Assessment of Genetic Diversity and Genetic Structure of Saussurea medusa (Asteraceae), a “Sky Island” Plant in the Qinghai–Tibet Plateau, Using SRAP Markers
Abstract
:1. Introduction
2. Results
2.1. Polymorphism Analysis of SRAP Amplified Products
2.2. Genetic Diversity and Genetic Structure Analyses
2.3. Population Cluster Analysis
2.4. Mantel Test
3. Discussion
3.1. Genetic Diversity of S. medusa
3.2. Genetic Structure of S. medusa
3.3. Population Differentiation and Influencing Factors
3.4. Conservation of S. medusa
3.5. Limitations of the Study
4. Materials and Methods
4.1. Sample Information
4.2. Genomic DNA Extraction and SRAP Amplification
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, S.W. Compositae: Saussurea DC. In Flora Qinghaiica; Ho, T.-N., Liu, S.-W., Eds.; Qinghai People’s Publishing House: Xining, China, 1996; Volume 3, pp. 443–482. [Google Scholar]
- Shi, Z.; Raab-Straube, E. Asteraceae, Saussurea group. In Flora of China; Wu, Z.Y., Raven, P.H., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2011; Volumes 20–21, pp. 42–149. [Google Scholar]
- Yi, T.; Zhao, Z.Z.; Yu, Z.L.; Chen, H.B. Comparison of the anti-inflammatory and anti-nociceptive effects of three medicinal plants known as “Snow Lotus” herb in traditional Uighur and Tibetan medicines. J. Ethnopharmacol. 2010, 128, 405–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takasaki, M.; Konoshima, T.; Komatsu, K.; Tokuda, H.; Nishino, H. Anti-tumor-promoting activity of lignans from the aerial part of Saussurea medusa. Cancer Lett. 2000, 158, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Xue, X.F.; Chen, F.D.; Li, C.H.; Bolat, N.; Wang, X.J.; Baima, Y.Z.; Zhao, Q.; Zhao, D.X.; Ma, F.S. Quality evaluation of snow lotus (Saussurea): Quantitative chemical analysis and antioxidant activity assessment. Plant Cell Rep. 2010, 29, 1325–1337. [Google Scholar] [CrossRef] [PubMed]
- Bo, Y.; Yundai, C.; Min, L. Effects of cell cultures of Saussurea medusa in regulating blood lipid of hyperlipidemic rats. Heart 2013, 99, 66. [Google Scholar] [CrossRef]
- Fan, J.Y.; Chen, H.B.; Zhu, L.; Chen, H.L.; Zhao, Z.Z.; Yi, T. Saussurea medusa, source of the medicinal herb snow lotus: A review of its botany, phytochemistry, pharmacology and toxicology. Phytochem. Rev. 2015, 14, 353–366. [Google Scholar] [CrossRef]
- Duan, H.Q.; Takaishi, Y.; Momota, H.; Ohmoto, Y.; Taki, T. Immunosuppressive constituents from Saussurea medusa. Phytochemistry 2002, 59, 85–90. [Google Scholar] [CrossRef]
- Fan, C.Q.; Yue, J.M. Biologically active phenols from Saussurea medusa. Bioorganic Med. Chem. 2003, 11, 703–708. [Google Scholar] [CrossRef]
- Xie, H.H.; Wang, T.; Matsuda, H.; Morikawa, T.; Yoshikawa, M.; Tani, T. Bioactive constituents from Chinese natural medicines. XV. Inhibitory effect on aldose reductase and structures of saussureosides A and B from Saussurea medusa. Chem. Pharm. Bull. 2005, 53, 1416–1422. [Google Scholar] [CrossRef] [Green Version]
- Dawa, Z.; Bai, Y.; Zhou, Y.; Gesang, S.; Ding, L.S. Chemical constituents of the whole plants of Saussurea medusa. J. Nat. Med. 2009, 63, 327–330. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.F.; Ni, Z.Y.; Dong, M.; Cong, B.; Shi, Q.W.; Gu, Y.C.; Kiyota, H. Secondary metabolites of plants from the genus Saussurea: Chemistry and biological activity. Chem. Biodivers. 2010, 7, 2623–2659. [Google Scholar] [CrossRef]
- Cao, J.Y.; Wang, Z.Y.; Dong, Q.; Wang, X.J.; Yu, R.T.; Tao, Y.D. Saussurenoids A–G, seven new sesquiterpenoids from Saussurea medusa Maxim. Tetrahedron 2022, 120, 132850. [Google Scholar] [CrossRef]
- Wu, N.; Liu, Y.F.; Liang, X.M.; Mei, L.J.; Tao, Y.D.; Yu, R.T. Phytochemical and chemotaxonomic study on Saussurea medusa Maxim. (Compositae). Biochem. Syst. Ecol. 2020, 93, 104171. [Google Scholar] [CrossRef]
- Tsukaya, H.; Fujikawa, K.; Wu, S.G. Thermal insulation and accumulation of heat in the downy inflorescences of Saussurea medusa (Asteraceae) at high elevation in Yunnan, China. J. Plant Res. 2002, 115, 263–268. [Google Scholar] [CrossRef]
- Yang, Y.; Körner, C.; Sun, H. The ecological significance of pubescence in Saussurea medusa, a high-elevation Himalayan “woolly plant”. Arct. Antarct. Alp. Res. 2008, 40, 250–255. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.J.; Susanna, A.; Von Raab-Straube, E.; Milne, R.; Liu, J.Q. Island-like radiation of Saussurea (Asteraceae: Cardueae) triggered by uplifts of the Qinghai–Tibetan Plateau. Biol. J. Linn. Soc. 2009, 97, 893–903. [Google Scholar] [CrossRef] [Green Version]
- Ægisdóttir, H.; Kuss, P.; Stöcklin, J. Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation. Ann. Bot. 2009, 104, 1313–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar, R.; Quesada, M.; Ashworth, L.; Herrerias-Diego, Y.; Lobo, J. Genetic consequences of habitat fragmentation in plant populations: Susceptible signals in plant traits and methodological approaches. Mol. Ecol. 2008, 17, 5177–5188. [Google Scholar] [CrossRef]
- Loveless, M.D.; Hamrick, J.L. Ecological determinants of genetic structure in plant populations. Annu. Rev. Ecol. Syst. 1984, 15, 65–95. [Google Scholar] [CrossRef]
- Law, W.; Salick, J.; Knight, T.M. The effects of pollen limitation on population dynamics of snow lotus (Saussurea medusa and S. laniceps, Asteraceae): Threatened Tibetan medicinal plants of the eastern Himalayas. Plant Ecol. 2010, 210, 343–357. [Google Scholar] [CrossRef]
- Takebayashi, N.; Morrell, P.L. Is self-fertilization an evolutionary dead end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approach. Am. J. Bot. 2001, 88, 1143–1150. [Google Scholar] [CrossRef]
- Ary, A.H.; Juha, M. Heritable variation and evolution under favourable and unfavourable conditions. Trends Ecol. Evol. 1999, 14, 96–101. [Google Scholar]
- Bennington, C.; McGraw, J.B. Environmental-dependence of quantitative genetic parameters in Impatiens pallida. Evolution 1996, 50, 1083–1097. [Google Scholar] [PubMed]
- Savolainen, O.; Bokma, F.; Garcıía-Gil, R.; Komulainen, P.; Repo, T. Genetic variation in cessation of growth and frost hardiness and consequences for adaptation of Pinus sylvestris to climatic changes. For. Ecol. Manag. 2004, 197, 79–89. [Google Scholar] [CrossRef]
- Huang, W.D.; Zhao, X.Y.; Zhao, X.; Li, Y.Q.; Lian, J.; Yun, J.Y. Relationship between the genetic diversity of Artemisia halodendron and climatic factors. Acta Oecologica 2014, 55, 97–103. [Google Scholar] [CrossRef]
- Manel, S.; Gugerli, F.; Thuiller, W.; Alvarez, N.; Legendre, P.; Holderegger, R.; Gielly, L.; Taberlet, P.; Consortium, I. Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Mol. Ecol. 2012, 21, 3729–3738. [Google Scholar] [CrossRef] [Green Version]
- Wellington, C.N.; Vaillancourt, R.E.; Potts, B.M.; Worledge, D.; O’Grady, A.P. Genetic Variation in Flowering Traits of Tasmanian Leptospermum scoparium and Association with Provenance Home Site Climatic Factors. Plants 2022, 11, 1029. [Google Scholar] [CrossRef]
- Gaudeul, M.; Taberlet, P.; Till-Bottraud, I. Genetic diversity in an endangered alpine plant, Eryngium alpinum L.(Apiaceae), inferred from amplified fragment length polymorphism markers. Mol. Ecol. 2000, 9, 1625–1637. [Google Scholar] [CrossRef] [Green Version]
- Pluess, A.R.; Stöcklin, J. Population genetic diversity of the clonal plant Geum reptans (Rosaceae) in the Swiss Alps. Am. J. Bot. 2004, 91, 2013–2021. [Google Scholar] [CrossRef]
- Li, G.; Quiros, C.F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 2001, 103, 455–461. [Google Scholar] [CrossRef]
- Zheng, Y.Q.; Xu, S.J.; Liu, J.; Zhao, Y.; Liu, J.X. Genetic diversity and population structure of Chinese natural bermudagrass [Cynodon dactylon (L.) Pers.] germplasm based on SRAP markers. PLoS ONE 2017, 12, e0177508. [Google Scholar] [CrossRef] [Green Version]
- Jahnvi, B.; Sushil, K.; Swati, P.; Ramesh, S. Sequence-related amplified polymorphism (SRAP) markers based genetic diversity analysis of cumin genotypes. Ann. Agrar. Sci. 2017, 15, 434–438. [Google Scholar]
- Zagorcheva, T.; Stanev, S.; Rusanov, K.; Atanassov, I. SRAP markers for genetic diversity assessment of lavender (Lavandula angustifolia mill.) varieties and breeding lines. Biotechnol. Biotechnol. Equip. 2020, 34, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Espósito, M.A.; Cravero, V.P.; Martin, E.; Cointry, E.L. Use of morphological, biochemical and SRAP molecular markers to differentiate varieties of Cynara cardunculus L. (Asteraceae). Rev. De La Fac. De Cienc. Agrar. Univ. Nac. De Cuyo 2011, 43, 35–45. [Google Scholar]
- Niloofar, M.; Mehdi, R.; Majid, T.; Mojtaba, K. Assessment of genetic diversity among and within Carthamus species using sequence-related amplified polymorphism (SRAP) markers. Plant Syst. Evol. 2013, 299, 1285–1294. [Google Scholar]
- Rahali, N.; Yangui, I.; Boussaid, M.; Messaoud, C. Assessment of genetic diversity and population structure of the endemic Hertia cheirifolia (L.) Kuntze based on ISSR and SRAP molecular markers. Biologia 2022, 77, 3429–3439. [Google Scholar] [CrossRef]
- Zhang, D.; Hao, G.Q.; Guo, X.Y.; Hu, Q.J.; Liu, J.Q. Genomic insight into “sky island” species diversification in a mountainous biodiversity hotspot. J. Syst. Evol. 2019, 57, 633–645. [Google Scholar]
- Nybom, H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 2004, 13, 1143–1155. [Google Scholar] [CrossRef]
- Charlesworth, D.; Charlesworth, B. Quantitative genetics in plants: The effect of the breeding system on genetic variability. Evolution 1995, 49, 911–920. [Google Scholar] [CrossRef]
- Wright, S. Evolution and the Genetics of Populations, Volume 4: Variability within and among Natural Populations; University of Chicago Press: Chicago, IL, USA, 1984; Volume 4. [Google Scholar]
- Hamrick, J.L. Gene Flow Distribution of Genetic Variation in Plant Populations; Urbanska, K.M., Ed.; Academic Press: New York, NY, USA, 1987. [Google Scholar]
- Fu, P.C.; Sun, S.S.; Khan, G.; Dong, X.X.; Tan, J.Z.; Favre, A.; Zhang, F.Q.; Chen, S.L. Population subdivision and hybridization in a species complex of Gentiana in the Qinghai-Tibetan Plateau. Ann. Bot. 2020, 125, 677–690. [Google Scholar]
- Sun, S.G.; Guo, Y.H.; Gituru, R.W.; Huang, S.Q. Corolla wilting facilitates delayed autonomous self-pollination in Pedicularis dunniana (Orobanchaceae). Plant Syst. Evol. 2005, 251, 229–237. [Google Scholar]
- Jump, A.S.; Hunt, J.M.; Martínez-Izquierdo, J.; Peñuelas, J. Natural selection and climate change: Temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Mol. Ecol. 2006, 15, 3469–3480. [Google Scholar] [CrossRef]
- Deng, S.F.; Yang, T.B.; Zeng, B.; Zhu, X.F.; Xu, H.J. Vegetation cover variation in the Qilian Mountains and its response to climate change in 2000–2011. J. Mt. Sci. 2013, 10, 1050–1062. [Google Scholar] [CrossRef]
- Yin, Z.Y.; Li, M.M.; Zhang, Y.; Shao, X.M. Growth–climate relationships along an elevation gradient on a southeast-facing mountain slope in the semi-arid eastern Qaidam Basin, northeastern Tibetan Plateau. Trees 2016, 30, 1095–1109. [Google Scholar] [CrossRef]
- Patiño, S.; Grace, J. The cooling of convolvulaceous flowers in a tropical environment. Plant Cell Environ. 2002, 25, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Sun, H. The bracts of Saussurea velutina (Asteraceae) protect inflorescences from fluctuating weather at high elevations of the Hengduan Mountains, Southwestern China. Arct. Antarct. Alp. Res. 2009, 41, 515–521. [Google Scholar]
- Tiwari, K.L.; Jadhav, S.K.; Gupta, S. Modified CTAB technique for isolation of DNA from some medicinal plants. Res. J. Med. Plant 2012, 6, 65–73. [Google Scholar]
- Wang, Y.L.; Yan, G.Q. Genetic diversity and population structure of Opisthopappus longilobus and Opisthopappus taihangensis (Asteraceae) in China determined using sequence related amplified polymorphism markers. Biochem. Syst. Ecol. 2013, 49, 115–124. [Google Scholar] [CrossRef]
- Al-Ajmi, A.H.; AL-Wahibi, M.S.; Mustafa, A.E.; Soliman, D.A.; Dewir, Y.H. Morphological and Molecular Assessment of Genetic Diversity of Seven Species of the Genus Artemisia L. (Asteraceae). Arab. J. Sci. Eng. 2021, 46, 5361–5371. [Google Scholar] [CrossRef]
- Robarts, D.W.; Wolfe, A.D. Sequence-related amplified polymorphism (SRAP) markers: A potential resource for studies in plant molecular biology1. Appl. Plant Sci. 2014, 2, 1400017. [Google Scholar] [CrossRef]
- Yeh, F.C.; Yang, R.C.; Boyle, T. POPGENE Version 1.32: Microsoft Windows–Based Freeware for Population Genetic Analysis, Quick User Guide; Center for International Forestry Research, University of Alberta: Edmonton, AB, Canada, 1999; pp. 1–29. [Google Scholar]
- Sharma, H.K.; Sarkar, M.; Choudhary, S.B.; Kumar, A.A.; Maruthi, R.T.; Mitraa, J.; Karmakar, P.G. Diversity analysis based on agro-morphological traits and microsatellite based markers in global germplasm collections of roselle (Hibiscus sabdariffa L.). Ind. Crops Prod. 2016, 89, 303–315. [Google Scholar] [CrossRef]
- Peakall, R.O.D.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Rohlf, F.J. NTSYS-pc, Numerical Taxonomy and Multivariate Analysis System, Version 2.1; Applied Biostatistics Inc.: New York, NY, USA, 1998. [Google Scholar]
- Hubisz, M.J.; Falush, D.; Stephens, M.; Pritchard, J.K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 2009, 9, 1322–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Primer ID | Sequence (5’-3’) | Size of Loci (bp) | Number of Loci | Number of Polymorphic Loci | Percentage of Polymorphic Loci (%) | Polymorphic Information Content |
---|---|---|---|---|---|---|
ME1/EM3 | TGAGTCCAAACCGGATA/ | 45–1500 | 27 | 25 | 92.59 | 0.48 |
GACTGCGTACGAATTGAC | ||||||
ME1/EM4 | TGAGTCCAAACCGGATA/ | 60–1000 | 35 | 35 | 100 | 0.49 |
GACTGCGTACGAATTTGA | ||||||
ME2/EM5 | TGAGTCCAAACCGGAGC/ | 90–1500 | 40 | 38 | 95 | 0.50 |
GACTGCGTACGAATTAAC | ||||||
ME2/EM9 | TGAGTCCAAACCGGAGC/ | 45–1300 | 35 | 33 | 94.29 | 0.49 |
GACTGCGTACGAATTCGA | ||||||
ME3/EM1 | TGAGTCCAAACCGGAAT/ | 70–1600 | 34 | 34 | 100 | 0.50 |
GACTGCGTACGAATTAAT | ||||||
ME3/EM3 | TGAGTCCAAACCGGAAT/ | 110–1500 | 44 | 44 | 100 | 0.50 |
GACTGCGTACGAATTGAC | ||||||
ME4/EM3 | TGAGTCCAAACCGGACC/ | 65–1400 | 44 | 44 | 100 | 0.48 |
GACTGCGTACGAATTGAC | ||||||
ME4/EM4 | TGAGTCCAAACCGGACC/ | 60–1400 | 34 | 34 | 100 | 0.50 |
GACTGCGTACGAATTTGA | ||||||
ME4/EM5 | TGAGTCCAAACCGGACC/ | 65–1300 | 44 | 44 | 100 | 0.49 |
GACTGCGTACGAATTAAC | ||||||
ME5/EM2 | TGAGTCCAAACCGGAAG/ | 80–1500 | 32 | 31 | 96.88 | 0.50 |
GACTGCGTACGAATTTGC | ||||||
ME6/EM9 | TGAGTCCAAACCGGTAA/ | 80–1600 | 38 | 36 | 94.74 | 0.50 |
GACTGCGTACGAATTCGA | ||||||
ME7/EM11 | TGAGTCCAAACCGGTCC/ | 80–1500 | 46 | 45 | 97.83 | 0.50 |
GACTGCGTACGAATTCCA | ||||||
ME8/EM7 | TGAGTCCAAACCGGTGC/ | 90–1100 | 32 | 30 | 93.75 | 0.49 |
GACTGCGTACGAATTCAA | ||||||
ME8/EM9 | TGAGTCCAAACCGGTGC/ | 70–900 | 26 | 23 | 88.46 | 0.50 |
GACTGCGTACGAATTCGA |
Pop ID | Number of Loci | PPB (%) | Na | Ne | He | I |
---|---|---|---|---|---|---|
JYL | 225 | 44.03 | 1.4403 | 1.2555 | 0.1478 | 0.2214 |
GSKY | 230 | 45.01 | 1.4501 | 1.2624 | 0.1534 | 0.2302 |
MY | 268 | 52.45 | 1.5245 | 1.2685 | 0.1623 | 0.2485 |
NCE | 267 | 52.25 | 1.5225 | 1.2882 | 0.1712 | 0.2589 |
DBSS | 237 | 46.38 | 1.4638 | 1.2602 | 0.1536 | 0.2317 |
SJC | 284 | 55.58 | 1.5558 | 1.3279 | 0.1913 | 0.2865 |
NQY | 185 | 36.20 | 1.3620 | 1.2340 | 0.1322 | 0.1949 |
WRG | 171 | 33.46 | 1.3346 | 1.1921 | 0.1129 | 0.1698 |
GRD | 245 | 47.95 | 1.4795 | 1.2789 | 0.1630 | 0.2444 |
DDSN | 201 | 39.33 | 1.3933 | 1.2030 | 0.1213 | 0.1846 |
HLSO | 178 | 34.83 | 1.3483 | 1.2071 | 0.1202 | 0.1796 |
SNK | 274 | 53.62 | 1.5362 | 1.3155 | 0.1834 | 0.2745 |
BYBC | 215 | 42.07 | 1.4207 | 1.2277 | 0.1339 | 0.2028 |
YNG | 166 | 32.49 | 1.3249 | 1.1978 | 0.1145 | 0.1708 |
RSDB | 205 | 40.12 | 1.4012 | 1.2476 | 0.1423 | 0.2116 |
BSS | 176 | 34.44 | 1.3444 | 1.2038 | 0.1174 | 0.1754 |
HLHQ | 192 | 37.57 | 1.3757 | 1.2001 | 0.1196 | 0.1819 |
DTYK | 164 | 32.09 | 1.3209 | 1.1940 | 0.1130 | 0.1688 |
GJS | 199 | 38.94 | 1.3894 | 1.2290 | 0.1330 | 0.1989 |
LMX | 161 | 31.51 | 1.3151 | 1.1823 | 0.1060 | 0.1589 |
Species level | 511 | 97.06 | 1.9706 | 1.4598 | 0.2757 | 0.4237 |
Source | df | SS | MS | Estimated Variance | Percentage (%) | p |
---|---|---|---|---|---|---|
Among Pops | 19 | 10,753.825 | 565.991 | 35.311 | 49 | <0.01 |
Within Pops | 280 | 10,282.249 | 36.722 | 36.722 | 51 | <0.01 |
Total | 299 | 21,036.073 | - | 72.033 | 100 | - |
Pop ID | Latitude | Longitude | Altitude (m) | Number of Individuals | Administrative Area |
---|---|---|---|---|---|
MY | 37.0735 | 102.6701 | 3805 | 15 | Tianzhu, Gansu Province, China |
NCE | 37.5328 | 101.8666 | 4039 | 16 | Menyuan, Qinghai Province, China |
GSKY | 37.6805 | 101.4408 | 3907 | 16 | Menyuan, Qinghai Province, China |
DBSS | 37.3376 | 101.4005 | 3896 | 14 | Datong, Qinghai Province, China |
JYL | 37.9108 | 101.1124 | 3942 | 16 | Qilian, Qinghai Province, China |
SJC | 38.0418 | 100.8139 | 3710 | 16 | Qilian, Qinghai Province, China |
WRG | 37.8639 | 100.5091 | 3958 | 16 | Qilian, Qinghai Province, China |
DDSN | 38.0131 | 100.2412 | 4138 | 16 | Qilian, Qinghai Province, China |
HLSO | 39.0415 | 98.2786 | 4332 | 16 | Qilian, Qinghai Province, China |
RSDB | 38.7945 | 98.7413 | 4155 | 15 | Qilian, Qinghai Province, China |
BYBC | 39.0089 | 98.8191 | 4444 | 16 | Qilian, Qinghai Province, China |
SNK | 38.6077 | 99.4821 | 4106 | 16 | Qilian, Qinghai Province, China |
YNG | 38.4745 | 99.4443 | 3582 | 10 | Qilian, Qinghai Province, China |
GRD | 37.6989 | 100.4176 | 4005 | 10 | Gangcha, Qinghai Province, China |
NQY | 37.3821 | 100.5905 | 3800 | 15 | Gangcha, Qinghai Province, China |
LMX | 37.8932 | 98.8517 | 4254 | 16 | Tianjun, Qinghai Province, China |
GJS | 37.1764 | 98.8781 | 4095 | 16 | Tianjun, Qinghai Province, China |
BSS | 37.4790 | 97.4406 | 4288 | 15 | Delingha, Qinghai Province, China |
HLHQ | 37.9416 | 97.5103 | 4619 | 16 | Delingha, Qinghai Province, China |
DTYK | 37.7753 | 95.5148 | 4161 | 14 | Chaidan, Qinghai Province, China |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Dai, W.; Chen, J.; Ye, K.; Lai, Q.; Zhao, D. Assessment of Genetic Diversity and Genetic Structure of Saussurea medusa (Asteraceae), a “Sky Island” Plant in the Qinghai–Tibet Plateau, Using SRAP Markers. Plants 2023, 12, 2463. https://doi.org/10.3390/plants12132463
Wang J, Dai W, Chen J, Ye K, Lai Q, Zhao D. Assessment of Genetic Diversity and Genetic Structure of Saussurea medusa (Asteraceae), a “Sky Island” Plant in the Qinghai–Tibet Plateau, Using SRAP Markers. Plants. 2023; 12(13):2463. https://doi.org/10.3390/plants12132463
Chicago/Turabian StyleWang, Jun, Wei Dai, Jie Chen, Kunhao Ye, Qianglong Lai, and Dan Zhao. 2023. "Assessment of Genetic Diversity and Genetic Structure of Saussurea medusa (Asteraceae), a “Sky Island” Plant in the Qinghai–Tibet Plateau, Using SRAP Markers" Plants 12, no. 13: 2463. https://doi.org/10.3390/plants12132463
APA StyleWang, J., Dai, W., Chen, J., Ye, K., Lai, Q., & Zhao, D. (2023). Assessment of Genetic Diversity and Genetic Structure of Saussurea medusa (Asteraceae), a “Sky Island” Plant in the Qinghai–Tibet Plateau, Using SRAP Markers. Plants, 12(13), 2463. https://doi.org/10.3390/plants12132463