Developing Sustainable Agriculture Systems in Medicinal and Aromatic Plant Production by Using Chitosan and Chitin-Based Biostimulants
Abstract
:1. Introduction
2. The Effects of Biostimulants on Medicinal and Aromatic Plants
3. Practical Usage of Chitosan on Medicinal and Aromatic Plants
4. Activities and Applications of Oligochitosan
5. The Application of Chitin as Biostimulant
6. Conclusions—Future Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chakravarty, J.; Edwards, T.A. Innovation from waste with biomass-derived chitin and chitosan as green and sustainable polymer: A review. Energy Nexus 2022, 8, 100149. [Google Scholar] [CrossRef]
- Joseph, S.M.; Krishnamoorthy, S.; Paranthaman, R.; Moses, J.A.; Anandharamakrishnan, C. A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydr. Polym. Technol. Appl. 2021, 2, 100036. [Google Scholar] [CrossRef]
- Shahrajabian, M.H. Medicinal herbs with anti-inflammatory activities for natural and organic healing. Curr. Org. Chem. 2021, 25, 2885–2901. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Petropoulos, S.A. Biostimulants application: A low input cropping management tool for sustainable faring of vegetables. Biomolecules 2021, 11, 698. [Google Scholar] [CrossRef] [PubMed]
- Al Shaqsi, N.H.K.; Al Hoqani, H.A.S.; Hossain, M.A.; Al Sibani, M.A. Optimization of the demineralization process for the extraction of chitin from Omani Portunidae segnis. Biochem. Biophys. Rep. 2020, 23, 100779. [Google Scholar] [CrossRef]
- Liao, J.; Wang, Y.; Hou, B.; Zhang, J.; Huang, H. Nano-chitin reinforced agarose hydrogels: Effects of nano-chitin addition and acidic gas-phase coagulation. Carbohydr. Polym. 2023, 313, 120902. [Google Scholar] [CrossRef]
- Hou, F.; He, L.; Ma, X.; Wang, D.; Ding, T.; Ye, X.; Liu, D. Ultrasound enhanced the binding ability of chitinase onto chitin: From an AFM insight. Ultrason. Sonochem. 2020, 67, 105117. [Google Scholar] [CrossRef]
- Vaikuntapu, P.R.; Rambabu, S.; Madhuprakash, J.; Podile, A.R. A new chitinase-D from a plant growth promoting Serratia marcescens GPS5 for enzymatic conversion of chitin. Bioresour. Technol. 2016, 220, 200–207. [Google Scholar] [CrossRef]
- Kertmen, A.; Ehrlich, H. Patentology of chitinous biomaterials. Part I: Chitin. Carbohydr. Polym. 2022, 282, 119102. [Google Scholar] [CrossRef]
- Lv, J.; Lv, X.; Ma, M.; Oh, D.-H.; Jiang, Z.; Fu, X. Chitin and chitin-based biomaterials: A review of advances in processing and food applications. Carbohydr. Polym. 2023, 299, 120142. [Google Scholar] [CrossRef]
- Curto, M.A.; Butassi, E.; Ribas, J.C.; Svetaz, L.A.; Cortes, J.C.G. Natural products targeting the synthesis of β(1,3)-D-glucan and chitin of the fungal cell wall. Existing drugs and recent findings. Phytomedicine 2021, 88, 153556. [Google Scholar] [CrossRef] [PubMed]
- Mohan, K.; Ganesan, A.R.; Ezhilarasi, P.N.; Kondamareddy, K.K.; Rajan, D.K.; Sathishkumar, P.; Rajarajeswaran, J.; Conterno, L. Green and eco-friendly approaches for the extraction of chitin and chitosan: A review. Carbohydr. Polym. 2022, 287, 119349. [Google Scholar] [CrossRef] [PubMed]
- Sultan, R.; Reghunadhan, A.; Sambhudevan, S. A new era of chitin synthesis and dissolution using deep eutectic solvents-comparison with ionic liquids. J. Mol. Liq. 2023, 380, 121794. [Google Scholar] [CrossRef]
- Singh, S.K. Solubility of lignin and chitin in ionic liquids and their biomedical applications. Int. J. Biol. Macromol. 2019, 132, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, R.; Zhang, C.; Yang, J.; Lyu, L.; Shi, Z.; Man, Y.B.; Wu, F. Selenium uptake and accumulation in winter wheat as affected by level of phosphate application and arbuscular mycorrhizal fungi. J. Hazard. Mater. 2022, 433, 128762. [Google Scholar] [CrossRef]
- Aiman, U.; Nisar, N.; Tsuzuki, T.; Lowe, A.; Rossiter, J.T.; Javaid, A.; Powell, G.; Waseem, R.; Al-Mijalli, S.H.; Iqbal, M. Chitin nanofibers trigger membrane bound defense signaling and induce elicitor activity in plants. Int. J. Biol. Macromol. 2021, 178, 253–262. [Google Scholar] [CrossRef]
- Singh, R.; Upadhyay, S.K.; Singh, M.; Sharma, I.; Shara, P.; Kamboj, P.; Saini, A.; Voraha, R.; Sharma, A.K.; Upadhyay, T.K.; et al. Chitin, chitinases and chitin derivatives in biopharmaceutical, agricultural and environmental perspective. Biointerface Res. Appl. Chem. 2021, 11, 9985–10005. [Google Scholar] [CrossRef]
- Parada, R.Y.; Egusa, M.; Aklog, Y.F.; Miura, C.; Ifuku, S.; Kaminaka, H. Optimization of nanofibrillation degree of chitin for induction of plant disease resistance: Elicitor activity and systemic resistance induced by chitin nanofiber in cabbage and strawberry. Int. J. Biol. Macromol. 2018, 118 Pt B, 2185–2192. [Google Scholar] [CrossRef]
- Alamdari, S.; Mirzaee, O.; Jahroodi, F.N.; Tafreshi, M.J.; Ghamsari, M.S.; Shik, S.S.; Ara, M.H.M.; Lee, K.-Y.; Park, H.-H. Green synthesis of multifunctional ZnO/chitosan nanocomposite film using wild Mentha pulegium extract for packaging applications. Surf. Interfaces 2022, 34, 102349. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, J.; Tan, W.; Wang, G.; Li, Q.; Dong, F.; Guo, Z. Antifungal activity of double Schiff bases of chitosan derivatives bearing active halogeno-benzenes. Int. J. Biol. Macromol. 2021, 179, 292–298. [Google Scholar] [CrossRef]
- Desti, A.; Kavetsou, E.; Kostopoulou, I.; Pitterou, I.; Pontillo, A.R.N.; Tzani, A.; Christodoulou, P.; Siliachli, A.; Zoumpoulakis, P. Nanosystems for the encapsulation of natural products: The case of chitosan biopolymer as a matrix. Pharmaceutics 2020, 12, 669. [Google Scholar] [CrossRef]
- Wahba, M.I. Enhancement of the mechanical properties of chitosan. J. Biomater. Sci. Poly. Ed. 2020, 31, 30–375. [Google Scholar] [CrossRef]
- Landrischina, A.; Rosen, J.; Friedman, A.J. Biodegradable chitosan nanoparticles in drug delivery for infectious disease. Nanomedicine 2015, 10, 1609–1619. [Google Scholar] [CrossRef] [PubMed]
- Islam, N.; Dmour, I.; Taha, M.O. Degradability of chitosan micro/nanoparticles for pulmonary drug delivery. Heliyon 2019, 5, e01684. [Google Scholar] [CrossRef] [Green Version]
- Shahrajaian, M.H.; Sun, W.; Soleymani, A.; Cheng, Q. Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses. Phytother. Res. 2020, 35, 1237–1247. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Exploring Artemisia annua L., artemisinin and its derivatives, from traditional Chinese wonder medicinal science. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 1719–1741. [Google Scholar] [CrossRef]
- Pichyangkura, R.; Chadchawan, S. Biostimulant activity of chitosan in horticulture. Sci. Hortic. 2015, 196, 49–65. [Google Scholar] [CrossRef]
- Hemmati, F.; Salehi, R.; Ghotaslou, R.; Kafil, H.S.; Hasani, A.; Gholizadeh, P.; Rezaee, M.A. The assessment of antibiofilm activity of chitosan-zinc oxide-gentamicin nanocomposite on Pseudomonas aeruginosa and Staphylococcus aureus. Int. J. Biol. Macromol. 2020, 163, 2248–2258. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. The importance of flavonoids and phytochemicals of medicinal plants with antiviral activities. Mini Rev. Org. Chem. 2022, 19, 293–318. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Foliar application of nutrients on medicinal and aromatic plants, the sustainable approaches for higher and better production. Beni-Suef Univ. J. Basic. Appl. Sci. 2022, 11, 26. [Google Scholar] [CrossRef]
- Suarez-Fernandez, M.; Marhuenda-Egea, F.C.; Lopez-Moya, F.; Arnao, M.B.; Cabrera-Escribano, F.; Nueda, M.J.; Gunse, B.; Lopez-Llorca, L.V. Chitosan induces plant hormones and defenses in tomato root exudates. Front. Plant Sci. 2020, 11, 572087. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, B.; Khan, M.M.A.; Jahan, A.; Shabbir, A.; Jaleel, H. Increased production of valuable secondary products in plants by leaf applied radiation-processed polysaccharides. Int. J. Biol. Macromol. 2020, 164, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Do, N.H.N.; Truong, Q.T.; Le, P.K.; Ha, A.C. Recent developments in chitosan hydrogels carrying natural bioactive compounds. Carbohydr. Polym. 2022, 294, 119726. [Google Scholar] [CrossRef] [PubMed]
- Roshni, A.; Thambidurai, S. Enhanced photocatalytic and antibacterial activity of ZnO with rice field crab chitosan and Plectranthus amboinicus extract. Mater. Chem. Phys. 2022, 291, 126739. [Google Scholar] [CrossRef]
- Sultan, M.; Abdelhakim, A.A.; Nassar, M.; Hassan, Y.R. Active packaging of chitosan film modified with basil oil encapsulated in silica nanoparticles as an alternate for plastic packaging materials. Food Biosci. 2023, 51, 102298. [Google Scholar] [CrossRef]
- Kabiriyel, J.; Jeyanthi, R.; Jayakumar, K.; Amalraj, A.; Arjun, P.; Shanmugarathinam, S.; Vignesh, G.; Raja Mohan, C. Green synthesis of carboxyl methyl chitosan based curcumin nanoparticles and its biological activity: Influence of size and conductivity. Carbohydr. Polym. Technol. Appl. 2023, 5, 100260. [Google Scholar] [CrossRef]
- Ibrahim, S.S.; Abou-Elseoud, W.S.; Elbehery, H.H.; Hassan, M.L. Chitosan-cellulose nanoencapsulation systems for enhancing the insecticidal activity of citronella essential oil against the cotton leafworm Spodoptera littoralis. Ind. Crops Prod. 2022, 184, 115089. [Google Scholar] [CrossRef]
- Balusamy, S.R.; Rahimi, S.; Sukweenadhi, J.; Sunderraj, S.; Shanmugam, R.; Thangavelu, L.; Mijakovic, I.; Perumalsamy, H. Chitosan, chitosan nanoparticles and modified chitosan biomaterials, a potential tool to combat salinity stress in plants. Carbohydr. Polym. 2022, 284, 119189. [Google Scholar] [CrossRef]
- Ji, H.; Wang, J.; Chen, F.; Fan, N.; Wang, X.; Xiao, Z.; Wang, Z. Meta-analysis of chitosan-mediated effects on plant defense against oxidative stress. Sci. Total Environ. 2022, 851 Pt 1, 158212. [Google Scholar] [CrossRef]
- Khairy, A.M.; Tohamy, M.R.A.; Zayed, M.A.; Mahmoud, S.F.; El-Tahan, A.M.; El-Saadony, M.T.; Mesiha, P.K. Eco-friendly application of nano-chitosan for controlling potato and tomato bacterial wilt. Saudi J. Biol. Sci. 2022, 29, 2199–2209. [Google Scholar] [CrossRef]
- Du, M.; Yi, Y.; Yin, Y.; Cai, Z.; Cai, W.; Li, J.; He, G.; Zhang, J. Bacterial-triggered photodynamic nano-system based on hematoporphyrin-modified chitosan for sustainable plant disease control. Eur. Polym. J. 2023, 191, 112035. [Google Scholar] [CrossRef]
- Riseh, R.S.; Hassanisaadi, M.; Vatankhah, M.; Babaki, S.A.; Barka, E.A. Chitosan as a potential natural compound to manage plant diseases. Int. J. Biol. Macromol. 2022, 220, 998–1009. [Google Scholar] [CrossRef] [PubMed]
- Sathiyabama, M.; Gandhi, M.; Indhumathi, M. Suppression of dry root rot disease caused by Rhizoctonia bataticola (Taub.) Butler in chickpea plants by application of thiamine loaded chitosan nanoparticles. Microb. Pathog. 2022, 173 Pt B, 105893. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, L.; Qin, Y.; Li, P. Activity of chitin/chitosan/chitosan oligosaccharide against plant pathogenic nematodes and potential modes of application in agriculture: A review. Carbohydr. Polym. 2023, 306, 120592. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; She, X.; Du, Y.; Liang, X. Induction of antiviral resistance and stimulary effect by oligochitosan in tobacco. Pestic. Biochem. Physiol. 2007, 87, 78–84. [Google Scholar] [CrossRef]
- Yin, H.; Zhao, X.; Du, Y. Oligochitosan: A plant diseases vaccine—A review. Carbohydr. Polym. 2010, 82, 1–8. [Google Scholar] [CrossRef]
- Yang, R.; Zuo, P.; Zhang, M.; Meng, D.; Wang, B.; Zhen, T. Transglutaminase induced oligochitosan glycosylation of ferritin as a novel nanocarrier for food bioactive molecules. Food Hydrocoll. 2019, 94, 500–509. [Google Scholar] [CrossRef]
- Lee, T.; Chang, Y.H. Structural, physicochemical, and in vitro release properties of hydrogel beads produced by oligochitosan and de-esterified pectin from yuzu (Citrus junos) peel as a quercetin delivery system for colon target. Food Hydrocoll. 2020, 108, 106086. [Google Scholar] [CrossRef]
- Yin, H.; Li, S.; Zhao, X.; Du, Y.; Ma, X. cDNA microarray analysis of gene expression in Brassica napus treated with oligochitosan elicitor. Plant Physiol. Biochem. 2006, 44, 910–916. [Google Scholar] [CrossRef]
- Svirshchevskaya, E.V.; Alekseeva, L.G.; Reshetov, P.D.; Phomicheva, N.N.; Parphenyuk, S.A.; Ilyina, A.V.; Zueva, V.S.; Lopatin, S.A.; Levov, A.N.; Varlamov, V.P. Mucoadjuvant properties of lipo- and glycoconjugated derivatives of oligochitosans. Eur. J. Med. Chem. 2009, 44, 2030–2037. [Google Scholar] [CrossRef]
- Feng, J.; Zhao, L.; Yu, Q. Receptor-mediated stimulatory effect of oligochitosan in macrophages. Biochem. Biophys. Res. Commun. 2004, 317, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhao, L.; Yu, Z.; Yu, Q. Role of mannose receptor in oligochitosan-mediated stimulation of macrophage function. Int. Immunopharmacol. 2005, 5, 1533–1542. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yin, H.; Wang, Q.; Zhao, X.; Du, Y.; Li, F. Oligochitosan induced Brassica napus L. production of NO and H2O2 and their physiological function. Carbohydr. Polym. 2009, 75, 612–617. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, X.; Bai, X.; Du, Y. Involvement of N-mediated defense in oligochitosan inducing resistance to tobacco mosaic virus. J. Biotechnol. 2008, 136, S581–S582. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, H.; Han, Z.; Huang, W.; Gu, X.; Li, B.; Zhao, L.; Zhou, S.; Zhang, H. Pichia caribbica combined with oligochitosan controlling black spot of tomatoes and the regulation on ROS metabolism of the fruits. Biol. Control 2022, 176, 105109. [Google Scholar] [CrossRef]
- Deng, L.; Zhou, Y.; Zeng, K. Pre-harvest spray of oligochitosan induced the resistance of harvested navel oranges to anthracnose during ambient temperature storage. Crop. Prot. 2015, 70, 70–76. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, L.; Yan, H.; Kennedy, J.F.; Meng, X. Chitosan and oligochitosan enhance the resistance of peach fruit to brown rot. Carbohydr. Polym. 2013, 94, 272–277. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, J.; Xie, J.; Deng, L.; Yao, X.; Zeng, K. Transcriptomic and biochemical analysis of highlighted induction of phenylpropanoid pathway metabolism of citrus fruit in response to salicylic acid, Pichia membranaefaciens and oligochitosan. Postharvest Biol. Technol. 2018, 142, 81–92. [Google Scholar] [CrossRef]
- Yang, L.-Y.; Zhang, J.-L.; Bassett, C.L.; Meng, X.-H. Difference between chitosan and oligochitosan in growth of Monilinia fructicola and control of brown rot in peach fruit. LWT-Food. Sci. Technol. 2012, 46, 254–259. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Y.; Luo, W.; Deng, L.; Yao, S.; Zeng, K. Primary metabolites analysis of induced citrus fruit disease resistance upon treatment with oligochitosan, salicylic acid and Pichia membranaefaciens. Biol. Control 2020, 148, 104289. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Tzortzakis, N.; Petropoulos, S.A. Sustainable agriculture systems in vegetable producing using chitin and chitosan as plant biostimulants. Biomolecules 2021, 11, 819. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Sun, W. Sustainable approaches to boost yield and chemical constituents of aromatic and medicinal plants by application of biostimulants. Recent Adv. Food Nutr. Agric. 2022, 13, 72–92. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Using bacteria and fungi as plant biostimulants for sustainable agricultural production systems. Recent Pat. Biotechnol. 2022, 16, 206–244. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Petropoulos, S.A.; Sun, W. Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful paradigms. Horticulturae 2023, 9, 193. [Google Scholar] [CrossRef]
- Prabhu, M.; Kumar, A.R.; Rajamani, L. Influence of different organic substances on growth and herb yield of sacred basil (Ocimum sanctum L.). Indian J. Agric. Res. 2010, 44, 48–52. [Google Scholar] [CrossRef]
- Kwiatkowski, C.A.; Juszczak, J. The response of sweet basil (Ocimum basilicum L.) to the application of growth stimulators and forecrops. Acta Agrobot. 2012, 64, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Elhindi, K.M.; Al-Amri, S.M.; Abdel-Salam, E.M.; Al-Suhaibani, N.A. Effectiveness of salicylic acid in mitigating salt-induced adverse effects on different physico-biochemical attributes in sweet basil (Ocimum basilicum L.). J. Plant Nutr. 2017, 40, 908–919. [Google Scholar] [CrossRef]
- Damalas, C.A. Improving drought tolerance in sweet basil (Ocimum basilicum) with salicylic acid. Sci. Hortic 2019, 246, 360–365. [Google Scholar] [CrossRef]
- Shirkhodaei, M.; Darzi, M.T.; Haj Seyed Hadi, M.R. Influence of vermicompost and biostimulant on the growth and biomass of coriander (Coriandrum sativum L.). Int. J. Adv. Biol. Biomed. Res. 2014, 2, 706–714. [Google Scholar]
- Pokluda, R.; Sekara, A.; Jezdinsky, A.; Kalisz, A.; Neugebauerova, J.; Grabowska, A. The physiological status and stress biomarker concentration of Coriandrum sativum L. plants subjected to chilling are modified by biostimulant application. Biol. Agric. Hortic. 2016, 32, 258–268. [Google Scholar] [CrossRef]
- Lisjak, M.; Tomic, O.; Spoljarevic, M.; Teklic, T.; Stanisavljevic, A.; Balas, J. Garden cress germinability and seedling vigour after treatment with plant extracts. Poljoprivreda (Osijek) 2015, 21, 41–46. [Google Scholar] [CrossRef]
- Abdel-Razz, H.S.; El-Sharkaw, G.A. Effect of biofertilizer and humic acid applications on growth, yield, quality and storability of two garlic (Allium sativum L.) cultivars. Asian J. Crop Sci. 2012, 5, 48–64. [Google Scholar] [CrossRef] [Green Version]
- Manas, D.; Soumya, G.; Kheyali, S. Effect of humic acid application on accumulation of mineral nutrition and pungency in garlic (Allium sativum L.). Int. J. Biotechnol. Mol. Biol. Res. 2014, 5, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Jedrszczyk, E.; Kopec, A.; Bucki, P.; Ambroszczyk, A.M.; Skowera, B. The enhancing effect of plants growth biostimulants in garlic cultivation on the chemical composition and level of bioactive compounds in the garlic leaves, stems and bulbs. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 47, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, Y.; Nematzadeh, G.A.; Ghasemi, O.V.; Tavabe, G.T.S.; Ebrahimzadeh, M.A. Effect of salicyic acid on phenols and flavonoids content in callus culture of Iranian sodab (Ruta graveolens): A threatened medicinal plant of North of Iran. Tabari Biomed. Stud. Res. J. 2019, 1, 32–36. [Google Scholar] [CrossRef]
- Safari, F.; Akramian, M.; Salehi-Arjmand, H.; Khadivi, A. Physiological and molecular mechanisms underlying salicylic acid-mitigated mercury toxicity in lemon balm (Melissa officinalis L.). Ecotoxicol. Environ. Saf. 2019, 183, 109542. [Google Scholar] [CrossRef]
- Hatami, M.; Khanizadeh, P.; Bovand, F.; Aghaee, A. Silicon nanoparticle-mediated seed priming and Pseudomonas spp. Inoculation augment growth, physiology and antioxidant metabolic status in Melissa officinalis L. plants. Ind. Crops Prod. 2021, 162, 113238. [Google Scholar] [CrossRef]
- Moustafa, H.E.B.; Ahmed, S.S.; Shahin, S.M. Effect of foliar spray with potassium silicate on growth and active constituents of horseradish armiractetra (Moringa oleifera Lam.) plants grown in some soils of Egypt. Middle East J. Agric. Res. 2018, 7, 60–70. [Google Scholar] [CrossRef]
- Fett-Neto, A.G.; Melanson, S.J.; Nicholson, S.A.; Pennington, J.J.; DiCosmo, F. Improved taxol yield by aromatic carboxylic acid and amino acid feeding to cell cultures of Taxus cuspidata. Biotechnol. Bioeng. 1994, 44, 967–971. [Google Scholar] [CrossRef]
- Russo, R.; Poincelot, R.P.; Berlyn, G.P. The use of a commercial organic biostimulant for improved production of marigold cultivars. J. Home. Consumer. Horticultr. 1993, 1, 83–93. [Google Scholar] [CrossRef]
- Rafiee, H.; Mehrafarin, A.; Qaderi, A.; Kalate Jari, S.; Naghdi Badi, H. Phytochemical, agronomical and morphological responses of pot Marigold (Calendula officinalis L.) to foliar application of bio-stimulators (Bioactive amino acid compounds). Faslnamahi Giyahan-I Daruyi 2013, 12, 48–61. [Google Scholar]
- Zeljkovic, S.; Paradikovic, N.; Vinkovic, T.; Tkalec, M.; Maksimovic, I.; Haramija, J. Nutrient status, growth and proline concentration of French marigold (Tagetes patula L.) as affected by biostimulant treatment. J. Food Agric. Environ. 2013, 11, 2324–2327. [Google Scholar] [CrossRef]
- Safikhan, S.; Khoshbakht, K.; Chaichi, M.R.; Amini, A.; Motesharezadeh, B. Role of chitosan on the growth, physiological parameters and enzymatic activity of milk thistle (Silybum marianum (L.) Gaertn.) in a pot experiment. J. Appl. Red. Med. Aromat. Plants 2018, 10, 49–58. [Google Scholar] [CrossRef]
- Estaji, A.; Niknam, F. Foliar salicylic acid spraying effect on growth, seed oil content, and physiology of drought-stressed Silybum marianum L. plant. Agric. Water Manag. 2020, 234, 106116. [Google Scholar] [CrossRef]
- Ratnakumari, R.; Nagamani, A.; Sarojini, C.K.; Adinarayana, G. Effect of Trichoderma species on yield of Mentha arvensis L. Int. J. Adv. Res. (Indore) 2014, 2, 864–867. [Google Scholar] [CrossRef]
- Elansary, H.O.; Mahmoud, E.A.; El-Ansary, D.O.; Mattar, M.A. Effects of water stress and modern biostimulants on growth and quality characteristics of mint. Agronomy 2020, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Samadimatin, A.; Hani, A. Effect of ethanol and humic acid foliar spraying on morphological traits, photosynthetic pigments, and quality and quantity of essential oil content of Dracocephalum moldavica L. Iran. J. Plant Physiol. 2017, 8, 2299–2306. [Google Scholar]
- Saharkhiz, M.J.; Goudarzi, T. Folliar application of salicylic acid changes essential oil content and chemical compositions of peppermint (Mentha piperita L.). J. Essent. Oil-Bear. Plants 2014, 17, 435–440. [Google Scholar] [CrossRef]
- Santoro, M.V.; Capperllari, L.R.; Giordano, W.; Banchio, E. Plant growth-promoting effects of native Pseudomonas strains on Mentha piperita (peppermint): An in vitro study. Plant Biol. 2015, 17, 1218–1226. [Google Scholar] [CrossRef]
- Shahabivan, S.; Padash, A.; Aghaee, A.; Nasiri, Y.; Fathi Rezaei, P. Plant biostimulants (Funnerliformis mosseae and humic substances) rather than chemical fertilizer improved biochemical responses in peppermint. Iran. J. Plant Physiol. 2018, 8, 2333–2344. [Google Scholar]
- Caruso, G.; De Pacale, S.; Cozzolino, R.; Giordano, M.; El-Nakhel, C.; Cuciniello, A.; Cenvinzo, V.; Colla, G.; Rouphael, Y. Protein hydrolysate or plant extract-based biostimulants enhanced yield and quality performances of greenhouse perennial wall rocket growth in different seasons. Plants 2019, 8, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudarzian, A.; Pirbalouti, A.G.; Hossaynzadeh, M. Menthol balance of menthol/menthone, and essential oil contents of Mentha piperita L. under foliar-applied chitosan and inoculation of arbuscular mycorrhizal fungi. J. Essent. Oil-Bear. Plants 2020, 23, 1012–1021. [Google Scholar] [CrossRef]
- Praveen Kumar, G.; Desai, S.; Reddu, G.; Leo Daniel Amalraj, E.; Rasul, A.; Mir Hassan Ahmed, S.K. Seed bacterization with fluorescent Pseudomonas spp. Enhances nutrient uptake and growth of Cajanus cajan L. Commun. Soil Sci. Plant Anal. 2015, 46, 652–665. [Google Scholar] [CrossRef]
- Kaur, P.; Gupta, R.C.; Dey, A.; Malik, T.; Pandey, D.K. Optimization of salicylic acid and chitosan treatment for bitter secoiridoid and xanthone glycosides production in shoot cultures of Swertia paniculata using response surface methodology an artificial neural network. BMC Plant Biol. 2020, 20, 225. [Google Scholar] [CrossRef] [PubMed]
- Bektas, N.; Senel, B.; Yenilmez, E.; Ozatik, O.; Arslan, R. Evaluation of wound healing effect of chitosan-based gel formulation containing vitexin. Saudi Pharm. J. 2020, 28, 87–94. [Google Scholar] [CrossRef]
- Kaboudi, Z.; Peighambardoust, S.H.; Nourbakhsh, H.; Soltanzadeh, M. Nanoencapsulation of Chavir (Ferulago angulata) essential oil in chitosan carrier: Investigating physicochemical, morphological, thermal, antimicrobial and release profile of obtained nanoparticles. Int. J. Biol. Macromol. 2023, 237, 123963. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Yan, R.; Zhou, X.; Li, X.; Sang, S.; McClements, D.J.; Chen, L.; Long, J.; Jiao, A.; Wang, J.; et al. Preparation of robust, water-resistant, antibacterial, and antioxidant chitosan-based films by incorporation of cinnamaldehyde-tannin acid-zinc acetate nanoparticles. Food Chem. 2023, 419, 136004. [Google Scholar] [CrossRef]
- Yadav, N.; Mudgal, D.; Anand, R.; Jindal, S.; Mishra, V. Recent development in nanoencapsulation and delivery of natural bioactives through chitosan scaffolds for various biological applications. Int. J. Biol. Macromol. 2022, 220, 537–572. [Google Scholar] [CrossRef]
- Mujtaba, M.; Ali, Q.; Yilmaz, B.A.; Kurubas, M.S.; Ustun, H.; Erkan, M.; Kaya, M.; Cicek, M.; Oner, E.T. Understanding the effects of chitosan, chia mucilage, levan based composite coatings on the shelf life of sweet cherry. Food Chem. 2023, 416, 135816. [Google Scholar] [CrossRef]
- Das, S.; Chaudhari, A.K.; Singh, V.K.; Dwivedy, A.K.; Dubey, N.K. Chitosan based encapsulation of Valeriana officinalis essential oil as edible coating for inhibiting of fungi and aflatoxin B1 contamination, nutritional quality improvement, and shelf life extension of Citrus sinensis fruits. Int. J. Biol. Macromol. 2023, 233, 123565. [Google Scholar] [CrossRef]
- Shu, H.; Ge, Y.-H.; Xu, X.-Y.; Guo, P.-Q.; Luo, Z.-M.; Du, W.; Chang, C.; Liu, R.-L.; Fu, Q. Hybrid-type carbon microcoil-chitosan composite for selective extraction of aristolochic acid I from Aristolochiaceae medicinal plants. J. Chromatogr. A 2018, 1561, 13–19. [Google Scholar] [CrossRef]
- Qiu, H.; Su, L.; Wang, H.; Zhang, Z. Chitosan elicitation of saponin accumulation in Psammosilene tunicoides hairy roots by modulating antioxidant activity oxide production and differential gene expression. Plant Physiol. Biochem. 2021, 166, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Hawrylak-Nowak, B.; Dresler, S.; Rubinowska, K.; Matraszek-Gawron, R. Eliciting effect of foliar application of chitosan lactate on the phytochemical properties of Ocimum basilicum L. and Melissa officinalis L. Food Chem. 2021, 342, 128358. [Google Scholar] [CrossRef] [PubMed]
- Aldayel, M.F. The synergistic effect of capsicum aqueous extract (Capsicum annuum) and chitosan against multidrug-resistant bacteria. J. King Saud Univ. Sci. 2023, 35, 102438. [Google Scholar] [CrossRef]
- Khodadadi, F.; Ahmadi, F.S.; Talebi, M.; Moshtaghi, N.; Matkowski, A.; Szumny, A.; Rahimmalek, M. Essential oil composition, physiological and morphological in Salvia abrotanoides and S. yangii under drought stress and chitosan treatments. Ind. Crop. Prod. 2022, 187 Pt B, 115429. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Zhou, X.; Wang, Y.; Liang, Y.; Luo, B.; Dai, Y.; Wei, Z.; Li, S.; He, R.; et al. Molecular mechanism of plant elicitor daphnetin-carboxymethyl chitosan nanoparticles against Ralstonia solanacearum by activating plant system resistance. Int. J. Biol. Macromol. 2023, 241, 124580. [Google Scholar] [CrossRef]
- Mathew, R.; Sankar, P.D. Effect of methyl jasmonate and chitosan on growth characteristics of Ocimum basilicum L., Ocimum santum L. and Ocimum gratissimum L. cell suspension cultures. Afr. J. Biotechnol. 2012, 11, 4759–4766. [Google Scholar] [CrossRef]
- Pirbalouti, A.G.; Malekpoor, F.; Salimi, A.; Golparvar, A. Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil (Ocimum ciliatum and Ocimum basilicum) under reduced irrigation. Sci. Hortic. 2017, 217, 114–122. [Google Scholar] [CrossRef]
- Sheikhalipour, M.; Mohammadi, S.A.; Esmaielpour, B.; Spanos, A.; Mahmoudi, R.; Mahdavinia, G.R.; Milani, M.H.; Kahnamoei, A.; Nouraein, M.; Antoniou, C.; et al. Seedling nanopriming with selenium-chitosan nanoparticles mitigates the adverse effects of salt stress by inducing multiple defence pathways in bitter melon plants. Int. J. Biol. Macromol. 2023, 242, 124923. [Google Scholar] [CrossRef]
- Limpanavech, P.; Chaiyasuta, S.; Vongpromek, R.; Pichyangkura, R.; Khunwasi, C.; Chadchawan, S.; Lotrakul, P.; Bunjongrat, R.; Chaidee, A.; Bangyeekhun, T. Chitosan effects on floral production, gene expression, and anatomical changes in the Dendrobium orchid. Sci. Hortic. 2008, 116, 65–72. [Google Scholar] [CrossRef]
- Kahromi, S.; Khara, J. Chitosan stimulates secondary metabolites production and nutrient uptake in medicinal plant Dracocephalum kotschyi. J. Sci. Food Agric. 2020, 101, 3898–3907. [Google Scholar] [CrossRef] [PubMed]
- Razavizadeh, R.; Adabavazeh, F. In vitro application of chitosan effects on essential oil content and physiological characteristics of Dracocephalum kotschyi Boiss. J. Plant Process. Funct. 2019, 9, 23–30. [Google Scholar]
- Dar, T.A.; Uddin, M.; Khan, M.M.; Ali, A.; Mir, S.R.; Varshney, L. Effect of Co-60 gamma irradiated chitosan and phosphorus fertilizer on growth, yield and trigonelline content of Trigonella foenum-graecum L. J. Radiat. Res. Appl. Sci. 2015, 8, 446–458. [Google Scholar] [CrossRef] [Green Version]
- Angouti, F.; Nourafcan, H.; Saeedi Sar, S.; Asadi, A.; Ebrahimi, R. The effect of different levels of chitosan and salicylic acid on morphological traits of the medicinal plant Galega (Galega officinalis L.). J. Crop. Improv. 2022, 24, 1341–1358. [Google Scholar] [CrossRef]
- Abdul-Hafeez, E.Y.; Ibrahim, O.H.M. Effects of chitosan and BABA foliar application on flowering and chemical characteristics of German chamomile Bode-gold. S. Afr. J. Bot. 2021, 139, 241–245. [Google Scholar] [CrossRef]
- Varghese, L.; Thomas, G. Chitosan triggers tolerance to Pythium myriotylum infection in ginger (Zingiber officinale) by modulating multiple defense signaling pathways. Physiol. Mol. Plant Pathol. 2023, 125, 101983. [Google Scholar] [CrossRef]
- Samany, S.M.A.; Pirbalouti, A.G.; Malekpoor, F. Phytochemical and morpho-physiological changes of hyssop in response to chitosan-spraying under different levels of irrigation. Ind. Crops Prod. 2022, 176, 114340. [Google Scholar] [CrossRef]
- Govindaraju, S.; Arulselvi, P.I. Effect of cytokinin combined elicitors (L-phenylalanine, salicylic acid and chitosan) on in vitro propagation, secondary metabolites and molecular characterization of medicinal herb- Coleus aromaticus Benth (L.). J. Saudi Soc. Agric. Sci. 2018, 17, 435–444. [Google Scholar] [CrossRef] [Green Version]
- Elguea-Culebras, G.O.D.; Bourbon, A.; Costa, M.J.; Munoz-Tebar, N.; Carmona, M.; Molina, A.; Sanchez-Vioque, R.; Berruga, M.I.; Vicente, A.A. Optimization of a chitosan solution as potential carrier for the incorporation of Santolina chamaecyparissus L. solid by product in an edible vegetal coating on Manchego cheese. Food Hydrocoll. 2019, 89, 272–282. [Google Scholar] [CrossRef] [Green Version]
- Coskun, Y.; Duran, R.E.; Ozgul, Z.; Yavuz, N.; Turkmen, K. Chitosan improves plant regeneration in callus culture of a medicinal herb Melissa officinalis L. J. Biotechnol. 2015, 208, S107. [Google Scholar] [CrossRef]
- Fooladi vanda, G.; Shabani, L.; Razavizadeh, R. Chitosan enhances rosmarinic acid production in shoot cultures of Melissa officinalis L. through the induction of methyl jasmonate. Bot. Stud. 2019, 60, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zubair, M.; Ramzani, P.M.A.; Rasool, B.; Khan, M.A.; ur-Rahman, M.; Akhtar, I.; Turan, V.; Tauqeer, H.M.; Farhad, M.; Khan, S.A.; et al. Efficacy of chitosan-coated textile waste biochar applied to Cd-polluted soil for reducing Cd mobility in soil and its distribution in moringa (Moringa oleifera L.). J. Environ. Manag. 2021, 284, 112047. [Google Scholar] [CrossRef] [PubMed]
- Giglou, M.T.; Giglou, R.H.; Esmaeilpour, B.; Azarmi, R.; Padash, A.; Falakian, M.; Sliwka, J.; Gohari, G.; Lajayer, H.M. A new method in mitigation of drought stress by chitosan-coated iron oxide nanoparticles and growth stimulant in peppermint. Ind. Crops Prod. 2022, 187 Pt A, 115286. [Google Scholar] [CrossRef]
- Mirheidari, F.; Hatami, M.; Ghorbanpour, M. GA3 and chitosan nano-fiber on physio-morphological characteristics and metabolite contents in roselle (Hibiscus sabdariffa L.). S. Afr. J. Bot. 2022, 145, 323–333. [Google Scholar] [CrossRef]
- Alizadeh, A.; Moghaddam, M.; Asgharzade, A.; Sourestani, M.M. Phytochemical and physiological response of Satureja hortensis L. to different irrigation regimes and chitosan application. Ind. Crops Prod. 2020, 158, 112990. [Google Scholar] [CrossRef]
- Gohari, G.; Farhadi, H.; Panahirad, S.; Zareei, E.; Labib, P.; Jafari, H.; Mahdavinia, G.; Hassanpouraghdam, M.B.; Ioannou, A.; Kulak, M.; et al. Mitigating of salinity impact in spearmint plants through the application of engineered chitosan-melatonin nanoparticles. Int. J. Biol. Macromol. 2023, 224, 893–907. [Google Scholar] [CrossRef]
- Tocci, N.; Ferrari, F.; Santamaria, A.R.; Valletta, A.; Rovardi, I.; Pasqua, G. Chitosan enhances xanthone production in Hypericum perforatum subsp. angustifolium cell cultures. Nat. Prod. Res. 2010, 24, 286–293. [Google Scholar] [CrossRef]
- Sayed, T.E.; Ahmed, E.-S.S. Elicitation promoability with gamma irradiation, chitosan and yeast to perform sustainable and inclusive development for Marjoram under organic agriculture. Sustainability 2022, 14, 9608. [Google Scholar] [CrossRef]
- Kamalipourazad, M.; Sharifi, M.; Maivan, H.Z.; Behmanesh, M.; Chashimi, N.A. Induction of aromatic amino acids and phenylpropanoid compounds in Scrophularia striata Boiss. cell culture in response to chitosan-induced oxidative stress. Plant Physiol. Biochem. 2016, 107, 374–384. [Google Scholar] [CrossRef]
- Bistgani, Z.E.; Siadat, S.A.; Bakhshandeh, A.; Pirbalouti, A.G.; Hashemi, M. Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. Crop. J. 2017, 5, 407–415. [Google Scholar] [CrossRef]
- Momeni, M.; Pirbalouti, A.G.; Mousavi, A.; Naghdi Badi, H. Effect of foliar applications of salicylic acid and chitosan on the essential oil of Thymbra spicata L. under different soil moisture conditions. J. Essent. Oil Bear. Plants 2020, 23, 1142–1153. [Google Scholar] [CrossRef]
- Dowom, S.A.; Karimian, Z.; Dehnavi, M.M.; Samiei, L. Chitosan nanoparticles improve physiological and biochemical responses of Salvia abrotanoides (Kar.) under drought stress. BMC Plant Biol. 2022, 22, 364. [Google Scholar] [CrossRef]
- Sathiyabama, M.; Bernstein, N.; Anusuya, S. Chitosan elicitation for increased curcumin production and stimulation of defence response in turmeric (Curcuma longa L.). Ind. Crop. Prod. 2016, 89, 87–94. [Google Scholar] [CrossRef]
- Silva, E.A.D.; Paula, A.C.C.F.F.D.; Silva, V.N.B.; Alvarenga, A.A.D.; Bertolucci, S.K.V. Biostimulating effect of chitosan and acetic acid on the growth and profile of the essential oil of Mentha arvensis L. Ind. Crops Prod. 2021, 171, 113987. [Google Scholar] [CrossRef]
- Heidari, J.; Amooaghaie, R.; Kiani, S. Impact of chitosan on nickel bioavailability in soil, the accumulation and tolerance of nickel in Calendula triptrocarpa. Int. J. Phytoremediat. 2020, 22, 1175–1184. [Google Scholar] [CrossRef] [PubMed]
- Darvill, A.; Augur, C.; Bergmann, C.; Carlson, R.W.; Cheong, J.-J.; Eberhard, S.; Hahn, M.G.; Lo, V.-M.; Marfa, V.; Meyer, B.; et al. Oligosaccharins-oligosaccharides that regulate growth, development and defence responses in plants. Glycobiology 1992, 2, 181–198. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Ramonell, K.; Somerville, S.; Stacey, G. Characterization of early, chitin-induced gene expression in Arabidopsis. Mol. Plant Microbe Interact. 2002, 15, 963–970. [Google Scholar] [CrossRef] [Green Version]
- Moenne, A.; Gonzalez, A. Chitosan-, alginate- carrageenan-derived oligosaccharides stimulate defense against biotic and abiotic stresses, and growth in plants: A historical perspective. Carbohydr. Res. 2021, 503, 108298. [Google Scholar] [CrossRef]
- El-Serafy, R.S.; El-Sheshtawy, A.-N.; Dahab, A.A.; Al-Ashkar, I. Can yeast extract and chitosan-oligosaccharide improve fruit yield and modify the pharmaceutical active ingredients of organic fennel? Ind. Crop. Prod. 2021, 173, 114130. [Google Scholar] [CrossRef]
- Liu, Y.; Wisniewski, M.; Kennedy, J.F.; Jiang, Y.; Tang, J.; Liu, J. Chitosan and oligochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage. Carbohydr. Polym. 2016, 151, 474–479. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.; Xu, M.; Liu, Y.; Zhang, C.; Zhang, Y.; Peng, X.; Li, Z.; Qin, S.; Xing, K. Novel antifungal mechanism of oligochitosan by triggering apoptosis through a metacaspase-dependent mitochondrial pathway in Ceratocystis fimbriata. Carbohydr. Polym. 2020, 245, 116574. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhao, X.; Wang, W.; Yin, H.; Xu, J.; Bai, X.; Du, Y. Inhibition effect on tobacco mosaic virus and regulation effect on calreticulin of oligochitosan in tobacco by induced Ca2+ influx. Carbohydr. Polym. 2010, 82, 136–142. [Google Scholar] [CrossRef]
- Ahmad, B.; Dar, T.A.; Khan, M.M.A.; Ahmad, A.; Rinklebe, J.; Chen, Y.; Ahmad, P. Oligochitosan fortifies antioxidative and photosynthetic metabolism and enhances secondary metabolite accumulation in arsenic-stressed peppermint. Front. Plant. Sci. 2022, 13, 987746. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Kjaer, A.; Frette, X.C.; Du, Y.; Christensen, L.P.; Jensen, M.; Grevsen, K. Chitosan oligosaccharide and salicylic acid up-regulate gene expression differently in relation to the biosynthesis of artemisinin in Artemisia annua L. Process. Biochem. 2012, 47, 1559–1562. [Google Scholar] [CrossRef]
- Takagi, M.; Hotamori, K.; Naito, K.; Matsukawa, S.; Egusa, M.; Nishizawa, Y.; Kanno, Y.; Seo, M.; Ifuku, S.; Mine, A.; et al. Chitin-induced systemic disease resistance in rice requires both OsCERK1 and OsCEBiP and is mediated via perturbation of cell-wall biogenesis in leaves. Front. Plant Sci. 2022, 13, 1064628. [Google Scholar] [CrossRef] [PubMed]
- Suwanchaikasen, P.; Nie, S.; Idnurm, A.; Selby-Pham, J.; Walker, R.; Boughton, B.A. Effects of chitin and chitosan on root growth, biochemical defense response and exudate proteome of Cannabis sativa. Plant Environ. Interact. 2023, 4, 115–133. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. Barberry (Berberis vulgaris), a medicinal fruit and food with traditional and modern pharmaceutical uses. Isr. J. Plant Sci. 2021, 68, 1–11. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. Natural dietary and medicinal plants with anti-obesity therapeutics activities for treatment and prevention of obesity during lock down and in post-Covid-19 era. Appl. Sci. 2021, 11, 7889. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Lin, M. Research progress of fermented functional foods and protein factory-microbial fermentation technology. Fermentation 2022, 8, 688. [Google Scholar] [CrossRef]
- Cretoiu, M.S.; Korthals, G.W.; Visser, J.H.M.; Elsas, D.V. Chitin amendment increases soil suppessiveness toward plan pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental agricultural field. Appl. Environ. Microbiol. 2013, 79, 5291–5301. [Google Scholar] [CrossRef] [Green Version]
- Liopa-Tsakalidi, A.; Chalikiopoulos, D.; Papasavvas, A. Effect of chitin on growth and chlorophyll content of two medicinal plants. J. Med. Plant. Res. 2010, 4, 499–508. [Google Scholar]
- Liopa-Tsakalidi, A.; Barouchas, P.E. Salinity, chitin and GA3 effects on seed germination of chervil (Anthriscus cerefolium). Aust. J. Crop Sci. 2011, 5, 973–978. [Google Scholar]
- Kanawi, M.A.; Haydar, M.A.; Radhi, W.N. Effect of chitin and chitosan in improvement of plant growth and anti-fungal activity. Egypt. J. Bot. 2021, 61, 513–519. [Google Scholar] [CrossRef]
- Tian, L.; Shi, S.; Ma, L.; Zhou, X.; Luo, S.; Zhang, J.; Lu, B.; Tian, C. The effect of Glomus intraradices on the physiological properties of Panax ginseng and on rhizospheric microbial diversity. J. Ginseng. Res. 2019, 43, 77–85. [Google Scholar] [CrossRef] [PubMed]
Plant | Scientific Name | Plant Family | Key Point | References |
---|---|---|---|---|
Basil | Ocimum basilicum; Ocimum ciliatum | Lamiaceae | Various amounts of chitosan had considerable impacts on the antioxidant activity and total phenol content of the extracts of two species. | [107,108] |
Chitosan could be a promising material used to reduce the adverse impacts of water stress on the growth factors of basil seedlings. | [108] | |||
Bitter melon | Momordica charantia L. | Cucurbitaceae | An application of chitosan and their conjugated forms as nanoparticles (Se-CS NPs) improved the biochemical and morphophysiological characteristics of bitter melon plants under moderate and severe salinity stress condition. | [109] |
Exogenous utilization of Se-CS NPs leads to the expression of multiple defense- and secondary metabolism-related transcripts in bitter melon plants. | [109] | |||
Dendrobium orchids | Dendrobium | Orchidaceae | Chitosan showed the ability to improve floral production of the Dendrobium. | [110] |
It also stimulated the number of vascular bundles in both young and old leaves. | [110] | |||
Dragonhead | Dracocephalum kotschyi Boiss | Lamiaceae | It was an effectual elicitor for increasing rosmarinic acid and quercetin content. | [111] |
Chitosan increased the content of apigenin noticeably. | [111] | |||
A chitosan spray had a significant influence on the principle essential oil components, such as p-cymene and thymol. | [112] | |||
Fenugreek | Trigonella foenum-graecum L. | Leguminosae | The activity of nitrate reductase and the contents of photosynthetic pigments and carbonic anhydrase enzymes were significantly increased after an application of Co-60 gamma-irradiated chitosan. | [113] |
Co-60 gamma-irradiated chitosan significantly boosted the total alkaloid content, seed yield, and trigonelline constituent. | [113] | |||
Galega | Galega officinalis L. | Leguminosae | An application of chitosan had a more optimal impact on the morphological characteristics. | [114] |
German chamomile | Matricaria recutita L. | Asteraceae | Its foliar spray in the flowering stage increased the chamomile flower number and weight per plant. | [115] |
Its usage at the rate of 40 ppm is suggested for German chamomile cultivation. | [115] | |||
Ginger | Zingiber officinale L. | Zingiberaceae | Its application induced the HR marker gene HSR203J in ginger and inhibited the expression of cell death markers AIF2, HIN1, and AIF1. | [116] |
Chitosan has the potential to prime standing ginger plants against soft rot disease and facilitate appropriate sustainable management of ginger soft rot (Pythium myriotylum). | [116] | |||
Hyssop | Hyssopus officinalis L. | Lamiaceae | The results show that spraying chitosan at 2.5 g/L significantly increased the measurements of the canopy diameter, inflorescence height, plant height, numbers of auxiliary and flowering branches, dry herbal weight, and the components of photosynthesis pigments under various levels of irrigation frequencies. | [117] |
The maximum values of the volatile oil yield were related to the chitosan-spraying in a reduced irrigation condition. | [117] | |||
Chitosan had noticeable effects on the percentage of (cis- and trans-) pinocamphone, as the predominant components of hyssop volatile oil, under a reduced irrigation condition. | [117] | |||
Indian borage (Indian mint) | Coleus aromaticus Benth (L.) | Lamiaceae | A mixture of Chitosan and cytokinin showed a positive impact on multiple shoot induction than cytokinin alone. | [118] |
Its application also increased the percentage of alkaloids, flavonoids, terpenoids, saponins, tannins, and total phenolic content. | [118] | |||
Lavender-cotton | Santolina chamaecyparissus L. | Asteraceae | Its application improved antifungal capacities and increased some physical characteristics. | [119] |
Lemon balm | Melissa officinalis L. | Lamiaceae | It increased plant regeneration in a callus culture of a medicinal herb. | [120] |
Its consumption consists of the trigger of defense-related enzymes; stimulated expression of rosmarinic acid synthase (RAS) genes and tyrosine aminotransferase (TAT); and stimulation of methyl jasmonate biosynthesis. | [121] | |||
Milk thistle | Silybum marianum (L.) Gaertn. | Asteraceae | Significant reduction of the negative impact of salinity and increased plant growth and improved physiological characteristics occurred after its application. | [83] |
Its usage at 0.01% increased the chlorophyll and total chlorophyll content. | [83] | |||
Its application promoted the enzymatic activity and reduced H2O2 components in the leaves. | [83] | |||
Chitosan may protect plants from salt stress damage by regulation of the intracellular ion component and through increasing the capability of antioxidant enzyme activities. | [83] | |||
Moringa | Moringa oleifera L. | Moringaceae | Chitosan improved the plant growth parameters: root length, root fresh weight, shoot length, shoot fresh weight, shoot dry weight, root dry weight, and contents of chlorophyll-b and chlorophyll-a. | [122] |
Peppermint | Mentha piperita L. | Lamiaceae | Under drought stress, the usage of chitosan-coated iron oxide nanoparticles (Fe-CTs NPS) increased essential oils production in the mint plant. | [123] |
Under foliar spray of chitosan, the maximum constituents of the essential oil yield, menthol, and the balance of menthol/menthone of the essential oil from peppermint were achieved from the peppermint plants. | [92] | |||
Roselle | Hibiscus sabdariffa L. | Malvaceae | Chitosan nanofiber (CNF) treatments affected the plant growth regulators’ impact on most of the traits evaluated. | [124] |
It could be applied for enhancement of the number of calyxes, plant height, total chlorophyll, β-carotene, antioxidant activity, and flavonoids. | [124] | |||
Savory | Satureja hortensis L. | Lamiaceae | Under severe water stress, its application improved the total soluble sugar, antioxidant activity, total phenolic and proline contents, and essential oil content of the seedlings. | [125] |
Under water stress conditions, it may have positive influences on the essential oil quality and quantity, osmotic adjustment, antioxidant activity, and growth of summer savory. | [125] | |||
Spearmint | Mentha spicata L. | Lamiaceae | Chitosan–melatonin nanoparticles could be used as an innovative protective agent to reduce the impact of salinity in spearmint plants. | [126] |
St. John’s wort | Hypericum perforatum L. | Clusiaceae | It showed a significant rise in xanthone production and a simultaneous decline in flavonoid production. | [127] |
Chitosan also led to the production of 1,7-dihydroxyxanthone (euxanthone). | [127] | |||
Sweet marjoram | Majorana hortensis Moench | Lamiaceae | Its application improved the marjoram biomass and secondary metabolites’ assimilation. | [128] |
Tashenehdari | Scrophularia striata Boiss. | Scrophulariaceae | The increase in amino acid content and phenylalanine ammonia-lyase (PAL) activity was related to rises in the phenolic components after application of chitosan treatments. | [129] |
Chitosan, by up-regulating the PAL gene, increases the production of the phenylpropanoid content. | [129] | |||
Thyme | Thymus daenensis Celak | Lamiaceae | Under the mild stress, the maximum essential oil yield was related to the utilization of 400 μL−1 chitosan. | [130] |
Mediterranean thyme | Thymbra spicata L. | Lamiaceae | The carvacrol level in the essential oil escalated in the plants after application of chitosan. | [131] |
The spray of chitosan could reduce the harmful impacts of water shortage on the oil yield and the carvacrol percentage. | [131] | |||
Russian sage | Salvia abrotanoides (Kar.) Sytsma | Lamiaceae | A chitosan foliar application can increase drought tolerance. | [132] |
The leaves showed significant antioxidant enzyme activity under drought stress using chitosan nanoparticles. | [132] | |||
Turmeric | Curcuma longa L. | Zingiberaceae | Its application improved the production of curcumin. | [133] |
The chitosan could boost the activity or protease inhibitor in rhizomes and leaves. | [133] | |||
Wild mint | Mentha arvensis L. | Lamiaceae | The 0.125% content of chitosan provides a higher accumulation of roots, shoots, and total dry weight. The maximum menthol content is obtained after application of 0.06% chitosan. | [134] |
Winged-fruited marigold | Calendula tripterocarpa Rupr. | Asteraceae | The chitosan application also increased the growth parameters, carotenoids, and levels of chlorophyll a, b under both Ni stress and normal conditions. | [135] |
Chitosan decreased the level of malondialdehyde and the activities of catalase (CAT) and superoxide dismutase (SOD) in the shoot and roots under Ni stress. | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Shahrajabian, M.H.; Petropoulos, S.A.; Shahrajabian, N. Developing Sustainable Agriculture Systems in Medicinal and Aromatic Plant Production by Using Chitosan and Chitin-Based Biostimulants. Plants 2023, 12, 2469. https://doi.org/10.3390/plants12132469
Sun W, Shahrajabian MH, Petropoulos SA, Shahrajabian N. Developing Sustainable Agriculture Systems in Medicinal and Aromatic Plant Production by Using Chitosan and Chitin-Based Biostimulants. Plants. 2023; 12(13):2469. https://doi.org/10.3390/plants12132469
Chicago/Turabian StyleSun, Wenli, Mohamad Hesam Shahrajabian, Spyridon A. Petropoulos, and Nazanin Shahrajabian. 2023. "Developing Sustainable Agriculture Systems in Medicinal and Aromatic Plant Production by Using Chitosan and Chitin-Based Biostimulants" Plants 12, no. 13: 2469. https://doi.org/10.3390/plants12132469
APA StyleSun, W., Shahrajabian, M. H., Petropoulos, S. A., & Shahrajabian, N. (2023). Developing Sustainable Agriculture Systems in Medicinal and Aromatic Plant Production by Using Chitosan and Chitin-Based Biostimulants. Plants, 12(13), 2469. https://doi.org/10.3390/plants12132469