Deslandes, L.; Olivier, J.; Theulieres, F.; Hirsch, J.; Feng, D.X.; Bittner-Eddy, P.; Beynon, J.; Marco, Y. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc. Natl. Acad. Sci. USA 2002, 99, 2404–2409. [Google Scholar] [CrossRef] [Green Version]
- Narusaka, M.; Shirasu, K.; Noutoshi, Y.; Kubo, Y.; Shiraishi, T.; Iwabuchi, M.; Narusaka, Y. RRS1 and RPS4 provide a dual Resistance-gene system against fungal and bacterial pathogens. Plant J. 2009, 60, 218–226. [Google Scholar] [CrossRef]
- Diener, A.C.; Ausubel, F.M. RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 2005, 171, 305–321. [Google Scholar] [CrossRef] [Green Version]
- Warren, R.F.; Henk, A.; Mowery, P.; Holub, E.; Innes, R.W. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell 1998, 10, 1439–1452. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Miller, J.; Nozaki, Y.; Takeda, M.; Shah, J.; Hase, S.; Ikegami, M.; Ehara, Y.; Dinesh-Kumar, S.P.; Sukamto. RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J. 2002, 32, 655–667. [Google Scholar] [CrossRef]
- Zhou, J.; Loh, Y.T.; Bressan, R.A.; Martin, G.B. The tomato gene Pti1 encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell 1995, 83, 925–935. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.Y.; Zhao, W.Y.; Wang, Y.Y.; Pei, C.C.; Yang, W.C. Natural variation of Pto and Fen genes and marker- assisted selection for resistance to bacterial speck in tomato. Agric. Sci. China 2011, 10, 827–837. [Google Scholar] [CrossRef]
- Dixon, M.S.; Hatzixanthis, K.; Jones, D.A.; Harrison, K.; Jones, J.D. The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell 1998, 10, 1915–1925. [Google Scholar] [CrossRef] [Green Version]
- Salmeron, J.M.; Oldroyd, G.E.; Rommens, C.M.; Scofield, S.R.; Kim, H.S.; Lavelle, D.T.; Dahlbeck, D.; Staskawicz, B.J. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 1996, 86, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Qi, S.; Zhang, S.; Islam, M.M.; El-Sappah, A.H.; Zhang, F.; Liang, Y. Natural Resources Resistance to Tomato Spotted Wilt Virus (TSWV) in Tomato (Solanum lycopersicum). Int. J. Mol. Sci. 2021, 22, 10978. [Google Scholar] [CrossRef]
- Ori, N.; Eshed, Y.; Paran, I.; Presting, G.; Aviv, D.; Tanksley, S.; Zamir, D.; Fluhr, R. The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. Plant Cell 1997, 9, 521–532. [Google Scholar]
- Milligan, S.B.; Bodeau, J.; Yaghoobi, J.; Kaloshian, I.; Zabel, P.; Williamson, V.M. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 1998, 10, 1307–1319. [Google Scholar] [CrossRef] [Green Version]
- Ernst, K.; Kumar, A.; Kriseleit, D.; Kloos, D.U.; Phillips, M.S.; Ganal, M.W. The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. Plant J. 2002, 31, 127–136. [Google Scholar] [CrossRef]
- Lanfermeijer, F.C.; Dijkhuis, J.; Sturre, M.J.; de Haan, P.; Hille, J. Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-2(2) from Lycopersicon esculentum. Plant Mol. Biol. 2003, 52, 1037–1049. [Google Scholar] [CrossRef] [Green Version]
- Schornack, S.; Ballvora, A.; Gürlebeck, D.; Peart, J.; Baulcombe, D.; Ganal, M.; Baker, B.; Bonas, U.; Lahaye, T. The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J. 2004, 37, 46–60. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, L.; Wang, X.; Vossen, J.; Li, G.; Li, T.; Zheng, Z.; Gao, J.; Guo, Y.; Visser, R.G.; et al. The Ph-3 gene from Solanum pimpinellifolium encodes CC-NBS-LRR protein conferring resistance to Phytophthora infestans. Theor. Appl. Genet. 2014, 127, 1353–1364. [Google Scholar] [CrossRef] [Green Version]
- Steuernagel, B.; Jupe, F.; Witek, K.; Jones, J.D.; Wulff, B.B. NLR-parser: Rapid annotation of plant NLR complements. Bioinformatics 2015, 31, 1665–1667. [Google Scholar] [CrossRef] [Green Version]
- Toda, N.; Rustenholz, C.; Baud, A.; Le Paslier, M.C.; Amselem, J.; Merdinoglu, D.; Faivre-Rampant, P. NLGenomeSweeper: A Tool for Genome-Wide NBS-LRR Resistance Gene Identification. Genes 2020, 11, 333. [Google Scholar] [CrossRef] [Green Version]
- Kourelis, J.; Sakai, T.; Adachi, H.; Kamoun, S. RefPlantNLR: A comprehensive collection of experimentally validated plant NLRs. PLoS Biol. 2021, 19, e3001124. [Google Scholar] [CrossRef]
- Jupe, F.; Witek, K.; Verweij, W.; Sliwka, J.; Pritchard, L.; Etherington, G.J.; Maclean, D.; Cock, P.J.; Leggett, R.M.; Bryan, G.J.; et al. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J. 2013, 76, 530–544. [Google Scholar] [CrossRef] [Green Version]
- Armario Najera, V.; Twyman, R.M.; Christou, P.; Zhu, C. Applications of multiplex genome editing in higher plants. Curr Opin Biotechnol. 2019, 59, 93–102. [Google Scholar] [CrossRef]
- Li, C.; Chu, W.; Gill, R.A.; Sang, S.; Shi, Y.; Hu, X.; Yang, Y.; Zaman, Q.U.; Zhang, B. Computational tools and resources for CRISPR/Cas genome editing. Genom. Proteom. Bioinform. 2022, S1672-0229(22)00027-4. [Google Scholar] [CrossRef]
- Chen, K.; Wang, Y.; Zhang, R.; Zhang, H.; Gao, C. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annu. Rev. Plant Biol. 2019, 70, 667–697. [Google Scholar] [CrossRef]
- Jaganathan, D.; Ramasamy, K.; Sellamuthu, G.; Jayabalan, S.; Venkataraman, G. CRISPR for crop improvement: An update review. Front Plant Sci. 2018, 9, 985. [Google Scholar] [CrossRef]
- Schenke, D.; Cai, D. Applications of CRISPR/Cas to improve crop disease resistance: Beyond inactivation of susceptibility factors. iScience 2020, 23, 101478. [Google Scholar] [CrossRef]
- Oliva, R.; Ji, C.; Atienza-Grande, G.; Huguet-Tapia, J.C.; Perez-Quintero, A.; Li, T.; Eom, J.S.; Li, C.; Nguyen, H.; Liu, B.; et al. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat. Biotechnol. 2019, 37, 1344–1350. [Google Scholar] [CrossRef] [Green Version]
- Fister, A.S.; Landherr, L.; Maximova, S.N.; Guiltinan, M.J. Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Front. Plant Sci. 2018, 9, 268. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Lin, L.; Liu, D.; Wu, D.; Fang, Y.; Wu, J.; Wang, Y. CRISPR/Cas9-Mediated multiplex genome editing of the BnWRKY11 and BnWRKY70 genes in Brassica napus L. Int. J. Mol. Sci. 2018, 19, 2716. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Cheng, X.; Shan, Q.; Zhang, Y.; Liu, J.; Gao, C.; Qiu, J.L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 2014, 32, 947–951. [Google Scholar] [CrossRef]
- Santillán Martínez, M.I.; Bracuto, V.; Koseoglou, E.; Appiano, M.; Jacobsen, E.; Visser, R.G.F.; Wolters, A.A.; Bai, Y. CRISPR/Cas9-targeted mutagenesis of the tomato susceptibility gene PMR4 for resistance against powdery mildew. BMC Plant Biol. 2020, 20, 284. [Google Scholar] [CrossRef]
- Jarosch, B.; Kogel, K.H.; Schaffrath, U. The ambivalence of the barley Mlo locus: Mutations conferring resistance against powdery mildew (Blumeria graminis f. sp. hordei) enhance susceptibility to the rice blast fungus Magnaporthe grisea. Mol. Plant Microbe Interact. 1999, 12, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Wan, D.Y.; Guo, Y.; Cheng, Y.; Hu, Y.; Xiao, S.; Wang, Y.; Wen, Y.Q. CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera). Hortic. Res. 2020, 7, 116. [Google Scholar] [CrossRef]
- Pessina, S.; Lenzi, L.; Perazzolli, M.; Campa, M.; Dalla Costa, L.; Urso, S.; Valè, G.; Salamini, F.; Velasco, R.; Malnoy, M. Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine. Hortic. Res. 2016, 3, 16016. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Tu, M.; Wang, D.; Liu, J.; Li, Y.; Li, Z.; Wang, Y.; Wang, X. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol. J. 2018, 16, 844–855. [Google Scholar] [CrossRef] [Green Version]
- Prihatna, C.; Larkan, N.J.; Barbetti, M.J.; Barker, S.J. Tomato CYCLOPS/IPD3 is required for mycorrhizal symbiosis but not tolerance to Fusarium wilt in mycorrhiza-deficient tomato mutant rmc. Mycorrhiza 2018, 28, 495–507. [Google Scholar] [CrossRef]
- Gao, Y.; Li, S.J.; Zhang, S.W.; Feng, T.; Zhang, Z.Y.; Luo, S.J.; Mao, H.Y.; Borkovich, K.A.; Ouyang, S.Q. SlymiR482e-3p mediates tomato wilt disease by modulating ethylene response pathway. Plant Biotechnol. J. 2021, 19, 17–19. [Google Scholar] [CrossRef]
- Zhang, D.; Hussain, A.; Manghwar, H.; Xie, K.; Xie, S.; Zhao, S.; Larkin, R.M.; Qing, P.; Jin, S.; Ding, F. Genome editing with the CRISPR-Cas system: An art, ethics and global regulatory perspective. Plant Biotechnol. J. 2020, 18, 1651–1669. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Bai, Y.; Wu, G.; Zou, S.; Chen, Y.; Gao, C.; Tang, D. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J. 2017, 91, 714–724. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.A.; Agrawal, G.K.; Rakwal, R.; Han, K.S.; Kim, K.N.; Yun, C.H.; Heu, S.; Park, S.Y.; Lee, Y.H.; Jwa, N.S. Molecular cloning and mRNA expression analysis of a novel rice (Oryza sativa L.) MAPK kinase kinase, OsEDR1, an ortholog of Arabidopsis AtEDR1, reveal its role in defense/stress signalling pathways and development. Biochem. Biophys. Res. Commun. 2003, 300, 868–876. [Google Scholar] [CrossRef]
- Shen, X.; Liu, H.; Yuan, B.; Li, X.; Xu, C.; Wang, S. OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis. Plant Cell Environ. 2011, 34, 179–191. [Google Scholar] [CrossRef]
- Sun, K.; Wolters, A.M.; Vossen, J.H.; Rouwet, M.E.; Loonen, A.E.; Jacobsen, E.; Visser, R.G.; Bai, Y. Silencing of six susceptibility genes results in potato late blight resistance. Transgenic Res. 2016, 25, 731–742. [Google Scholar] [CrossRef] [Green Version]
- Low, Y.C.; Lawton, M.A.; Di, R. Validation of barley 2OGO gene as a functional orthologue of Arabidopsis DMR6 gene in Fusarium head blight susceptibility. Sci. Rep. 2020, 10, 9935. [Google Scholar] [CrossRef]
- Kieu, N.P.; Lenman, M.; Wang, E.S.; Petersen, B.L.; Andreasson, E. Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes. Sci. Rep. 2021, 11, 4487. [Google Scholar] [CrossRef]
- Wang, F.; Wang, C.; Liu, P.; Lei, C.; Hao, W.; Gao, Y.; Liu, Y.G.; Zhao, K. Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922. PLoS ONE 2016, 11, e0154027. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Chen, X.; Liu, J.; Ye, J.; Guo, Z. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J. Exp. Bot. 2012, 63, 3899–3912. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Deng, F.; Jia, J.; Chen, X.; Li, J.; Wen, Q.; Li, T.; Meng, Y.; Shan, W. The Arabidopsis thaliana gene AtERF019 negatively regulates plant resistance to Phytophthora parasitica by suppressing PAMP-triggered immunity. Mol. Plant Pathol. 2020, 21, 1179–1193. [Google Scholar] [CrossRef]
- Galli, M.; Martiny, E.; Imani, J.; Kumar, N.; Koch, A.; Steinbrenner, J.; Kogel, K.H. CRISPR/SpCas9-mediated double knockout of barley Microrchidia MORC1 and MORC6a reveals their strong involvement in plant immunity, transcriptional gene silencing and plant growth. Plant Biotechnol. J. 2022, 20, 89–102. [Google Scholar] [CrossRef]
- Kang, H.G.; Kuhl, J.C.; Kachroo, P.; Klessig, D.F. CRT1, an Arabidopsis ATPase that interacts with diverse resistance proteins and modulates disease resistance to turnip crinkle virus. Cell Host Microbe. 2008, 3, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Langen, G.; von Einem, S.; Koch, A.; Imani, J.; Pai, S.B.; Manohar, M.; Ehlers, K.; Choi, H.W.; Claar, M.; Schmidt, R.; et al. The compromised recognition of turnip crinkle virus1 subfamily of microrchidia ATPases regulates disease resistance in barley to biotrophic and necrotrophic pathogens. Plant Physiol. 2014, 164, 866–878. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Galli, M.; Ordon, J.; Stuttmann, J.; Kogel, K.H.; Imani, J. Further analysis of barley MORC1 using a highly efficient RNA-guided Cas9 gene-editing system. Plant Biotechnol. J. 2018, 16, 1892–1903. [Google Scholar] [CrossRef] [Green Version]
- Ortigosa, A.; Gimenez-Ibanez, S.; Leonhardt, N.; Solano, R. Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnol J. 2019, 17, 665–673. [Google Scholar] [CrossRef] [Green Version]
- Sanfaçon, H. Plant Translation Factors and Virus Resistance. Viruses 2015, 7, 3392–3419. [Google Scholar] [CrossRef] [Green Version]
- Macovei, A.; Sevilla, N.R.; Cantos, C.; Jonson, G.B.; Slamet-Loedin, I.; Čermák, T.; Voytas, D.F.; Choi, I.R.; Chadha-Mohanty, P. Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol. J. 2018, 16, 1918–1927. [Google Scholar] [CrossRef] [Green Version]
- Pyott, D.E.; Sheehan, E.; Molnar, A. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol. Plant Pathol. 2016, 17, 1276–1288. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, J.; Brumin, M.; Wolf, D.; Leibman, D.; Klap, C.; Pearlsman, M.; Sherman, A.; Arazi, T.; Gal-On, A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 2016, 17, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Zheng, Q.; Yi, X.; An, H.; Zhao, Y.; Ma, S.; Zhou, G. Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnol. J. 2018, 16, 1415–1423. [Google Scholar] [CrossRef] [Green Version]
- Abudayyeh, O.O.; Gootenberg, J.S.; Konermann, S.; Joung, J.; Slaymaker, I.M.; Cox, D.B.; Shmakov, S.; Makarova, K.S.; Semenova, E.; Minakhin, L.; et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 2016, 353, 6299. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Zhao, Y.; Ye, J.; Cao, X.; Xu, C.; Chen, B.; An, H.; Jiao, Y.; Zhang, F.; Yang, X.; et al. Establishing CRISPR/Cas13a immune system conferring RNA virus resistance in both dicot and monocot plants. Plant Biotechnol J. 2019, 17, 1185–1187. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Araki, E.; Suzuki, Y.; Toki, S.; Saika, H. Production of high oleic/low linoleic rice by genome editing. Plant Physiol. Biochem. 2018, 131, 58–62. [Google Scholar] [CrossRef]
- Kim, Y.A.; Moon, H.; Park, C.J. CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae. Rice 2019, 12, 67. [Google Scholar] [CrossRef]
- Li, S.; Shen, L.; Hu, P.; Liu, Q.; Zhu, X.; Qian, Q.; Wang, K.; Wang, Y. Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing. J. Integr. Plant Biol. 2019, 61, 1201–1205. [Google Scholar] [CrossRef]
- Peng, A.; Chen, S.; Lei, T.; Xu, L.; He, Y.; Wu, L.; Yao, L.; Zou, X. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. J. 2017, 15, 1509–1519. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, S.; Peng, A.; Xie, Z.; He, Y.; Zou, X. CRISPR/Cas9-mediated editing of CsWRKY22 reduces susceptibility to Xanthomonas citri subsp. citri in Wanjincheng orange (Citrus sinensis (L.) Osbeck). Plant Biotechnol. Rep. 2019, 13, 501–510. [Google Scholar] [CrossRef]
- Malnoy, M.; Viola, R.; Jung, M.H.; Koo, O.J.; Kim, S.; Kim, J.S.; Velasco, R.; Nagamangala Kanchiswamy, C. DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins. Front Plant Sci. 2016, 7, 1904. [Google Scholar] [CrossRef]
- Wang, J.; Hu, M.; Wang, J.; Qi, J.; Han, Z.; Wang, G.; Qi, Y.; Wang, H.W.; Zhou, J.M.; Chai, J. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 2019, 364, eaav5870. [Google Scholar] [CrossRef]
- Förderer, A.; Li, E.; Lawson, A.W.; Deng, Y.N.; Sun, Y.; Logemann, E.; Zhang, X.; Wen, J.; Han, Z.; Chang, J.; et al. A wheat resistosome defines common principles of immune receptor channels. Nature 2022, 610, 532–539. [Google Scholar] [CrossRef]
- Ma, S.; Lapin, D.; Liu, L.; Sun, Y.; Song, W.; Zhang, X.; Logemann, E.; Yu, D.; Wang, J.; Jirschitzka, J.; et al. Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. Science 2020, 370, eabe3069. [Google Scholar] [CrossRef]
- Martin, R.; Qi, T.; Zhang, H.; Liu, F.; King, M.; Toth, C.; Nogales, E.; Staskawicz, B.J. Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science 2020, 370, eabd9993. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.K.; Lin, X.; Olave-Achury, A.C.; Derevnina, L.; Contreras, M.P.; Kourelis, J.; Wu, C.H.; Kamoun, S.; Jones, J.D.G. Effector-dependent activation and oligomerization of plant NRC class helper NLRs by sensor NLR immune receptors Rpi-amr3 and Rpi-amr1. EMBO J. 2023, 42, e111484. [Google Scholar] [CrossRef]
Database | Data Sources | Main Pathogens | Analysis Tool | URL |
---|---|---|---|---|
PhytoPath [30] | Ensembl Genomes, PHI-base | Bacteria, fungi, and protists | Ensembl data visualization | http://www.phytopathdb.org/ (accessed on 2 May 2023) |
NIASGBdb [31] | Experimental data and published literature | Bacteria, fungi, and viruses | -- | http://www.gene.affrc.go.jp/databases_en.php (accessed on 2 May 2023) |
PathoPlant [32] | GenBank, SWISS-PROT, TRANSFAC, PubMed and published literature | Bacteria, fungi, viruses, and nematodes | In silico expression analysis | http://www.pathoplant.de/ (accessed on 2 May 2023) |
PHI-base [33] | NCBI, EMBL, and Web of Science | Bacteria, fungi, and protists | PHI-BLAST | http://www.phi-base.org (accessed on 2 May 2023) |
HPIDB [34] | IntAct, MINT, BioGRID, HPIDB, BIND, and VirHostNet | Bacteria, fungi, and viruses | BLAST, visualization of interaction network | https://hpidb.igbb.msstate.edu/ (accessed on 2 May 2023) |
VirusMentha [35] | MatrixDB, BioGRID, MINT, IntAct, and DIP | Virus | Visualization of interaction network | http://virusmentha.uniroma2.it/ (accessed on 2 May 2023) |
PCPPI [36,37] | By predicting | Fungi | BLAST, visualization of interaction network | http://pcppi.atcgn.com/blast.html (accessed on 2 May 2023) |
Species | CC-NBS | CC-NBS-LRR | NBS-LRR | TIR-NBS | TIR-NBS-LRR | References |
---|---|---|---|---|---|---|
Oryza sativa | 77 | 156 | 70 | - | - | [46] |
Hordeum vulgare | 60 | 198 | 84 | - | - | [44] |
Triticum urartu | 78 | 275 | 107 | - | - | [44] |
Aegilops tauschii | 70 | 298 | 113 | - | - | [44] |
Triticum aestivum | 493 | 1181 | 367 | - | - | [44] |
Zea mays | 93 | 151 | - | - | - | [51] |
Brachypodium distachyon | 53 | 201 | 60 | - | - | [46] |
Vitis vinifera | 26 | 200 | 12 | 14 | 90 | [48] |
Populus trichocarpa | 14 | 119 | - | 10 | 73 | [48] |
Manihot esculenta | 11 | 117 | 43 | 5 | 29 | [50] |
Medicago truncatula | 16 | 94 | 139 | 49 | 121 | [51] |
Cajanus cajan | 7 | 63 | 68 | 6 | 78 | [51] |
Phaseolus vulgaris | 9 | 128 | 96 | 13 | 76 | [51] |
Glycine max | 8 | 109 | 137 | 24 | 124 | [51] |
Arabidopsis thaliana | 5 | 51 | 3 | 21 | 93 | [53] |
Solanum lycopersicon | 35 | 123 | 48 | 9 | 21 | [57] |
Source | R-Gene | Disease | Pathogen | Gene Product | Chromosome | Cloning Technique | References |
---|---|---|---|---|---|---|---|
O. sativa | Xa1 | Bacterial blight | X. oryzae | NBS-LRR | 4 | Map-based cloning | [65] |
O. sativa | Xa5 | Bacterial blight | X. oryzae | NBS-LRR | 5 | Map-based cloning | [66] |
O. sativa | Xa10 | Bacterial blight | X. oryzae | Transcription activator-like (TAL) effector | 11 | Map-based cloning | [63] |
O. sativa | Xa13 | Bacterial blight | X. oryzae | -- | 8 | Map-based cloning | [61] |
O. sativa | Xa21 | Bacterial blight | X. oryzae | Receptor kinase-like protein | 11 | Map-based cloning | [13] |
O. sativa | Xa25 | Bacterial blight | X. oryzae | Transmembrane domain | 12 | Map based cloning | [58] |
O. sativa | Xa3/Xa26 | Bacterial blight | X. oryzae | eLRR-TM-kinase or LRR receptor-kinase proteins | 11 | Map-based cloning | [59] |
O. minuta | Xa27 | Bacterial blight | X. oryzae | Receptor kinase-like protein | 6 | Map-based cloning | [64] |
O. sativa | Pi36 | Bacterial blight | M. oryzae | CC-NBS-LRR | 8 | Map-based cloning | [19] |
O. sativa | Pia | Blast | M. oryzae | NBS-LRR | 11 | Map-based cloning | [72] |
O. sativa | Pi2 | Blast | M. oryzae | NBS-LRR | 6 | Map-based cloning | [70] |
O. minuta | Pi9 | Blast | M. oryzae | NBS-LRR | 6 | Map-based cloning | [70] |
O. sativa | Pi37 | Blast | M. oryzae | NBS-LRR | 1 | Map-based cloning | [69] |
O. rhizomatis | Pi54 | Blast | M. oryzae | CC-NBS-LRR | - | Map-based cloning | [73] |
O. sativa | Pib | Blast | M. oryzae | NBS-LRR | 2 | Map-based cloning | [16] |
O. sativa | Pi-ta | Blast | M. oryzae | NBS-LRR | 12 | Map-based cloning | [67] |
O. sativa | Pi-Kh | Blast | M. oryzae | NBS-LRR | 11 | Map-based cloning | [68] |
O. sativa | Pid3 | Blast | M. oryzae | NBS-LRR | 6 | Map-based cloning | [71] |
Source | R-Gene | Disease | Pathogen | Gene Product | Chromosome | Cloning Technique | References |
---|---|---|---|---|---|---|---|
T. aestivum | Pm1a | Powdery mildew | B. graminis | CC-NBS-LRR | 7AL | Map-based cloning, MutChromSeq | [103] |
T. aestivum | Pm2a | Powdery mildew | B. graminis | CC-NBS-LRR | 5DS | MutChromSeq | [21] |
T. aestivum | Pm2b | Powdery mildew | B. graminis | CC-NBS-LRR | 5DS | Map-based cloning | [100] |
T. aestivum | Pm3a and Pm3b | Powdery mildew | B. graminis | CC-NBS-LRR | 1AS | Map-based cloning | [93] |
T. aestivum | Pm3c and Pm3f | Powdery mildew | B. graminis | CC-NBS-LRR | 1AS | Map-based cloning | [94] |
T. aestivum | Pm4b | Powdery mildew | B. graminis | Putative chimeric protein of a serine/threonine kinase and multiple C2 domains | 2AL | MutChromSeq | [104] |
T. aestivum | Pm5e | Powdery mildew | B. graminis | CC-NBS-LRR | 7BL | Map-based cloning | [24] |
S. cereale | Pm8 | Powdery mildew | B. graminis | CC-NBS-LRR | 1RS | Homology based cloning | [20] |
S. cereale | Pm17 | Powdery mildew | B. graminis | CC-NBS-LRR | 1RS | Homology based cloning | [95] |
D. villosum | Pm21 | Powdery mildew | B. graminis | CC-NBS-LRR | 6VS | Map-based cloning, MutRenSeq | [23] |
T. aestivum | Pm24 | Powdery mildew | B. graminis | A tandem kinase protein with putative kinase-pseudokinase domains | 1DS | Map-based cloning | [96] |
T. turgidum spp. dicoccoides | Pm41 | Powdery mildew | B. graminis | CC-NBS-LRR | 3BL | Map-based cloning | [97] |
T. urartu | Pm60a and Pm60b | Powdery mildew | B. graminis | CC-NBS-LRR | 7AL | Map-based cloning | [98] |
T. urartu | PmR1 | Powdery mildew | B. graminis | CC-NBS-LRR | 7AL | Map-based cloning | [98] |
T. urartu | MlIW172 | Powdery mildew | B. graminis | CC-NBS-LRR | 7AL | Map-based cloning | [91] |
T. aestivum | Pm38/Lr34 | Powdery mildew | B. graminis | ATP-binding cassette transporter | 7DS | Map-based cloning | [79] |
T. aestivum | Pm46/Lr67 | Powdery mildew | B. graminis | Predicted hexose transporter | 4DL | Map-based cloning | [78] |
T. aestivum | Lr10 | Leaf rust | P. triticina | CC-NBS-LRR | 1A | Map-based cloning | [75] |
T. aestivum | Lr1 | Leaf rust | P. triticina | CC-NBS-LRR | 5D | Map-based cloning | [77] |
A. tauschii | Lr21 | Leaf rust | P. triticina | CC-NBS-LRR | 1D | Map-based cloning | [76] |
A. tauschii | Sr33 | Stem rust | P. graminis | CC-NBS-LRR | 1D | Map-based cloning | [82] |
T. monococcum | Sr35 | Stem rust | P. graminis | CC-NBS-LRR | 3A | Map-based cloning | [83] |
S. cereale | Sr50 | Stem rust | P. graminis | CC-NB-LRR | 1RS | Map-based cloning | [84] |
T. turgidum ssp. durum | Sr13 | Stem rust | P. graminis | CC-NB-LRR | 6AL | Map-based cloning | [86] |
T. monococcum | Sr21 | Stem rust | P. graminis | CC-NB-LRR | 2A | Map-based cloning | [87] |
T. monococcum ssp. boeoticum | Sr22 | Stem rust | P. graminis | CC-NB-LRR | 7AL | MutRenSeq | [85] |
A. tauschii | Sr45 | Stem rust | P. graminis | CC-NB-LRR | 1DS | MutRenSeq | [85] |
A. tauschii var. meyeri | Sr46 | Stem rust | P. graminis | CC-NB-LRR | 2DS | Map-based cloning | [81] |
T. monococcum | Sr60 | Stem rust | P. graminis | Wheat Tandem Kinase 2 | 5A | Map-based cloning | [88] |
T. aestivum | Cre3 | Cereal cyst | H. avenae | NBS-LRR | 2D | Map-based cloning | [90] |
T. aestivum | Cre1 | Cereal cyst | H. avenae | NBS-LRR | 2B | Map-based cloning | [90] |
T. aestivum | Yr10 | Stripe rust | P. striiformis | CC-NBS-LRR | 1B | Map-based cloning | [102] |
T. aestivum | Yr36 | Stripe rust | P. striiformis | NBS-LRR | 6B | Map-based cloning | [101] |
R-Gene | Disease | Pathogen | Gene Product | Chromosome | Cloning Technique | References |
---|---|---|---|---|---|---|
Hm1 | Northern leaf spot | C. carbonum | NADPH HC toxin reductase | 1 | Transposon-induced mutagenesis | [15] |
Htn1 | Northern corn leaf blight | S. turcica | Receptor-like kinase | 8 | Map-based cloning | [105] |
Ht2 | Northern corn leaf blight | S. turcica | Receptor-like kinase | 2 | Map-based cloning | [106] |
Ht3 | Northern corn leaf blight | S. turcica | Receptor-like kinase | 8 | Map-based cloning | [106] |
Rp1-D21 | Southern corn rust | P. polysora | NBS-LRR | 10 | Transposon-induced mutagenesis | [107] |
RppC | Southern corn rust | P. polysora | NBS-LRR | 10 | Map-based cloning | [108] |
ZmREM1.3 | Southern corn rust | P. polysora | Remorin protein | Map-based cloning | [109] | |
RppK | Southern corn rust | P. polysora | CC-NB-LRR | 10 | Map-based cloning | [110] |
RabGD1α | Rough dwarf disease | MRDD | - | 8 | Map-based cloning | [111] |
ZmAuxRP1 | Gibberella stalk rot | F. graminearum | Stroma-localized auxin-regulated protein | 1 | Map-based cloning | [112] |
ZmCCT | Gibberella stalk rot | F. graminearum | CCT-domain protein | 10 | Map-based cloning | [113] |
ZmFBL41 | Banded leaf and sheath blight | R. solani | F-box protein | 4 | Map-based cloning | [114] |
ZmMM1 | Northern leaf blightGray leaf spot Southern corn rust | S. turcica C. zeae-maydis P. polysora | MYB transcription factor | 7 | Map-based cloning | [115] |
ZmCCoAOMT2 | Gray leaf spot | C. zeae-maydis | Caffeoyl-CoA O-methyltransferase | 9 | Map-based cloning | [116] |
ZmWAK | Head smut | S. reilianum | Receptor-like kinase | Map-based cloning | [117] | |
ZmTrxh | Mosaic | SCMV | h-type thioredoxin | 3 | Map-based cloning | [118] |
ZmABP1 | Mosaic | SCMV | Auxin-binding protein | 3 | Map-based cloning | [119] |
R-Gene | Disease | Pathogen | Gene Product | Chromosome | Cloning Technique | References |
---|---|---|---|---|---|---|
RPS2 | Downy mildew | P. syringae | CC-NBS-LRR | 4 | Map-based cloning | [39] |
RPM1 | Downy mildew | P. syringae | NBS-LRR | 3 | Map-based cloning | [40] |
RPP8/HRT | Downy mildew | P. parasitica | NBS-LRR | 5 | Map-based cloning | [125] |
RPP13 | Downy mildew | P. parasitica | LZ NBS-LRR | 3 | Map-based cloning | [126] |
RCY1 | Mosaic | CMV-Y | CC-NBS-LRR | 5 | Map-based cloning | [136] |
RPP1 | Downy mildew | P. parasitica | TIR-NBS-LRR | 3 | Map-based cloning | [122] |
RPP4 | Downy mildew | P. parasitica | TIR-NBS-LRR | 4 | Map-based cloning | [124] |
RPS4 | Powdery mildew | P. syringae | TIR-NBS-LRR | 5 | Map-based cloning | [131] |
RPP5 | Downy mildew | P. parasitica | TIR-NBS-LRR | 4 | Map-based cloning | [123] |
RPS5 | Downy mildew | P. parasitica | NBS-LRR | 1 | Map-based cloning | [135] |
RRS1 | Bacterial wilt | R. solanacearum | TIR- NBS-LRR | 5 | Map-based cloning | [132] |
RFO1 | Fusarium wilt | F. oxysporum | Receptor-like kinase | 1 | Map-based cloning | [134] |
PBS1 | Powdery mildew | P. syringae | Serine/threonine kinase | 5 | Map-based cloning | [130] |
FLS2 | Powdery mildew | P. syringae | Receptor-like kinase | 5 | Map-based cloning | [120] |
BAK1 | Powdery mildew | P. syringae | Receptor-like kinase | 4 | Map-based cloning | [121] |
NDR1 | Powdery mildew/Downey mildew | P. syringae/P. parasitica | Plasma membrane-localized protein | 3 | Map-based cloning | [129] |
RPW8 | Powdery mildew | E. cruciferarum | NBS-LRR | 3 | Map-based cloning | [127] |
Source | R-Gene | Disease | Pathogen | Gene Product | Chromosome | Cloning Technique | References |
---|---|---|---|---|---|---|---|
S. lycopersicum | Pto | Bacterial speck | P. syringae | Serine-threonine kinase | 5 | Map-based cloning | [38] |
S. pimpinellifolium | Prf | Bacterial speck | P. syringae | LZ-NBS-LRR | 5 | Map-based cloning | [140] |
S. peruvianum | Mi | Root knot | M. javanica | NBS-LRR | 6 | Map-based cloning | [143] |
S. lycopersicum | I2 | Fusarium wilt | F. oxysporum | LZ-NBS-LRR | 11 | Map-based cloning | [142] |
S. pimpinellifolium | Ph-1, 2 and 3 | Late blight | P. infestans | CC-NBS-LRR | 9 | Map-based cloning | [147] |
S. peruvianum | Sw-5 | Tomato spotted wilt | TSWV | NBS-LRR | 9 | Map-based cloning | [141] |
S. lycopersicum | Tm-2 | Tobacco mosaic | TMV | NBS-LRR | 9 | transposon tagging | [145] |
S. lycopersicum | Bs4 | Bacterial spot | X. campestris | TIR-NBS-LRR | 5 | Map-based cloning | [146] |
S. pimpinellifolium | Hero | Potato cyst | G. rostochiensis | NBS-LRR | 4 | Map-based cloning | [144] |
S. pimpinellifolium | Cf-2 | Leaf mold | C. fulvum | NBS-LRR | 6 | Map-based cloning | [11] |
S. peruvianum | Cf-4 | Leaf mold | C. fulvum | NBS-LRR | 1 | Map-based cloning | [12] |
S. peruvianum | Cf-5 | Leaf mold | C. fulvum | NBS-LRR | 6 | Map-based cloning | [139] |
S. pimpinellifolium | Cf-9 | Leaf mold | C. fulvum | NBS-LRR | 1 | Transposon tagging (Ac-Ds system) | [10] |
S. lycopersicum | Ve1,2 | Verticillium wilt | V. dahliae | Receptor-like kinase | 9 | Map-based cloning | [14] |
S. lycopersicum | Hcr9-4E | Leaf mold | C. fulvum | Receptor-like kinase | 1 | Map-based cloning | [12] |
S. pimpinellifolium | Fen | Bacterial speck | P. syringae | Serine/threonine kinase | 5 | Map-based cloning | [138] |
S. lycopersicum | Pti1 | Bacterial speck | P. syringae | Serine/threonine kinase | 12 | Map-based cloning | [137] |
Name | Cas Nuclease Enzyme | Major Features | Website |
---|---|---|---|
CRISPOR | Cas9 orthologues and Cas variants | Cloning, expressing, and validating sgRNA sequences for the CRISPR/Cas9 system, as well as providing primers needed for testing guide activity and target validation | http://crispor.tefor.net/ (accessed on 3 May 2023) |
CHOPCHOP | Cas9, Cas12, Cpf1, and TALEN | It provides multi-targeting systems, such as knockout, knock-in, gene activation, and repression. It allows for the design of sgRNAs in a specific region, 5′ UTR, 3′ UTR, promoter, or the gene coding region | https://chopchop.cbu.uib.no/ (accessed on 3 May 2023) |
CRISPR RGEN Tools | Cas9 orthologues and Cas variants | It provides multiple sgRNA design tools with high accuracy | http://www.rgenome.net/cas-designer/ (accessed on 3 May 2023) |
E-CRISP | SpCas9 | It targets any nucleotide sequence of the genome. It also checks for target specificity of the putative designs and their genomic context (e.g., exons, transcripts, CpG islands) | http://www.e-crisp.org/E-CRISP/index.html (accessed on 3 May 2023) |
CRISPR-GE | SpCas9, FnCpf1, and AsCpf1 | It predicts the specificity of a target site and the design sgRNAs for different CRISPR/Cas systems. It also provides a primer design tool for vector construction and mutant detection | http://skl.scau.edu.cn/ (accessed on 3 May 2023) |
CRISPR-P | Cas9 and variants | It provides on-target and off-target scoring and gRNA sequence analysis. It allows one to choose U3 or U6 sgRNA promoter-driven expression cassettes for designing sgRNA | http://crispr.hzau.edu.cn/CRISPR2/ (accessed on 3 May 2023) |
CRISPR-PLANT V2 | SpCas9 | It allows for the design and construction of sgRNAs for CRISPR-Cas9-mediated genome editing | https://www.genome.arizona.edu/crispr2/ (accessed on 3 May 2023) |
CRISPRlnc | SpCas9 | It provides a downloadable validated sgRNA database | http://www.crisprlnc.org/ (accessed on 3 May 2023) |
SNP-CRISPR | NGG, NAG, and PAM | It allows for the design of sgRNAs for targeting SNPs or Indels | https://www.flyrnai.org/tools/snp_crispr/web/ (accessed on 3 May 2023) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, A.; Song, H.-G.; Yang, S.-Y.; Lee, J.-H. Integrated Molecular and Bioinformatics Approaches for Disease-Related Genes in Plants. Plants 2023, 12, 2454. https://doi.org/10.3390/plants12132454
Joshi A, Song H-G, Yang S-Y, Lee J-H. Integrated Molecular and Bioinformatics Approaches for Disease-Related Genes in Plants. Plants. 2023; 12(13):2454. https://doi.org/10.3390/plants12132454
Chicago/Turabian StyleJoshi, Alpana, Hyung-Geun Song, Seo-Yeon Yang, and Ji-Hoon Lee. 2023. "Integrated Molecular and Bioinformatics Approaches for Disease-Related Genes in Plants" Plants 12, no. 13: 2454. https://doi.org/10.3390/plants12132454
APA StyleJoshi, A., Song, H. -G., Yang, S. -Y., & Lee, J. -H. (2023). Integrated Molecular and Bioinformatics Approaches for Disease-Related Genes in Plants. Plants, 12(13), 2454. https://doi.org/10.3390/plants12132454