The Application of Arbuscular Mycorrhizal Fungi as Microbial Biostimulant, Sustainable Approaches in Modern Agriculture
Abstract
:1. Introduction
2. Biostimulant Categories
3. Microbial Biostimulants
4. Mechanisms of Microbial Biostimulant Action
5. Case Studies and Practical Application of Microbial Biostimulants
6. Arbuscular Mycorrhizal Fungi (AMF)
7. Modes of Action of Arbuscular Mycorrhizal Fungi (AMF)
8. Practical Application of Microbial Biostimulants on Crops
9. Conclusions and Future Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, W.; Shahrajabian, M.H. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health. Molecules 2023, 28, 1845. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Shahrajabian, M.H.; Petropoulos, S.A.; Shahrajabian, N. Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants. Plants 2023, 12, 2469. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Cheng, Q.; Sun, W. The effects of amino acids, phenols and protein hydrolysates as biostimulants on sustainable crop production and alleviated stress. Recent Pat. Biotechnol. 2022, 16, 319–328. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Petropoulos, S.A.; Sun, W. Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful paradigms. Horticulturae 2023, 9, 193. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Five important seeds in traditional medicine, and pharmacological benefits. Seeds 2023, 2, 290–308. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Karapouloutidou, S.; Gasparatos, D. Effects of biostimulant and organic amendment on soil properties and nutrient status of Lactuca sativa in a Calcareous saline-sodic soil. Agriculture 2019, 9, 164. [Google Scholar] [CrossRef]
- Tejada, M.; Benitez, C.; Gomez, I.; Parrado, J. Use of biostimulants on soil restoration: Effects on soil biochemical properties and microbial community. Appl. Soil Ecol. 2011, 49, 11–17. [Google Scholar] [CrossRef]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in plants science: A global perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef]
- Philibert, T.; Lee, B.H.; Fabien, N. Current status and new perspectives on chitin and chitosan as functional biopolymers. Appl. Biochem. Biotechnol. 2017, 181, 1314–1337. [Google Scholar] [CrossRef]
- Meramo-Hurtado, S.I.; Gonzalez-Delgado, A.D. Application of techno-economic and sensitivity analyses as decision-making tools for assessing emerging large-scale technologies for production of chitosan-based adsorbents. ACS Omega 2020, 5, 17601–17610. [Google Scholar] [CrossRef] [PubMed]
- Koleska, I.; Hasanagic, D.; Todorovic, V.; Murtic, S.; Klokic, I.; Paradikovic, N.; Kukavica, B. Biostimulants prevents yield loss and reduces oxidative damage in tomato plants grown on reduced NPK nutrition. J. Plant Interact. 2017, 12, 209–218. [Google Scholar] [CrossRef]
- Shehata, S.A.; AbdelGawad, K.F.; Elmogy, M. Quality and shelf-life of onion bulbs influenced by biostimulants. Int. J. Veg. Sci. 2017, 23, 362–371. [Google Scholar] [CrossRef]
- Semida, W.M.; El-Mageed, T.A.A.; Hemida, K.; Rady, M.M. Natural bee-honey based biostimulants confer salt tolerance in onion via modulation of the antioxidant defense system. J. Hortic. Sci. Biotechnol. 2019, 94, 632–642. [Google Scholar] [CrossRef]
- Anbarasi, D.; Haripriya, K. Response of aggregatum onion (Allium cepa L. var. aggregatum Don.) to organic inputs, biofertilizer and biostimulants. Plant Arch. 2020, 20, 759–762. [Google Scholar]
- Arthur, G.D.; Aremua, A.O.; Kulkarni, M.G.; Okem, A.; Stirk, W.A.; Davies, T.C.; Van Staden, J. Can the use of natural biostimulants be a potential means of phytoremediating contaminated soils from goldmines in South Africa? Int. J. Phytoremediation 2015, 18, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Wszelaczynska, E.; Szczepanek, M.; Poberezny, J.; Kazula, M.J. Effect of biostimulant application and long-term storage on the nutritional value of carrot. Hortic. Bras. 2019, 37, 451–457. [Google Scholar] [CrossRef]
- Halpern, M.; Bar-Tal, A.; Ofek, M.; Minz, D.; Muller, T.; Yermiyahu, U. The use of biostimulants for enhancing nutrient uptake. Adv. Agron. 2015, 130, 141–174. [Google Scholar] [CrossRef]
- Lucini, L.; Rouphael, Y.; Cardarelli, M.; Canaguier, R.; Kumar, P.; Colla, G. The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline condition. Sci. Hortic. 2015, 182, 124–133. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, A.; Plexida, S.; Chrysargyris, A.; Tzortzakis, N.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R. Biostimulants application alleviates water stress effects on yield and chemical composition of greenhouse green bean (Phaseolus vulgaris L.). Agronomy 2020, 10, 181. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Tzortzakis, N.; Petropoulos, S.A. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants. Biomolecules 2021, 11, 819. [Google Scholar] [CrossRef] [PubMed]
- Joly, P.; Calteau, A.; Wauquier, A.; Dumas, R.; Beuvin, M.; Vallenet, D.; Crovadore, J.; Cochard, B.; Lefort, F.; Berthon, J.-Y. From strain characterization to field authorization: Highlights on Bacillus velezensis strain B2 beneficial properties for plants and its activities on phytopathogenic fungi. Microorganisms 2021, 9, 1924. [Google Scholar] [CrossRef] [PubMed]
- Tomas, M.S.J.; Carrasco, M.G.; Lobo, C.B.; Alessandrello, M.J.; Sanchez, L.; Ferrero, M.A. PAH removal simultaneous and sequential inoculation of Pseudomonas monteilii P26 and Gordonia sp. H19 in the presence of biostimulants. Int. Biodeterior. Biodegrad. 2019, 144, 104752. [Google Scholar] [CrossRef]
- Barros-Rodriguez, A.; Rangseekawe, P.; Lasudee, K.; Pathom-aree, W.; Manzanera, M. Regulatory risks associated with bacteria as biostimulants and biofertilizers in the frame of the European Regulation (EU) 2019/1009. Sci. Total Environ. 2020, 740, 140239. [Google Scholar] [CrossRef] [PubMed]
- Mickan, B.S.; Alsharmani, A.R.; Solaiman, Z.M.; Leopold, M.; Abbott, L.K. Plant-dependent soil bacterial responses following amendment with a multispecies microbial biostimulant compared to rock mineral and chemical fertilizers. Front. Plant Sci. 2021, 11, 550169. [Google Scholar] [CrossRef]
- Hart, M.M.; Reader, R.J. Taxonomic basis for varition in the colonizatio strategy of arbuscular mycorrhizal fungi. N. Phytol. 2002, 153, 335–344. [Google Scholar] [CrossRef]
- Yang, H.; Zang, Y.; Yuan, Y.; Tang, J.; Chen, X. Selectivity by host plants affects the distribution of arbuscular mycorrhizal funi: Evidence from ITS rDNA sequence metadata. BMC Evol. Biol. 2012, 12, 50. [Google Scholar] [CrossRef]
- Cruz, C.; Vishwakarma, K.; Kumar, D.; Varma, A. (Eds.) Soil Nitrogen Ecology; Springer Nature Switzerland AG: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Spatafora, J.W.; Chang, Y.; Benny, G.L.; Lazarus, K.; Smith, M.E.; Berbee, M.L.; Bonito, G.; Corradi, N.; Grigoriev, I.; Gryganskyi, A.; et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 2016, 108, 1028–1046. [Google Scholar] [CrossRef]
- Redecker, D.; Schussler, A.; Stockinger, H.; Sturmer, S.L.; Morton, J.B.; Walker, C. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 2013, 23, 515–531. [Google Scholar] [CrossRef]
- Zhu, B.; Gao, T.; Zhang, D.; Fing, K.; Li, C.; Ma, F. Functions of arbuscular mycorrhizal fungi in horticultural crops. Sci. Hortic. 2022, 303, 111219. [Google Scholar] [CrossRef]
- Cui, X.; Jia, B.; Diao, F.; Li, X.; Xu, J.; Zhang, Z.; Li, F.Y.; Guo, W. Transcriptomic analysis reveals the molecular mechanisms of arbuscular mycorrhizal fungi and nitrilotriacetic acid on Suaeda salsa tolerance to combined stress of cadmium and salt. Process Saf. Environ. Prot. 2022, 160, 210–220. [Google Scholar] [CrossRef]
- Sales, L.R.; Silva, A.O.; Sales, F.R.; Rodrigues, T.L.; Barbosa, M.V.; Santos, J.V.D.; Kemmelmeier, K.; Siqueira, J.O.; Carneiro, M.A.C. On farm inoculation of native arbuscular mycorrhizal fungi improves efficiency in increasing sugarcane productivity in the field. Rhizosphere 2022, 22, 100539. [Google Scholar] [CrossRef]
- Liang, M.; Wu, Y.; Zhao, Q.; Jiang, Y.; Sun, W.; Liu, G.; Ma, L.; Xue, S. Secondary vegetation succession on the Loess Plateau altered the interaction between arbuscular mycorrhizal fungi and nitrogen-fixing bacteria. For. Ecol. Manag. 2023, 530, 120744. [Google Scholar] [CrossRef]
- Paymaneh, Z.; Sarcheshmehpour, M.; Mohammadi, H.; Hesni, M.A. Vermicompost and/or compost and arbuscular mycorrhizal fungi are conducive to improving the growth of pistachio seedlings to drought stress. Appl. Soil Ecol. 2023, 182, 104717. [Google Scholar] [CrossRef]
- Rafiee, H.; Badi, H.N.; Mehrafarin, A.; Qaderi, A.; Zarinpanjeh, N.; Sekara, A.; Zand, E. Application of plant biostimulants as new approach to improve the biological responses of medicinal plants—A critical review. J. Med. Plants. 2016, 15, 6–39. [Google Scholar]
- Bosi, S.; Negri, L.; Accorsi, M.; Baffoni, L.; Gaggia, F.; Gioia, D.D.; Dinelli, G.; Marotti, I. Biostimulants for sustainable management of sport turfgrass. Plants 2023, 12, 539. [Google Scholar] [CrossRef]
- Vasconsuelo, A.; Boland, R. Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci. 2007, 172, 861–875. [Google Scholar] [CrossRef]
- Ahemad, M.; Kibret, M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ. Sci. 2014, 26, 1–20. [Google Scholar] [CrossRef]
- Perez-Montano, F.; Alias-Villegas, C.; Bellogin, R.; del Cerro, P.; Espuny, M.; Jimenez-Guerrero, I.; Lopez-Baena, F.; Ollero, F.; Cubo, T. Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiol. Res. 2014, 169, 325–336. [Google Scholar] [CrossRef]
- Lugtenberg, B.; Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 2009, 63, 541–556. [Google Scholar] [CrossRef]
- De Vries, F.T.; Griffiths, R.I.; Knight, C.G.; Nicolitch, O.; Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 2020, 368, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Rouphael, Y.; Colla, G. Toward a sustainable agriculture through plant biostimulants: From experimental data to practical applications. Agronomy 2020, 10, 1461. [Google Scholar] [CrossRef]
- Askari-Khorasgani, O.; Hatterman-Valenti, H.; Pardo, F.B.F.; Pessarakli, M. Plant and symbiont metabolic regulation and biostimulants application improve symbiotic performance and cold acclimation. J. Plant Nutr. 2019, 42, 2151–2163. [Google Scholar] [CrossRef]
- Massa, D.; Lenzi, A.; Montoneri, E.; Ginepro, M.; Prisa, D.; Burchi, G. Plant response to biowaste soluble hydrolysates in hibiscus grown under limiting nutrient availability. J. Plant Nutr. 2017, 41, 396–409. [Google Scholar] [CrossRef]
- Kloepper, J.W.; Ryu, C.-M.; Zhang, S. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 2004, 94, 1259–1266. [Google Scholar] [CrossRef]
- Glick, R.B. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 2014, 169, 30–39. [Google Scholar] [CrossRef]
- Ruzzi, M.; Aroca, R. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci. Hortic. 2015, 196, 124–134. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, C. The importance of flavonoids and phytochemicals of medicinal plants with antiviral activities. Mini Rev. Org. Chem. 2022, 19, 293–318. [Google Scholar] [CrossRef]
- Nazir, A.; Shafiq, M.; Bareen, F. Fungal biostimulant-driven phytoextraction of heavy metals from tannery solid waste contaminated soil. Int. J. Phytoremed. 2021, 24, 47–58. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. The golden spice for life: Turmeric with the pharmacological benefits of curcuminoids components, including curcumin, bisdemethoxycurcumin, and demethoxycurcumin. Curr. Org. Synth. 2023, 20, 1–12. [Google Scholar] [CrossRef]
- Ali, B. Salicylic acid: An efficient elicitor of secondary metabolite production in plants. Biocatal. Agric. Biotechnol. 2021, 31, 101884. [Google Scholar] [CrossRef]
- Eraslan, F.; Inal, A.; Gunes, A.; Alpaslan, M. Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Sci. Hortic. 2007, 113, 120–128. [Google Scholar] [CrossRef]
- Lefevere, H.; Bauters, L.; Gheysen, G. Salicylic acid biosynthesis in plants. Front. Plant Sci. 2020, 11, 338. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Liu, H.; Wu, S. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Sci. Total Environ. 2019, 662, 501–510. [Google Scholar] [CrossRef]
- Xiang, Y.; Kang, F.; Xiang, Y.; Jiao, Y. Effects of humic acid-modified magnetic Fe3O4/MgAl-layered double hydroxide on the plant growth, soil enzyme activity, and metal availability. Ecotoxicol. Environ. Saf. 2019, 182, 109424. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzeri, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Ouni, Y.; Ghnaya, T.; Montemurro, F.; Abdelly, C.; Lakhdar, A. The role of humic substances in mitigating the harmful effects of soil salinity and improve plant productivity. Int. J. Plant Prod. 2014, 8, 353–374. [Google Scholar]
- Bah, C.S.F.; Bekhit, A.E.D.A.; Carne, A.; McConnell, M.A. Production of bioactive peptide hydrolysates from deer, sheep, and pig plasma using plant and fungal protease preparations. Food Chem. 2015, 176, 54–63. [Google Scholar] [CrossRef]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R.; Rouphael, Y. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 2015, 196, 28–38. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Lin, M. Research progress of fermented functional foods and protein factory-microbial fermentation technology. Fermentation 2022, 8, 688. [Google Scholar] [CrossRef]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Gupta, V.; Kumar, M.; Brahmbhatt, H.; Reddy, C.; Seth, A.; Jha, B. Simultaneous determination of different endogenetic plant growth regulators in common green seaweeds using dispersive liquid-liquid microextraction method. Plant Physiol. Biochem. 2011, 49, 1259–1263. [Google Scholar] [CrossRef]
- Sivasankari, S.; Venkatesalu, V.; Anantharaj, M.; Chandrasekaran, M. Effect of seaweed extract on the growth and biochemical constituents of Vigna sinensis. Bioresour. Technol. 2006, 97, 1745–1751. [Google Scholar] [CrossRef] [PubMed]
- Pizzeghello, D.; Francioso, O.; Ertani, A.; Muscolo, A.; Nardi, S. Isopentenyladenosine and cytokinin-like activity of different humic substances. J. Geochem. Explor. 2013, 129, 70–75. [Google Scholar] [CrossRef]
- Puglisi, I.; Barone, V.; Sidella, S.; Coppa, M.; Broccanello, C.; Gennari, M.; Baglieri, A. Biostimulant activity of humic-like substances from agro-industrial waste on Chlorella vulgaris and Scenedesmus quadricauda. Eur. J. Phycol. 2018, 53, 433–442. [Google Scholar] [CrossRef]
- Vujinovic, T.; Zanin, L.; Venuti, S.; Contin, M.; Ceccon, P.; Tomasi, N.; Pinton, R.; Cesco, S.; De Nobili, M. Biostimulant action of dissolved humic substances from a conventionally and an organically managed soil on nitrate acquisition in maize plants. Front. Plant Sci. 2020, 10, 1652. [Google Scholar] [CrossRef]
- Olaetxea, M.; De Hita, D.; Garcia, C.A.; Fuentes, M.; Baigorri, R.; Mora, V.; Garnica, M.; Urrutia, O.; Erro, J.; Zamarreno, A.M.; et al. Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root- and shoot- growth. Appl. Soil Ecol. 2018, 123, 521–537. [Google Scholar] [CrossRef]
- Conselvan, G.B.; Fuentes, D.; Merchant, A.; Peggion, C.; Francioso, O.; Carletti, P. Effects of humic substances and indole-3-acetic acid on Arabidopsis sugar and amino acid metabolic profile. Plant Soil 2018, 426, 17–32. [Google Scholar] [CrossRef]
- Garcia, A.C.; Olaetxea, M.; Santos, L.A.; Mora, V.; Baigorri, R.; Fuentes, M.; Zamarreno, A.M.; Berbara, R.L.; Garcia-Mina, J.M. Involvement of hormone- and ROS- signaling pathways in the beneficial action of humic substances on plants growing under normal and stressing conditions. BioMed Res. Int. 2016, 2016, 3747501. [Google Scholar] [CrossRef]
- Jindo, K.; Martim, S.A.; Navarro, E.C.; Perez-Alfocea, F.; Hernandez, T.; Garcia, C.; Aguiar, N.O.; Canellas, L.P. Root growth promotion by humic acids from composted and non-composted urban organic wastes. Plant Soil 2012, 353, 209–220. [Google Scholar] [CrossRef]
- Goni, O.; Quille, P.; O’Connell, S. Production of chitosan oligosaccharides for inclusion in a plant biostimulant. Pure Appl. Chem. 2016, 88, 881–889. [Google Scholar] [CrossRef]
- Xu, C.; Mou, B. Chitosan as soil amendment affects lettuce growth, photochemical efficiency, and gas exchange. HortTechnology 2018, 28, 476–480. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Survey on medicinal plants and herbs in traditional Iranian medicine with anti-oxidant, anti-viral, anti-microbial, and anti-inflammation properties. Lett. Drud Des. Discov. 2023, 20, 1707–1743. [Google Scholar] [CrossRef]
- Oosten, M.J.V.; Pepe, O.; Pascale, S.D.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 5. [Google Scholar] [CrossRef]
- Rai, V.K. Role of amino acids in plant responses to stresses. Biol. Plant. 2002, 45, 481–487. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Sustainable approaches to boost yield and chemical constituents of aromatic and medicinal plants by application of biostimulants. Recent Adv. Food Nutr. Agric. 2022, 13, 72–92. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Mechanism of action of collagen and epidermal growth factor: A review on theory and research methods. Mini Rev. Med. Chem. 2023, 23. [Google Scholar] [CrossRef]
- Popko, M.; Michalak, I.; Wilk, R.; Gramza, M.; Chojnacka, K.; Gorecki, H. Effect of the new plant growth biostimulants based on amino acids on yield and grain quality of winter wheat. Molecules 2018, 23, 470. [Google Scholar] [CrossRef]
- Sadak, S.H.; Abdelhamid, M.T.; Schmidhalter, U. Effect of foliar application of amino acids on plant yield and physiological parameters in bean plants irrigated with seawater. Acta. Biol. Colomb. 2015, 20, 141–152. [Google Scholar] [CrossRef]
- Ozyigit, I.I.; Kahraman, M.V.; Ercan, O. Relation between explants age, total phenol and regeneration response in tissue cultured cotton (Gossypium hirsutum L.). Afr. J. Biotechnol. 2007, 6, 3–8. [Google Scholar]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef]
- Schaafsma, G. Safety of protein hydrolysates, fractions thereof and bioactive peptides in human nutrition. Eur. J. Clin. Nutr. 2009, 63, 1161–1168. [Google Scholar] [CrossRef]
- Albertsen, A.; Ravnskov, S.; Green, H.; Jensen, D.F.; Larsen, J. Interactions between the external mycelium of the Mycorrhizal fungus, Glomus intraradices and other soil microorganisms as affected by organic matter. Soil Biol. Biochem. 2006, 38, 1008–1014. [Google Scholar] [CrossRef]
- Scervino, J.M.; Ponce, M.A.; Erra-Bassells, R.; Vierheilig, H.; Ocampo, J.A.; Godeas, A. Arbuscular mycorrhizal colonization of tomato by Gigaspora and Glomus species in the presence of root flavonoids. J. Plant Physiol. 2005, 162, 625–633. [Google Scholar] [CrossRef]
- Porcel, R.; Aroca, R.; Cano, C.; Bago, A.; Ruiz-Lozano, J.M. A gene from the Arbuscular mycorrhical fungus Glomus intraradices encoding a binding protein is up-regulated by drought stress in some mycorrhizal plants. Environ. Exp. Bot. 2007, 60, 251–256. [Google Scholar] [CrossRef]
- Schubert, M.; Mourad, S.; Fink, S.; Schwarze, F.W.M.R. Ecophysiological responses of the biocontrol agent Trichoderma atroviride (T-15603.1) to combined environmental parameters. Biol. Control 2005, 49, 84–90. [Google Scholar] [CrossRef]
- Reiter, B.; Sessitsch, A. Bacterial endophytes of the wildflower Crocus albiflorus analyzed by characterization of isolates and by a cultivation-independent approach. Can. J. Microbiol. 2006, 52, 140–149. [Google Scholar] [CrossRef]
- Niznansky, L.; Varecka, L.; Kyrstofova, S. Disruption of GABA shunt affects Trichoderma atroviride response to nutritional and environmental stimuli. Acta Chim. Solv. 2016, 9, 109–113. [Google Scholar] [CrossRef]
- Blaszczyk, L.; Siwulski, M.; Sobieralski, K.; Lisiecka, J.; Jedryczka, M. Trichoderma spp.—Application and prospects for use in organic farming and industry. J. Plant. Prot. Res. 2014, 54, 309–317. [Google Scholar] [CrossRef]
- Wuczkowski, M.; Druzhinina, I.; Gherbawy, Y.; Klug, B.; Prillinger, H.; Kubicek, C.P. Species pattern and genetic diversity of trichoderma in a mid-European, primeval floodplain-forest. Microbiol. Res. 2003, 158, 125–133. [Google Scholar] [CrossRef]
- Katenkamp, U.; Jacob, H.-E.; Kerns, G.; Dalchow, E. Hybridization of Trichoderma reesei protoplasts by electrofusion. Bioelectrochem. Bioenerg. 1989, 22, 57–67. [Google Scholar] [CrossRef]
- Keshavarz, B.; Khalesi, M. Trichoderma reesi, a superior cellulose source for industrial applications. Biofuels 2016, 7, 713–721. [Google Scholar] [CrossRef]
- Hashiba, T.; Narisawa, K. The development and endophytic nature of the fungus Heteroconium chaetrospira. FEMS. Microbiol. Lett. 2005, 252, 191–196. [Google Scholar] [CrossRef]
- Ohki, T.; Yonezawa, M.; Hashiba, T.; Masuya, H.; Usuki, F.; Narisawa, K.; Narisawa, K. Colonization process of the root endophytic fungus Heteroconium chaetospira in roots of Chinese cabbage. Mycoscience 2002, 43, 191–194. [Google Scholar] [CrossRef]
- Orlandini, V.; Maida, I.; Fondi, M.; Perrin, E.; Papaleo, M.C.; Bosi, E.; Pascale, D.D.; Tutino, M.L.; Michaud, L.; Giudice, A.L.; et al. Genomic analysis of three sponge-associated Arthrobacter antarcitic strains, inhibiting the growth of Burkholderia cepacia complex bacteria by synthesizing volatile organic compounds. Microbiol. Res. 2014, 169, 593–601. [Google Scholar] [CrossRef]
- Mukhia, S.; Khatri, A.; Acharya, V.; Kumar, R. Comparative genomics and molecular adaptational analysis of Arthrobacter from Sikkim Himalaya provided insights into its survivability under multiple high-altitude stress. Genomics 2021, 113, 151–158. [Google Scholar] [CrossRef]
- Cacciari, I.; Lippi, D. Arthrobacters: Successful arid soil bacteria: A review. Arid. Soil. Res. Rehabil. 1987, 1, 1–30. [Google Scholar] [CrossRef]
- Wu, H.-G.; Liu, W.-S.; Zhu, M.; Li, X.-X. Research and analysis of 74 bloodstream infection cases of Acinetobacter baumannii and drug resistance. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 1782–1786. [Google Scholar]
- Khaksar, G.; Treesubsuntorn, C.; Thiravetyan, P. Impact of endophytic colonization patterns on Zamioculcas amiifolia stress response and in regulating ROS, tryptophan and IAA levels under airbone formaldehyde and formaldehyde-contaminated soil conditions. Plant Physiol. Biochem. 2017, 114, 1–9. [Google Scholar] [CrossRef]
- Lin, H.-R.; Shu, H.-Y.; Lin, G.-H. Biological roles of indole-3-acetic acid in Acinetobacter baumannii. Microbiol. Res. 2018, 216, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Joe, M.M.; Devaraj, S.; Benson, A.; Sa, T. Isolation of phosphate solubilizing endophytic bacteria from Phyllanthus amarus schum & thonn: Evaluation of plant growth promotion an antioxidant activity under salt stress. J. Appl. Res. Med. Aromat. Plants 2016, 3, 71–77. [Google Scholar] [CrossRef]
- Abraham, J.; Silambarasan, S. Biodegradation of carbendazim by Rhodococcus erythropolis and its plant growth-promoting traits. Biol. Environ. 2018, 118, 69–80. [Google Scholar] [CrossRef]
- Hashem, A.; Tabassum, B.; Fathi Abd Allah, E. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci. 2019, 26, 1291–1297. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. Anise (Pimpinella anisum L.), a dominant spice and traditional medicinal herb for both food and medicinal purposes. Cogent Biol. 2019, 5, 1673688. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. Natural dietary and medicinal plants with anti-obesity therapeutics activities for treatment and prevention of obesity during lock down and in post-COVID-19 era. Appl. Sci. 2021, 11, 7889. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science. Mini Rev. Med. Chem. 2021, 21, 724–730. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. Nitrogen fixation and diazotrophs—A review. Rom. Biotechnol. Lett. 2021, 26, 2834–2845. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Traditional herbal medicine for the prevention and treatment of Cold and Flu in the autumn of 2020, overlapped with COVID-19. Nat. Prod. Commun. 2020, 15, 1934578X20951431. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Soleymani, A.; Cheng, Q. Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses. Phytother. Res. 2020, 35, 1237–1247. [Google Scholar] [CrossRef]
- Francis, P.B.; Earnest, L.D.; Bryant, K. Maize growth and yield response to a biostimulant amendment. J. Crop Improv. 2016, 6, 632–640. [Google Scholar] [CrossRef]
- Marmitt, D.; Shahrajabian, M.H. Plant species used in Brazil and Asia regions with toxic properties. Phytother. Res. 2021, 35, 4703–4726. [Google Scholar] [CrossRef] [PubMed]
- Bashan, Y.; Holguin, G. Proposal for division of plant growth promoting rhizobacteria into two classification: Biocontrol-PGPB (Plant growth-promoting bacteria) and PGPB. Soil Biol. Biochem. 1998, 30, 1225–1228. [Google Scholar] [CrossRef]
- Tejada, M.; Rodriguez-Morgado, B.; Gomez, I.; Parrado, J. Degradation of chlorpyrifos using different biostimulants/biofertilizers: Effects on soil biochemical properties and microbial community. Appl. Soil Ecol. 2014, 84, 158–165. [Google Scholar] [CrossRef]
- Vessey, J.K. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 2003, 255, 1225–1228. [Google Scholar] [CrossRef]
- Younes, N.A.; Anik, T.R.; Rahman, M.M.; Wardany, A.A.; Dawood, M.F.A.; Tran, L.-S.P.; Latef, A.A.H.A.; Mostofa, M.G. Effects of microbial biostimulants (Trichoderma album and Bacillus megaterium) on growth, quality attributes, and yield of onion under field conditions. Heliyon 2023, 9, e14203. [Google Scholar] [CrossRef]
- Jacobs-Hoffman, I.; Hills, P.N. Effects of the commercial biostimulant BC204 on the rhizosphere microbial community of Solanum lycopersicum L. S. Afr. J. Bot. 2021, 143, 52–60. [Google Scholar] [CrossRef]
- Mandal, S.; Anand, U.; Lopez-Bucio, J.; Radha; Kumar, M.; Lal, M.K.; Tiwari, R.K.; Dey, A. Biostimulants and environmental stress mitigation in crops: A novel and emerging approach for agricultural sustainability under climate change. Environ. Res. 2023, 233, 116357. [Google Scholar] [CrossRef]
- Costa, O.Y.A.; Pijl, A.; Houbraken, J.; va Lith, W.; Kuramae, E.E. Soil substrate source drives the microbes involved in the degradation of gelatin used as a biostimulant. Appl. Soil Ecol. 2023, 189, 104906. [Google Scholar] [CrossRef]
- Berg, G. Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 2009, 84, 11–18. [Google Scholar] [CrossRef]
- Doss, I.C.; Ruiz-Lozano, J.M. Microbial enhancement of crop resource use efficiency. Curr. Opin. Biotechnol. 2012, 23, 236–242. [Google Scholar] [CrossRef]
- Dalmastri, C.; Chiarini, L.; Cantale, C.; Bevivino, A.; Tabacchioni, S. Soil type and maize cultivar affect the genetic diversity of maize root-associated Burkholderia cepacia populations. Microb. Ecol. 1999, 38, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Remans, R.; Beebe, S.; Blair, M.; Manrique, G.; Tovar, E.; Rao, I.; Vanderleyden, J. Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 2008, 302, 149–161. [Google Scholar] [CrossRef]
- Khalid, A.; Arshad, M.; Zahir, Z.A. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol. 2004, 96, 473–480. [Google Scholar] [CrossRef]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Front. Plant Sci. 2019, 10, 1068. [Google Scholar] [CrossRef]
- Querejeta, J.I.; Barea, J.M.; Allen, M.F.; Caravaca, F.; Roldan, A. Differential response of ẟ13C and water use efficiency to arbuscular mycorrhizal infection in two arid land woody plant species. Oecologia 2003, 135, 510–515. [Google Scholar] [CrossRef]
- Botti, A.; Musmeci, E.; Negroni, A.; Capuozzo, R.; Fava, F.; Biagi, E.; Zanaroli, G. Site-specific response of sediment microbial community to supplementation of polyhydroxyalkanoates as biostimulants for PCB reductive dechlorination. Sci. Total Environ. 2023, 898, 165485. [Google Scholar] [CrossRef]
- Lindow, S.E.; Brandl, M.T. Microbiology of the phyllosphere. Appl. Env. Microbiol. 2003, 69, 1875–1883. [Google Scholar] [CrossRef]
- Lim, J.H.; Kim, S.D. Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol. J. 2013, 29, 201–208. [Google Scholar] [CrossRef]
- Saia, S.; Colla, G.; Raimondi, G.; Di Stasio, E.; Cardarelli, M.; Bonini, P.; Vitaglione, P.; De Pascale, S.; Rouphael, Y. An endophytic fungi-based biostimulant modulated lettuce yield, physiological and functional quality responses to both moderate and severe water limitation. Sci. Hortic. 2019, 256, 108595. [Google Scholar] [CrossRef]
- Mishra, P.K.; Mishra, S.; Selvakumar, G.; Bisht, S.C.; Bisht, J.K.; Kundu, S.; Gupta, H.S. Characterization of a psychrotolerant plant growth promoting Pseudomonas sp. strain PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas. Ann. Microbiol. 2008, 58, 561–568. [Google Scholar] [CrossRef]
- Ali, S.Z.; Sandhya, V.; Grover, M.; Kishore, N.; Rao, L.V.; Venkateswarlu, B. Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol. Fertil. Soils 2009, 46, 45–55. [Google Scholar] [CrossRef]
- Theocharis, A.; Bordiex, S.; Fernandez, O.; Paquis, S.; Dhondt-Cordelier, S.; Baillieul, F.; Clement, C.; Barka, E.A. Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. Mol. Plant Microbe Interact. 2012, 25, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Tiryaki, D.; Aydin, I.; Atici, P. Psychrotolerant bacteria isolated from the lead apoplast of cold-adapted wild plants improve the cold resistance of bean (Phaseolus vulgaris L.) under low temperature. Cyrobiology 2019, 86, 111–119. [Google Scholar] [CrossRef]
- Bhalerao, R.P.; Eklof, J.; Ljung, K.; Marchant, A.; Bennett, M.; Sandberg, G. Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J. 2002, 29, 32–33. [Google Scholar] [CrossRef]
- Romano, I.; Ventorino, V.; Pepe, O. Effectiveness of plant beneficial microbes: Overview of the methodological approaches for the assessment of root colonization and persistence. Front. Plant Sci. 2020, 11, 6. [Google Scholar] [CrossRef]
- Mangman, J.S.; Deaker, R.; Rogers, G. Optimal plant growth-promoting concentration of Azospirillum brasilense inoculated to cucumber, lettuce, and tomato seeds varies between bacterial strains. Isr. J. Plant Sci. 2015, 62, 145–152. [Google Scholar] [CrossRef]
- He, Y.; Pantigoso, H.A.; Wu, Z.; Vivanco, J.M. Co-inoculation of Bacillus sp. and Pseudomonas putida at different development stages acts as a biostimulant to promote growth, yield, and nutrient uptake of tomato. J. Appl. Microbiol. 2019, 127, 196–207. [Google Scholar] [CrossRef]
- Pellegrino, M.; Spera, D.; Ercole, C.; del Gallo, M. Allium cepa L. seed inoculation with a consortium of plant growth-promoting bacteria: Effects on plant growth and development and soil fertility status and microbial community. Proceedings 2020, 6, 20. [Google Scholar] [CrossRef]
- Kumar, P.; Erturk, V.S.; Almusawa, H. Mathematical structure of mosaic disease using microbial biostimulants via Caputo and Atangana-Baleanu derivatives. Results Phys. 2021, 24, 104186. [Google Scholar] [CrossRef]
- Tanveer, Y.; Jahangir, S.; Shah, Z.A.; Yasmin, H.; Nosheen, A.; Hassan, M.N.; Illyas, N.; Bajguz, A.; El-Sheikh, M.A.; Ahmad, P. Zinc oxide nanoparticles mediated biostimulant impact on cadmium detoxification and in silico analysis of zinc oxide-cadmium networks in Zea mays L. regulome. Environ. Pollut. 2023, 316, 120641. [Google Scholar] [CrossRef] [PubMed]
- Bozhinova, R. Yield and chemical composition of oriental tobacco as affected by biostimulant application. Bulg. J. Agric. Sci. 2023, 29, 89–96. [Google Scholar]
- Pavithra, D.; Yapa, N. Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants. Groundw. Sustain. Dev. 2018, 7, 49–494. [Google Scholar] [CrossRef]
- Goicoechea, N.; Antolin, M.C. Increased nutritional value in food crops. Microb. Biotechnol. 2017, 10, 1004–1007. [Google Scholar] [CrossRef] [PubMed]
- Goicoechea, N.; Bettoni, M.M.; Fuertes-Mendizabal, T.; Gonzalez-Murua, C.; Aranjuelo, I.; Goicoechea, N.; Bettoni, M.M.; Fuertes-Mendizabal, T.; Gonzalez-Murua, C.; Aranjuelo, I. Durum wheat quality traits affected by mycorrhizal inoculation, water availability and atmospheric CO2 concentration. Crop Pasture Sci. 2016, 67, 147–155. [Google Scholar] [CrossRef]
- Zhao, R.; Guo, W.; Bi, M.; Guo, J.; Wang, L.; Zhao, J.; Zhang, J. Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Appl. Soil Ecol. 2015, 88, 41–49. [Google Scholar] [CrossRef]
- Boyer, L.R.; Brain, P.; Xu, X.M.; Jeffries, P. Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: Effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency. Mycorrhiza 2015, 25, 215–227. [Google Scholar] [CrossRef]
- Asrar, A.-W.A.; Elhindi, K.M. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Saudi J. Bio. Sci. 2011, 18, 93–98. [Google Scholar] [CrossRef]
- Tsoata, E.; Njock, S.R.; Youmbi, E.; Nwaga, D. Early effects of water stress on some biochemical and mineral parameters of mycorrhizal Vigna subterranea (L.) Verdc. (Fabaceae) cultivated in cameroon. Int. J. Agron. Agric. Res. 2015, 7, 21–35. [Google Scholar]
- Zhang, F.; He, J.D.; Ni, Q.D.; Wu, Q.S.; Zou, Y.N. Enhancement of drought tolerance in trifoliate orange by mycorrhiza: Changes in root sucrose and proline metabolism. Not. Bot. Horti Agrobot. 2018, 46, 270–276. [Google Scholar] [CrossRef]
- Pedranzani, H.; Rodriguez-Rivera, M.; Gutierrez, M.; Porcel, R.; Hause, B.; Ruiz-Lozano, J.M. Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza 2016, 26, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Yooyongwech, S.; Samphumphuang, T.; Tisarum, R.; Theerawitaya, C.; Cha-Um, S. Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Sci. Hortic. 2016, 198, 107–117. [Google Scholar] [CrossRef]
- Mirshad, P.P.; Puthur, J.T. Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum Retz.). Environ. Monit. Assess. 2016, 188, 425. [Google Scholar] [CrossRef] [PubMed]
- Khalloufi, M.; Martinez-Andujar, C.; Lachaal, M.; Karray-Bouraoui, N.; Perez-Alfocea, F.; Albacete, A. The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance. J. Plant Physiol. 2017, 214, 134–144. [Google Scholar] [CrossRef]
- Hajiboland, R.; Dashtebani, F.; Aliasgharzad, N. Physiological responses of halophytic C4 grass Aeluropus littoralis to salinity and arbuscular mycorrhizal fungi colonization. Photosynthetica 2015, 53, 572–584. [Google Scholar] [CrossRef]
- Pasbani, B.; Salimi, A.; Aliasgharzad, N.; Hajiboland, R. Colonization with arbuscular mycorrhizal fungi mitigates cold stress through improvement of antioxidant defense and accumulation of protecting molecules in eggplants. Sci. Hortic. 2020, 272, 109575. [Google Scholar] [CrossRef]
- Calvo-Polanco, M.; Sanchez-Romera, B.; Aroca, R.; Asins, M.J.; Declerck, S.; Dodd, I.C.; Martinez-Andujar, C.; Albacete, A.; Ruiz-Lozano, J.M. Exploring the use of recombinant inbreed lines in combination with beneficial microbial inoculants (AM Fungus and PGPR) to improve drought stress tolerance in tomato. Environ. Exp. Bot. 2016, 131, 47–57. [Google Scholar] [CrossRef]
- Carillo, P.; Kyratzis, A.; Kyriacou, M.C.; Dell’Aversana, E.; Fusco, G.M.; Corrado, G.; Rouphael, Y. Biostimulatory action of arbuscular mycorrhizal fungi enhances productivity, functional and sensory quality in Piennolo del Vesuvio cherry tomato landraces. Agronomy 2020, 10, 911. [Google Scholar] [CrossRef]
- Krishna, H.; Singh, S.K.; Sharma, R.R.; Khawale, R.N.; Grover, M.; Patel, V.B. Biochemical changes in microporpagated grape (Vitis vinifera L.) plantlets due to arbuscular-mycorrhizal fungi (AMF) inoculation during ex vitro acclimatization. Sci. Hortic. 2005, 106, 554–567. [Google Scholar] [CrossRef]
- Aalipour, H.; Nikbakht, A.; Etemadi, N.; Rejali, F.; Soleimani, M. Biochemical response and interactions between arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria during establishment and stimulating growth of Arizona cypress (Cupressus arizonica G.) under drought stress. Sci. Hortic. 2020, 261, 108923. [Google Scholar] [CrossRef]
- Barnawal, D.; Bharti, M.; Maji, D.; Chanotiya, C.S.; Kalra, A. ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance thtough reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J. Plant Physiol. 2014, 171, 884–894. [Google Scholar] [CrossRef] [PubMed]
- Cely, M.V.T.; Siviero, M.A.; Emiliano, J.; Spago, F.R.; Freiras, V.F.; Barazetti, A.R.; Goya, E.T.; Lamberti, G.D.S.; Dos Santos, I.M.O.; De Oliveira, A.G.; et al. Inoculation of Schizolobium parahyba with mycorrhizal fungi and plant growth-promoting rhizobacteria increases wood yield under field conditions. Front. Plant Sci. 2016, 7, 1708. [Google Scholar] [CrossRef] [PubMed]
- Dal Cortivo, C.; Barion, G.; Visioli, G.; Mattarozzi, M.; Mosca, G.; Vamerali, T. Increased root growth and nitrogen accumulation in common wheat following PGPR inoculation: Assessment of plant-microbe interactions by ESEM. Agric. Ecosyst. Environ. 2017, 247, 396–408. [Google Scholar] [CrossRef]
- Miceli, A.; Moncada, A.; Vetrano, F. Use of microbial biostimulants to increase the salinity tolerance of vegetable transplants. Agronomy 2021, 11, 1143. [Google Scholar] [CrossRef]
- Kumar, M.; Poonam; Ahmad, S.; Singh, R. Plant growth promoting microbes: Diverse roles for sustainable and ecofriendly agriculture. Energy Nexus 2022, 7, 100133. [Google Scholar] [CrossRef]
- Kumari, M.; Swarupa, P.; Kesari, K.K.; Kumar, A. Microbial inoculants as plant biostimulants: A review on risk status. Life 2023, 13, 12. [Google Scholar] [CrossRef]
- Joshi, M.; Parewa, H.P.; Joshi, S.; Sharma, J.K.; Shukla, U.N.; Paliwal, A.; Gupta, V. Chapter 5—Use of Microbial Biostimulants in Organic Farming. In Advances in Organic Farming; Meena, V.S., Meena, S.K., Srinivasarao, C., Eds.; Woodhead Publishing: Sawston, UK, 2021; pp. 59–73. [Google Scholar]
- Ganugi, P.; Martinelli, E.; Lucini, L. Microbial biostimulants as a sustainable approach to improve the functional quality in plant-based foods: A review. Curr. Opin. Food Sci. 2021, 41, 217–223. [Google Scholar] [CrossRef]
- Mansoor, S.; Sharma, V.; Mir, M.A.; Mir, J.I.; Nabi, S.U.; Ahmed, N.; Alkahtani, J.; Alwahibi, M.S.; Masoodi, K.Z. Quantification of polyphenolic compounds and relative gene expression studies of phenylpropanoid pathway in apple (Malus domestica Borkh) in response to Venturia inaequalis infection. Saudi J. Biol. Sci. 2020, 27, 3397–3404. [Google Scholar] [CrossRef]
- Heil, M.; Bostock, R. Induced systemic resistance (ISR) against pathogens in the content of induced plant defences. Ann. Bot. 2002, 89, 503–512. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. The importance of rhizobium, agrobacterium, bradyrhizobium, herbaspirillum, sinorhizobium in sustainable agricultural production. Not. Bot. Horti Agrobot. 2021, 49, 12183. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Cheng, Q.; Sun, W. Using bacteria and fungi as plant biostimulants for sustainable agricultural systems. Recent Pat. Biotechnol. 2020, 17, 206–244. [Google Scholar] [CrossRef] [PubMed]
- Behera, B.; Supraja, K.V.; Paramasivan, B. Integrated microalgal biorefinery for the production and application of biostimulants in circular bioeconomy. Bioresour. Technol. 2021, 339, 125588. [Google Scholar] [CrossRef] [PubMed]
- Mian, G.; Belfiore, N.; Musetti, R.; Tomasi, D.; Cantone, P.; Lovat, L.; Lupinelli, S.; Iacumin, L.; Celotti, E.; Golinelli, F. Effect of a triacontanol-rich biostimulant on the ripening dynamic and wine must technological parameters in Vitis vinifera cv. Ribolla Gialla. Plant Physiol. Biochem. 2022, 188, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Kuang, X.; Ren, Y.; Luo, L. Biostimulants promote biodegraation of n-hexadecane by Raoultella planticola: Generation of lipopeptide biosurfactants. J. Environ. Chem. Engin. 2022, 10, 108382. [Google Scholar] [CrossRef]
- Etesami, H.; Jeong, B.R.; Glick, B.R. Potential use of Bacillus spp. as an effective biostimulant against abiotic stresses in crops—A review. Curr. Res. Biotechnol. 2023, 5, 100128. [Google Scholar] [CrossRef]
- Hao, J.; Tan, J.; Zhang, Y.; Wang, S.; Zhang, X.; Wang, Z.; Li, J. Metabolomics reveals the molecular mechanism of sewage sludge-derived nutrients and biostimulants stimulating resistance enhancement and the redistribution of carbon and nitrogen metabolism in pakchoi cabbage. Sci. Total Environ. 2023, 891, 164330. [Google Scholar] [CrossRef]
- Tolisano, C.; Del Buono, D. Biobased: Biostimulants and biogenic nanoparticles enter the scene. Sci. Total Environ. 2023, 885, 163912. [Google Scholar] [CrossRef]
- Saia, S.; Corrado, G.; Vitaglione, P.; Colla, G.; Bonini, P.; Giordano, M.; Stasio, E.D.; Raimondi, G.; Sacchi, R.; Rouphael, Y. An endophytic fungi-based biostimulant modulates volatile and non-volatile secondary metabolites and yield of greenhouse basil (Ocimum basilicum L.) through variable mechanisms dependent on salinity stress level. Pathogens 2021, 10, 797. [Google Scholar] [CrossRef]
- Mukherjee, A.; Singh, S.; Gaurav, A.K.; Chouhan, G.K.; Jaiswal, D.K.; Pereiro, A.P.D.A.; Passari, A.K.; Abdel-Azeem, A.M.; Verma, J.P. Harnessing of phytomicrobiome for developing potential biostimulant consortium for enhancing the productivity of chickpea and soil health under sustainable agriculture. Sci. Total Environ. 2022, 836, 155550. [Google Scholar] [CrossRef]
- Mrid, R.B.; Benmrid, B.; Hafsa, J.; Boukcim, H.; Sobeh, M.; Yasri, A. Secondary metabolites as biostimulant and bioprotectant agents: A review. Sci. Total Environ. 2021, 777, 146204. [Google Scholar] [CrossRef]
- Kaushal, P.; Ali, N.; Saini, S.; Pati, P.K.; Pati, A.M. Physiological and molecular insight of microbial biostimulants for sustainable agriculture. Front. Plant Sci. 2023, 14, 1041413. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, F.; Casadesus, A.; Brockman, H.; Munne-Bosch, S. An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Sci. 2020, 295, 110194. [Google Scholar] [CrossRef]
- Buono, D.D. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci. Total Environ. 2021, 751, 141763. [Google Scholar] [CrossRef] [PubMed]
- Mattarozzi, M.; Di Zinno, J.; Montanini, B.; Manfredi, M.; Marengo, E.; Fornasier, F.; Ferrarini, A.; Careri, M.; Visioli, G. Biostimulants applied to maize seeds modulate the enzymatic activity and metaproteome of the rhizosphere. Appl. Soil Ecol. 2020, 148, 103480. [Google Scholar] [CrossRef]
- Alfonzetti, M.; Doleac, S.; Mills, C.H.; Gallagher, R.V.; Tetu, S. Characterizing effects of microbial biostimulants and whole-soil inoculums for native plant revegetation. Microorganisms 2023, 11, 55. [Google Scholar] [CrossRef] [PubMed]
- Lephatsi, M.; Nephali, L.; Meyer, V.; Piater, L.A.; Buthelezi, N.; Dubery, I.A.; Opperman, H.; Brand, M.; Huyser, J.; Tugizimana, F. Molecular mechanisms associated with microbial biostimulant-mediated growth enhancement, priming and drought stress tolerance in maize plants. Sci. Rep. 2022, 12, 10450. [Google Scholar] [CrossRef]
- Aroca, R.; Rosa, P.; Ruiz-Lozano, J.M. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? N. Phytol. 2007, 173, 808–816. [Google Scholar] [CrossRef]
- Khan, A.L.; Hussain, J.; Al-Harrasi, A.; Al-Rawahi, A.; Lee, I.J. Endophytic fungi: Resource for gibberellins and crop abiotic stress resistance. Crit. Rev. Biotechnol. 2015, 35, 62–76. [Google Scholar] [CrossRef]
- Shubler, A.; Schwarzott, D.; Walker, C. A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycol. Res. 2001, 105, 1413–1421. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Petropoulos, S.A. Biostimulants application: A low input cropping management tool for sustainable farming of vegetables. Biomolecues 2021, 11, 698. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. The effectiveness of rhizobium bacteria on soil fertility and sustainable crop production under cover and catch crops management and green manuring. Not. Bot. Horti Agrobot. 2022, 50, 12560. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. Archaea, bacteria and termite, nitrogen fixation and sustainable plants production. Not. Bot. Horti Agrobot. 2021, 49, 12172. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Potential roles of longan as a natural remedy with tremendous nutraceutical values. Curr. Nutr. Food Sci. 2023, 19, 888–895. [Google Scholar] [CrossRef]
- Lanfranco, L.; Bonfante, P. Lessons from arbuscular mycorrhizal fungal genomes. Curr. Opin. Microbiol. 2023, 75, 102357. [Google Scholar] [CrossRef]
- Huang, H.; Liu, S.; Du, Y.; Tang, J.; Hu, L.; Chen, X. Carbon allocation mediated by arbuscular mycorrhizal fungi alters the soil microbial community under various phosphorus levels. Fungal Ecol. 2023, 62, 101227. [Google Scholar] [CrossRef]
- Chen, E.C.H.; Morin, E.; Beaudet, D.; Noel, J.; Yildirir, G.; Ndikumana, S.; Charron, P.; St-Onge, C.; Giorgi, J.; Kruger, M.; et al. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. N. Phytol. 2018, 220, 1161–1171. [Google Scholar] [CrossRef]
- Tester, M.; Smith, S.E.; Smith, F.A. The phenomenon of nonmycorrhizal plants. Can. J. Bot. 1987, 65, 419–431. [Google Scholar] [CrossRef]
- Wang, B.; Qiu, Y.L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 2006, 16, 299–363. [Google Scholar] [CrossRef]
- Kan, Z.-R.; Wei, Q.; Yang, R.; Li, Y.; Zhou, J.; Qi, J.; Li, F.-M.; Yang, H. Arbuscular mycorrhizal fungi mitigate earthworm-induced N2O emissions from upland soil in a rice-rotated wheat farming system. Appl. Soil Ecol. 2023, 189, 104981. [Google Scholar] [CrossRef]
- Ng, A.; Wilson, B.A.L.; Frew, A. Belowground crop responses to root herbivory are associated with the community structure of native arbuscular mycorrhizal fungi. Appl. Soil Ecol. 2023, 185, 104797. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, Q.; Chen, X.; Cao, M.; Wu, F.; Li, W.; Zhang, L.; Liu, S.; Jiang, J. Arbuscular mycorrhizal fungi decrease soil ammonium availability and nitrous oxide emissions under nitrogen input. Agric. For. Meteorol. 2023, 333, 109385. [Google Scholar] [CrossRef]
- Yang, X.; Ma, Y.; Zhang, J.; Bai, H.; Shen, Y. How arbuscular mycorrhizal fungi drives herbaceous plants’ C: N: P stoichiometry? A meta-analysis. Sci. Total Environ. 2023, 862, 160807. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Yan, M.; Zhao, L.; Zeng, X.; Cai, B.; Qu, S.; Wang, S. Inoculation with arbuscular mycorrhizal fungi increase calcium uptake in Malus robusta. Sci. Hortic. 2023, 321, 112295. [Google Scholar] [CrossRef]
- Kimura, T.; Ueno, M.; Petchsang, N.; Nishiyama, K. Barley uptake of ZnO nanoparticles enhanced by asrbuscular mycorrhizal fungi: Implications for biomarker systems. J. Mol. Liq. 2023, 386, 122496. [Google Scholar] [CrossRef]
- Zhao, Y.; Naeth, M.A. Soil amendment with a humic substance and arbuscular mycorrhizal fungi enhance coal mine reclamation. Sci. Total Environ. 2022, 823, 153696. [Google Scholar] [CrossRef]
- Mpongwana, S.; Manyevere, A.; Mupangwa, J.; Mpendulo, C.T.; Mashamaite, C.V. Optimizing biomass yield of three herbaceous forage legumes through dual inoculation of Arbuscular Mycorrhizal Fungi and Rhizobia. S. Afr. J. Bot. 2023, 159, 61–71. [Google Scholar] [CrossRef]
- Khaliq, A.; Perveen, S.; Alamer, K.H.; Zia Ul Haq, M.; Rafique, Z.; Alsudays, I.M.; Althobaiti, A.T.; Saleh, M.A.; Hussain, S.; Attia, H. Arbuscular mycorrhizal fungi symbiosis to enhance plant-soil interaction. Sustainability 2022, 14, 7840. [Google Scholar] [CrossRef]
- Figueira-Galan, D.; Heupel, S.; Duelli, G.; Morgano, M.T.; Stapf, D.; Requena, N. Exploring the synergistic effects of biochar and arbuscular mycorrhizal fungi on phosphorus acquisition in tomato plants by using gene expression analyses. Sci. Total Environ. 2023, 884, 163506. [Google Scholar] [CrossRef]
- Wei, H.; He, W.; Kuang, Y.; Wang, Z.; Wang, Y.; Hu, W.; Tang, M.; Chen, H. Arbuscular mycorrhizal symbiosis and melatonin synergistically suppress heat-induced leaf senescence involves in abscisic acidm gibberellin, and cytokinin-mediated pathways in perennial ryegrass. Enviorn. Experim. Bot. 2023, 213, 105436. [Google Scholar] [CrossRef]
- Wang, L.; Chen, X.; Wang, S.; Du, Y.; Zhang, D.; Tang, Z. Effects of arbuscular mycorrhizal symbiosis on the growth and reproduction of cherry tomato can be persistent to the next generation. Eur. J. Soil Biol. 2022, 112, 103429. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, Z.; Li, Y.; Wang, B.; Xiao, Q.; Li, Z.; Geng, X.; Lin, K.; Huang, T.; Li, X.; et al. Effect of arbuscular mycorrhizal fungi (AMF) inoculation on endophytic bacteria of lettuce. Physiol. Mol. Plant Pathol. 2023, 126, 102036. [Google Scholar] [CrossRef]
- Betancur-Agudelo, M.; Meyer, E.; Lovato, P.E. Increased copper concentrations in soil affect indigenous arbuscular mycorrhizal fungi and physiology of grapevine plantlets. Rhizosphere 2023, 27, 100711. [Google Scholar] [CrossRef]
- Li, X.; Zhou, M.; Shi, F.; Meng, B.; Liu, J.; Mi, Y.; Dong, C.; Su, H.; Liu, X.; Wang, F.; et al. Influence of arbuscular mycorrhizal fungi on mercury accumulation in rice (Oryza sativa L.): From enriches isotope tracing perspective. Ecotoxicol. Environ. Saf. 2023, 255, 114776. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Cao, S.; Xu, G.; Rehman, M.; Li, X.; Luo, D.; Wang, C.; Fang, W.; Xiao, H.; Liao, C.; et al. Comprehensive analysis reveals the underlying mechanism of arbuscular mycorrhizal fungi in kenaf cadmium stress alleviation. Chemosphere 2023, 314, 137566. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Hu, B.; Hu, S.; Vogel-Mikus, K.; Pongrac, P.; Vymazal, J. Immobilization of chromium enhanced by arbuscular mycorrhizal fungi in semi-aquatic habitats with biochar addition. J. Hazard. Mat. 2022, 439, 129562. [Google Scholar] [CrossRef] [PubMed]
- Shafiei, F.; Shahidi-Noghabi, S.; Sedaghati, E. The impact of arbuscular mycorrhizal fungi on tomato plant resistance against Tuta absoluta (Meyrick) in greenhouse conditions. J. Asia Pac. Entomol. 2022, 25, 101971. [Google Scholar] [CrossRef]
- Li, Z.; Wu, S.; Liu, Y.; Yi, Q.; Hall, M.; Saha, N.; Wang, J.; Huang, Y.; Huang, L. Arbuscular mycorrhizal fungi regulate plant mineral nutrient uptake and partitioning in iron ore tailings undergoing eco-engingeered pedogenesis. Pedosphere 2023. [Google Scholar] [CrossRef]
- Falcao, E.L.; Muniz, B.C.; Filh, C.J.A.B.; Kapoor, R.; da Silva, F.S.B. Soil microbial respiration and pH modulated by arbuscular mycorrhizal fungi influence the biosynthesis of health-promoting compounds in Anadenanthera colubrina (Vell.) Brenan. Rhizosphere 2023, 26, 100685. [Google Scholar] [CrossRef]
- Qin, Z.; Peng, Y.; Yang, G.; Feng, G.; Christie, P.; Zhou, J.; Zhang, J.; Li, X.; Gai, J. Relationship between phosphorus uptake via indigenous arbuscular mycorrhizal fungi and crop response: A 32P-labeling study. Appl. Soil Ecol. 2022, 180, 104624. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, Z.; Yang, X.; Sheng, L.; Mao, H.; Zhu, S. Metagenomics reveal arbuscular mycorrhizal fungi altering functional gene expression of rhizosphere microbial community to enhance Iris tectorum’s resistance to Cr stress. Sci. Total Environ. 2023, 895, 164970. [Google Scholar] [CrossRef]
- Tan, Q.; Guo, Q.; Wei, R.; Zhu, G.; Du, C.; Hu, H. Influence of arbuscular mycorrhizal fungi on bioaccumulation and bioavailability of As and Cd: A meta-analysis. Environ. Pollut. 2023, 316, 120619. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Xu, P.; Lei, L.; Jing, Y. Transcriptome analysis reveals decreased accumulation and toxicity of Cd in upland rice inoculated with arbuscular mycorrhizal fungi. Appl. Soil Ecol. 2022, 177, 104501. [Google Scholar] [CrossRef]
- Liu, S.; Lu, X.; Yang, G.; He, C.; Shi, Y.; Li, C.; Liu, S.; Wang, Y.; Wang, Z.; Chen, L.; et al. Variation of arbuscular mycorrhizal fungi communities in the rhizosphere soil of Eucalyptus plantations based on different stand ages and its effect on phosphorus fractionation. Appl. Soil Ecol. 2023, 189, 104908. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, J.; Fan, Z.; Fang, M.; Xu, Z.; Ban, Y. The function and community structure of arbuscular mycorrhizal fungi in ecological floating beds used for remediation of Pb contaminated wastewater. Sci. Total. Environ. 2023, 872, 162233. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, R.; Zhao, L.; Wang, H.; Chen, X.; Mao, Z.; Yin, C. Indigenous arbuscular mycorrhizal fungi enhance resistance of apple rootstock M9T337 to apple replant disease. Physiol. Mol. Plant Pathol. 2021, 116, 101717. [Google Scholar] [CrossRef]
- Qiu, Y.-J.; Zhang, N.-L.; Zhang, L.-L.; Zhang, X.-L.; Wu, A.-P.; Huang, J.-Y.; Yu, S.-Q.; Wang, Y.-H. Mediation of arbuscular mycorrhizal fungi on growth and biochemical parameters of Ligustrum vicaryi in response to salinity. Physiol. Mol. Plant Pathol. 2020, 112, 101522. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, L.; Feng, G.; George, T.S. Arbuscular mycorrhizal fungi have a greater role than root hairs of maize for priming the rhizosphere microbial community and enhancing rhizosphere organic P mineralization. Soil Biol. Biochem. 2022, 171, 108713. [Google Scholar] [CrossRef]
- Liu, X.-Q.; Cheng, S.; Aroca, R.; Zou, Y.-N.; Wu, Q.-S. Arbuscular mycorrhizal fungi induce flavonoid synthesis for mitigating oxidative damage of trifoliate orange under water stress. Environ. Exp. Bot. 2022, 204, 105089. [Google Scholar] [CrossRef]
- Oliveira, E.P.D.; Soares, P.P.D.S.; Santos, G.L.; Coutrim, R.L.; Assis, F.G.D.V.D.; Miguesl, D.L.; Leal, P.L. Single inoculation with arbuscular mycorrhizal fungi promotes superior or similar effects on cowpea growth compared to co-inoculation with Bradyrhizobium. S. Afr. J. Bot. 2022, 151, 941–948. [Google Scholar] [CrossRef]
- Naseer, M.; Zhu, Y.; Li, F.-M.; Yang, Y.-M.; Wang, S.; Xiong, Y.-C. Nano-enabled improvements of growth and colonization rate in wheat inoculated with arbuscular mycorrhizal fungi. Environ. Pollut. 2022, 295, 118724. [Google Scholar] [CrossRef]
- Cheng, X.-F.; Xie, M.-M.; Li, Y.; Liu, B.-Y.; Liu, C.-Y.; Wu, Q.-S.; Kuca, K. Effects of field inoculation with arbuscular mycorrhizal fungi and endophytic fungi on fruit quality and soil properties of Newhall navel orange. Appl. Soil Ecol. 2022, 170, 104308. [Google Scholar] [CrossRef]
- Alves de Assis, R.M.; Carneiro, J.J.; Medeiros, A.P.R.; Carvalho, A.A.D.; Honorato, A.D.C.; Carneiro, M.A.C.; Bertolucci, S.K.V.; Pinto, J.E.B.P. Arbuscular mycorrhizal fungi and organic manure enhance growth and accumulation of citral, total phenols, and flavonoids in Melissa officinalis L. Ind. Crops Prod. 2020, 158, 112981. [Google Scholar] [CrossRef]
- Baczek, K.B.; Wisniewska, M.; Przybyl, J.L.; Kosakowska, O.; Weglarz, Z. Arbuscular mycorrhizal fungi in chamomile (Matricaria recutita L.) organic cultivation. Ind. Crops Prod. 2019, 140, 111562. [Google Scholar] [CrossRef]
- Chen, K.; Kleijn, D.; Scheper, J.; Fijen, T.P.M. Additive and synergistic effects of arbuscular mycorrhizal fungi, insect pollination and nutrient availability in a perennial fruit crop. Agric. Ecosyst. Environ. 2022, 325, 107742. [Google Scholar] [CrossRef]
- Ndiate, N.I.; Qun, C.L.; Nkoh, J.N. Importance of soil amendments with biochar and/or Arbuscular Mycorrhizal fungi to mitigate aluminum toxicity in tamarind (Tamarindus indica L.) on an acidic soil: A greenhouse study. Heliyon 2022, 8, e09009. [Google Scholar] [CrossRef] [PubMed]
- Poveda, J.; Baptista, P. Filamentous fungi as biocontrol agents in olive (Olea europaea L.) diseases: Mycorrhizal and endophytic fungi. Crop Prot. 2021, 146, 105672. [Google Scholar] [CrossRef]
- Elhindi, K.M.; El-Din, A.S.; Elgorban, A.M. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J. Biol. Sci. 2017, 24, 170–179. [Google Scholar] [CrossRef]
- Yan, Z.; Ma, T.; Guo, S.; Liu, R.; Li, M. Leaf anatomy, photosynthesis and chlorophyll fluorescence of lettuce as influenced by arbuscular mycorrhizal fungi under high temperature stress. Sci. Hortic. 2021, 280, 109933. [Google Scholar] [CrossRef]
- Hassena, A.B.; Zouari, M.; Trabelsi, L.; Decou, R.; Amar, F.B.; Chaari, A.; Sousa, N.; Labrousse, P.; Khabou, W.; Zouari, N. Potential effects of arbuscular mycorrhizal fungi in mitigating the salinity of treated wastewater in young olive plants (Olea europaea L. cv. Chetoui). Agric. Water Manag. 2021, 245, 106635. [Google Scholar] [CrossRef]
- Mohandas, S. Arbuscular mycorrhizal fungi benefit mango (Mangifera indica L.) plant growth in the field. Sci. Hortic. 2012, 143, 43–48. [Google Scholar] [CrossRef]
- Rouphael, Y.; Lucini, L.; Miras-Moreno, B.; Colla, G.; Bonini, P.; Cardarelli, M. Metabolomic responses of maize shoots and roots elicited by combinatorial seed treatments with microbial and non-microbial biostimulants. Front. Microbiol. 2020, 11, 664. [Google Scholar] [CrossRef] [PubMed]
- Hashem, A.; Alqarawi, A.A.; Radhakrishnan, R.; Al-Arjani, A.-B.F.; Aldehaish, H.A.; Egamberdieva, D.; Allah, E.F.A. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J. Biol. Sci. 2018, 25, 1102–1114. [Google Scholar] [CrossRef] [PubMed]
- Shekoofeh, E.; Sepideh, H.; Roya, R. Role of mycorrhizal fungi and salicylic acid in salinity tolerance of Ocimum basilicum resistance to salinity. J. Biotech. 2012, 11, 2223–2235. [Google Scholar] [CrossRef]
- Qun, H.Z.; Zing, H.C.; Bin, Z.Z.; Rong, Z.Z.; Song, W.H. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCL stress. Coll. Surf. B Bioint. 2007, 59, 128–133. [Google Scholar] [CrossRef]
- Iqbal, N.; Umar, S.; Khan, N.A. Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). J. Plant Physiol. 2015, 178, 84–91. [Google Scholar] [CrossRef]
- Mo, Y.; Wang, Y.; Yang, R.; Zheng, J.; Liu, C.; Li, H.; Ma, J.; Zhang, Y.; Wei, C.; Zhang, X. Regulation of plant growth, photosynthesis, antioxidation and osmosis by an arbuscular mycorrhizal fungus in watermelon seedlings under well-watered and drought conditions. Front. Plant Sci. 2016, 7, 644. [Google Scholar] [CrossRef]
- Parre, E.; Ghars, M.A.; Leprince, A.S.; Thiery, L.; Lefebvre, D.; Bordenave, M.; Richard, L.; Mazars, C.; Abdelly, C.; Savoure, A. Calcium signaling via phospholipase C is essential for proline accumulation upon ionic but not nonionic hyperosmotic stresses in Arabidopsis. Plant Physiol. 2007, 144, 503–512. [Google Scholar] [CrossRef]
- Estrada, B.; Aroca, R.; Maathuis, F.J.M.; Barea, J.M.; Ruiz-Lozano, J.M. Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ. 2013, 36, 1771–1782. [Google Scholar] [CrossRef]
- Nephali, L.; Moodley, V.; Piater, L.; Steenkamp, P.; Buthelezi, N.; Dubery, I.; Burgess, K.; Huyser, J.; Tugizimana, F. A metabolomic landscape of mize plants treated with a microbial biostimulant under well-watered and drought conditions. Front. Plant Sci. 2021, 12, 676632. [Google Scholar] [CrossRef]
- Qiu, Q.; Bender, S.F.; Mgelwa, A.S.; Hu, Y. Arbuscular mycorrhizal fungi mitigate soil nitrogen and phsophorus losses: A meta-analysis. Sci. Total Environ. 2022, 807, 150857. [Google Scholar] [CrossRef]
- Hu, B.; Hu, S.; Vymazal, J.; Chen, Z. Application of arbuscular mycorrhizal fungi for pharmaceuticals and personal care productions removal in constructed wetlands with different substrate. J. Clean. Prod. 2022, 339, 130760. [Google Scholar] [CrossRef]
- Lermen, C.; Cruz, R.M.S.D.; Pinc, M.M.; Zardeto, G.; Lorencete, M.D.S.; Schwengber, R.P.; Dias-Arieira, C.R.; Alberton, O. Essential oil of bushy lippia inoculated with arbuscular mycorrhizal fungi under different levels of humic substances and phosphorus. Rhizosphere 2023, 25, 100660. [Google Scholar] [CrossRef]
- Mei, L.; Zhang, P.; Cui, G.; Yang, X.; Zhang, T.; Guo, J. Arbuscular mycorrhizal fungi promote litter decomposition and alleviate nutrient limitations of soil microbes under warming and nitrogen application. Appl. Soil Ecol. 2022, 171, 104318. [Google Scholar] [CrossRef]
- Huang, D.; Ma, M.; Wang, Q.; Zhang, M.; Jing, G.; Li, C.; Ma, F. Arbuscular mycorrhizal fungi enhanced drought resistance in apple by regulating genes in the MAPK pathway. Plant Physiol. Biochem. 2020, 149, 245–255. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Zhu, X.; Zhang, Y.; Yang, H.; Dobbie, S.; Zhang, X.; Deng, A.; Qian, H.; Zhang, W. Effects of arbuscular mycorrhizal fungi on crop growth and soil N2O emissions in the legume system. Agric. Ecosyst. Environ. 2021, 322, 107641. [Google Scholar] [CrossRef]
- Karagiannidis, N.; Thomidis, T.; Lazari, D.; Panou-Filotheou, E.; Karagiannidou, C. Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of oregano and mint plants. Sci. Hortic. 2011, 129, 329–334. [Google Scholar] [CrossRef]
- Klinsukon, C.; Ekprasert, J.; Boonlue, S. Using arbuscular mycorrhizal fungi (Gigaspora margarita) as a growth promoter and biocontrol of leaf blight disease in eucalyptus seedlings caused by Cylindrocladium quinqueseptatum. Rhizosphere 2021, 20, 100450. [Google Scholar] [CrossRef]
- Lam, C.-M.; Lai, H.-Y. Effect of inoculation with arbuscular mycorrhizal fungi and blanching on the bioaccessibility of heavy metals in water spinach (Ipomoea aquatica Forsk.). Ecotoxicol. Environ. Saf. 2018, 162, 563–570. [Google Scholar] [CrossRef]
- Arriagada, C.A.; Herrera, M.A.; Ocampo, J.A. Beneficial effect of saprobe and arbuscular mycorhizal fungi on growth of Eucalyptus globulus co-cultured with Glycine max in soil contaminated with heavy metals. J. Environ. Manag. 2007, 84, 93–99. [Google Scholar] [CrossRef]
- Gheisari Zardak, S.; Dehnavi, M.M.; Salehi, A.; Ghlamhoseini, M. Effects of using arbuscular mycorrhizal fungi to alleviate drought stress on the physiological traits and essential oil yield of fennel. Rhizosphere 2018, 6, 31–38. [Google Scholar] [CrossRef]
- Goicoechea, N.; Baslam, M.; Erice, G.; Irigoyen, J.J. Increased photosynthetic acclimation in alfalfa associated with arbuscular mycorrhizal fungi (AMF) and cultivated in greenhouse under elevated CO2. J. Plant Physiol. 2014, 171, 1774–1781. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Liang, L.-Z.; Dong, X.-Y.; Xu, J.; Jiang, P.-K.; Shen, R.-F. Response of soil phosphorus required for maximum growth of Asparagus officinalis L. to inoculation of arbuscular mycorrhizal fungi. Pedosphere 2014, 24, 776–782. [Google Scholar] [CrossRef]
- Zhang, X.; Han, C.; Gao, H.; Cao, Y. Comparative transcriptome analysis of the garden asparagus (Asparagus officinalis L.) reveals the molecular mechanism for growth with arbuscular mycorrhizal fungi under salinity stress. Plant Physiol. Biochem. 2019, 141, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, H.; Zhang, Y.; Liu, Y.; Zhang, H.; Tang, M. Arbuscular mycorrhizal fungi alter carbohydrate distribution and amino acid accumulation in Medicago truncatula uncer lead stress. Environ. Exp. Bot. 2020, 171, 103950. [Google Scholar] [CrossRef]
- Gyuricza, V.; Declerck, S.; Boulois, H.D.D. Arbuscular mycorrhizal fungi decrease radiocesium accumulation in Medicago truncatula. J. Environ. Radioact. 2010, 101, 591–596. [Google Scholar] [CrossRef]
- Li, X.; Kang, X.; Zou, J.; Yin, J.; Wang, Y.; Li, A.; Ma, X. Allochthonous arbuscular mycorrhizal fungi promote Salix viminalis L.—Mediated phytoremediation of polycyclic aromatic hydrocarbons characterized by increasing the release of organic acids and enzymes in soils. Ecotoxicol. Environ. Saf. 2023, 249, 114461. [Google Scholar] [CrossRef]
- Mohammed, A.E.; Alotaibi, M.O.; Elobeid, M. Interactive influence of elevated CO2 and arbuscular mycorrhizal fungi on sucrose and coumarin metabolism in Ammi majus. Plant Physiol. Biochem. 2022, 185, 45–54. [Google Scholar] [CrossRef]
- Darakeh, S.A.S.S.; Weisany, W.; Tahir, N.A.-R.; Schenk, P.M. Physiological and biochemical responses of black cumin to vermicompost and plant biostimulants: Arbuscular mycorrhizal and plant growth-promoting rhizobacteria. Ind. Crops Prod. 2022, 188, 115557. [Google Scholar] [CrossRef]
- Wang, L.; Jia, X.; Zhao, Y.; Zhang, C.-Y.; Gao, Y.; Li, X.; Cao, K.; Zhang, N. Effects of elevated CO2 on arbusular mycorrhizal fungi associated with Robinia pseudoacacia L. grown in cadmium-contaminated soils. Sci. Total Environ. 2021, 768, 144453. [Google Scholar] [CrossRef]
- Aggangan, N.S.; Cortes, A.D.; Reaño, C.E. Growth response of cacao (Theobroma cacao L.) plant as affected by bamboo biochar and arbuscular mycorrhizal fungi in sterilized and unsterilized soil. Biocatal. Agric. Biotechnol. 2019, 22, 101347. [Google Scholar] [CrossRef]
- Outamamat, E.; Dounas, H.; Aziz, F.; Barguaz, A.; Duponnois, R.; Ouahmane, L. The first use of morphologically isolated arbuscular mycorrhizal fungi single-species from Moroccan ecosystems to improve growth, nutrients uptake and photosynthesis in Ceratonia siliqua seedlings under nursery conditions. Saudi J. Biol. Sci. 2022, 29, 2121–2130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Hu, Y.; Zhang, K.; Tian, C.; Guo, J. Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Ind. Crops Prod. 2018, 117, 13–19. [Google Scholar] [CrossRef]
- Pellegrino, E.; Bedini, S. Corrigendum to ”Enhancing ecosystem services in sustainable agriculture: Biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi“. Soil Biol. Biochem. 2014, 75, 314–315. [Google Scholar] [CrossRef]
- Kaba, J.S.; Abunyewa, A.A.; Kugbe, J.; Kwashie, G.K.S.; Ansah, E.O.; Andoh, H. Arbuscular mycorrhizal fungi and potassium fertilizer as plant biostimulants and alternative research for enhancing plants adaptation to drought stress: Opportunities for enhancing drought tolerance in cocoa (Theobroma cacao L.). Sustain. Environ. 2021, 7, 1963927. [Google Scholar] [CrossRef]
- Ganugi, P.; Pathan, S.I.; Zhang, L.; Arfaioli, P.; Benedettelli, S.; Masoni, A.; Pietramellara, G.; Lucini, L. The pivotal role of cultivar affinity to arbuscular mycorrhizal fungi in determining mycorrhizal responsiveness to water deficit. Phytochemistry 2022, 203, 113381. [Google Scholar] [CrossRef]
- Metwally, R.A.; Abdelhameed, R.E. Synergistic effect of arbuscular mycorrhizal fungi on growth and physiology salt-stressed Trigonella foenum-graecum plants. Biocatal. Agric. Biotechnol. 2018, 16, 538–544. [Google Scholar] [CrossRef]
- Caruso, T.; Mafrica, R.; Bruno, M.; Vescio, R.; Sorgona, A. Root architectural traits of rooted cuttings of two fig cultivars: Treatments with arbuscular mycorrhizal fungi formulation. Sci. Hortic. 2021, 283, 110083. [Google Scholar] [CrossRef]
- Shen, W.; Feng, Z.; Song, H.; Jin, D.; Fu, Y.; Cheng, F. Effects of solid waste-based soil conditioner and arbuscular mycorrhizal fungi on crop productivity and heavy metal distribution in foxtail millet (Setaria italica). J. Environ. Manag. 2022, 313, 114974. [Google Scholar] [CrossRef]
- Liu, N.; Shao, C.; Sun, H.; Liu, Z.; Guan, Y.; Wu, L.; Zhang, L.; Pan, X.; Zhang, Z.; Zhang, Y.; et al. Arbuscular mycorrhizal fungi biofertilizer improves American ginseng (Panax quinquefolius L.) growth under the continuous cropping regime. Geoderma 2020, 363, 114155. [Google Scholar] [CrossRef]
- Hashem, A.; Abd-Allah, E.F.; Alqarawi, A.A.; Egamberdieva, D. Bioremediation of adverse impact of cadmium toxicity on Cassia italica Mill by arbuscular mycorrhizal fungi. Saudi J. Biol. Sci. 2016, 23, 39–47. [Google Scholar] [CrossRef]
- Fokom, R.; Adamou, S.; Essono, D.; Ngwasiri, D.P.; Eke, P.; Mofor, C.T.; Tchoumbougnang, F.; Fekam, B.F.; Zollo, P.H.A.; Nwaga, D.; et al. Growth, essential oil content, chemical composition and antioxidant properties of lemongrass as affected by harvest period and arbuscular mycorrhizal fungi in field conditions. Ind. Crops Prod. 2019, 138, 111477. [Google Scholar] [CrossRef]
- Cozzolino, V.; Meo, V.D.; Piccolo, A. Impact of arbuscular mycorrhizal fungi applications on maize production and soil phosphorus availability. J. Geochem. Explor. 2013, 129, 40–44. [Google Scholar] [CrossRef]
- Birhane, E.; Bongers, F.; Damtew, A.; Tesfay, A.; Norgrove, L.; Kuyper, T.W. Arbuscular mycorrhizal fungi improve nutrient status of Commiphora myrrha seedlings under drought. J. Arid Environ. 2023, 209, 104877. [Google Scholar] [CrossRef]
- El-Nashar, Y.I.; Hassan, B.A.; Aboelsaadat, E.M. Response of Nemesia (Nemesia × hybridus) plants to different irrigation water sources and arbuscular mycorrhizal fungi inoculation. Agric. Water Manag. 2021, 243, 106416. [Google Scholar] [CrossRef]
- Ostadi, A.; Javanmard, A.; Amani Machiani, M.; Sadeghpour, A.; Maggi, F.; Nouraein, M.; Morshedloo, M.R.; Hano, C.; Lorenzo, J.M. Co-application of TiO2 nanoparticles and arbuscular mycorrhizal fungi improves essential oil quality and quality of Sage (Salvia officinalis L.) in drought stress conditions. Plants 2022, 11, 1659. [Google Scholar] [CrossRef]
- Saleh, A.M.; Abdel-Mawgoud, M.; Hassan, A.R.; Habeeb, T.H.; Yehia, R.S.; El-gawad, H. Global metabolic changes induced by arbuscular mycorrhizal fungi in oregano plants grown under ambient and elevated levels of atmospheric CO2. Plant Physiol. Biochem. 2020, 151, 255–263. [Google Scholar] [CrossRef]
- Chen, D.; Saeed, M.; Ali, M.N.H.A.; Raheel, M.; Ashraf, W.; Hassan, Z.; Hassan, M.Z.; Farooq, U.; Hakim, M.F.; Rao, M.J.; et al. Plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi combined application reveals enhanced soil fertility and rice production. Agronomy 2023, 13, 550. [Google Scholar] [CrossRef]
- Wen, Z.; Chen, Y.; Liu, Z.; Meng, J. Biochar and arbuscular mycorrhizal fungi stimulate rice root growth strategy and soil nutrient availability. Eur. J. Soil Biol. 2022, 113, 103448. [Google Scholar] [CrossRef]
- Bao, X.; Wang, Y.; Olsson, P.A. Arbuscular mycorrhiza under water-carbon-phosphorus exchange between rice and arbuscular mycorrhizal fungi under different flooding regimes. Soil Biol. Biochem. 2019, 129, 169–177. [Google Scholar] [CrossRef]
- Liu, M.; Che, Y.; Wang, L.; Zhao, Z.; Zhang, Y.; Wei, L.; Xiao, Y. Rice straw bioachr and phosphorus inputs have more positive effects on the yield and nutrient uptake of Lolium multiflorum than arbuscular mycorrhizal fungi in acidic Cd-contaminated soils. Chemosphere 2019, 235, 32–39. [Google Scholar] [CrossRef]
- Lahbouki, S.; Ben-Laouane, R.; Anli, M.; Boutasknit, A.; Ait-Rahou, Y.; Ait-El-Mokhtar, M.; El Gabardi, S.; Douira, A.; Wahbi, S.; Outzourhit, A.; et al. Arbuscular mycorrhizal fungi and/or organic amendment enhance the tolerance of prickly pear (Opuntia ficus-indica) under drought stress. J. Arid Environ. 2022, 199, 104703. [Google Scholar] [CrossRef]
- Minggui, G.; Ming, T.; Qiaoming, Z.; Xinxin, F. Effects of climatic and edaphic factors on arbuscular mycorrhizal fungi in the rhizosphere of Hippophae rhamnoides in the Loess Plateau, China. Acta Ecol. Sinica. 2012, 32, 62–67. [Google Scholar] [CrossRef]
- Abdelhalim, T.S.; Tia, N.A.J.; Elkhatim, K.A.; Othman, M.H.; Joergensen, R.G.; Almaiman, S.A.; Hassan, A.B. Exploring the potential of arbuscular mycorrhizal fungi (AMF) for improving health-promoting phytochemicals in sorghum. Rhizosphere 2022, 24, 100596. [Google Scholar] [CrossRef]
- Dantas, L.V.D.A.; Silva, E.N.; Silva, D.K.A.D.; Beckmann-Cavalcante, M.Z.; Yano-Melo, A.M. Impact of long-term application of paclobutrazol in communities of arbuscular mycorrhiza fungi and their efficiency in the development of Helianthus annuus L. Appl. Soil Ecol. 2023, 191, 105029. [Google Scholar] [CrossRef]
- Langeroodi, A.R.S.; Mancinelli, R.; Radicetti, E. Contribution of biochar and arbuscular mycorrhizal fungi to sustainable cultivation of sunflower under semi-arid environment. Field Crops Res. 2021, 273, 108292. [Google Scholar] [CrossRef]
- Paskovic, I.; Soldo, B.; Ban, S.G.; Radic, T.; Lukic, M.; Urlic, B.; Mimica, M.; Bubola, K.B.; Colla, G.; Rouphael, Y.; et al. Fruit quality and volatile compound composition of processing tomato as affected by fertilisation practices and arbuscular mycorrhizal fungi application. Food Chem. 2021, 359, 129961. [Google Scholar] [CrossRef]
- Duan, J.; Tian, H.; Drijber, R.A.; Gao, Y. Systemic and local regulation of phosphate and nitrogen transporter genes by arbuscular mycorrhizal fungi in roots of winter wheat (Triticum aestivum L.). Plant Physiol. Biochem. 2015, 96, 199–208. [Google Scholar] [CrossRef]
- Jerbi, M.; Labidi, S.; Bahri, B.A.; Laruelle, F.; Tisserant, B.; Jeddi, F.B.; Sahraoui, A.L.-H. Soil properties and climate affects arbuscular mycorrhizal fungi and soil microbial communities in Mediterranean rainfed cereal cropping systems. Pedobiologia 2021, 87–88, 150748. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Colla, G. Role of arbuscular mycorrhizal fungi in alleviating the adverse effects of acidity and aluminium toxicity in zucchini squash. Sci. Hortic. 2015, 188, 97–105. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Qin, J.; Liu, H.; Chen, Q.; Niu, Y.; Ren, A.; Gao, Y. Effects of simultaneous infections of endophytic fungi and arbuscular mycorrhizal fungi on the growth of their shared host grass Achnatherum sibiricum under varying N and P supply. Fungal Ecol. 2016, 20, 56–65. [Google Scholar] [CrossRef]
- Gao, Y.; Jia, X.; Zhao, Y.; Zhao, J.; Ding, X.; Zhang, C.; Feng, X. Effect of arbuscular mycorrhizal fungi (Glomus mosseae) and elevated air temperature on Cd migration in the rhizosphere soil of alfalfa. Ecotoxicol. Environ. Saf. 2022, 248, 114342. [Google Scholar] [CrossRef]
- Borj, M.A.; Etesami, H.; Alikhani, H.A. Silicon improves the effect of phosphate solubilizing bacterium and arbuscular mycorrhizal fungus on phosphorus concentration of salinity-stressed alfalfa (Medicago sativa L.). Rhizosphere 2022, 24, 100619. [Google Scholar] [CrossRef]
- Gao, T.; Liu, X.; Shan, L.; Wu, Q.; Liu, Y.; Zhang, Z.; Ma, F.; Li, C. Dopamine and arbuscular mycorrhizal fungi act synergistically to promote apple growth under salt stress. Environ. Experim. Bot. 2020, 178, 104159. [Google Scholar] [CrossRef]
- Watts-Williams, S.J.; Tyerman, S.D.; Cavagnaro, T.R. The dual benefit of arbuscular mycorrhizal fungi under soil zinc deficiency and toxicity: Linking plant physiology and gene expression. Plant Soil. 2017, 420, 375–388. [Google Scholar] [CrossRef]
- Wiesel, L.; Dubchak, S.; Turnau, K.; Broadley, M.R.; White, P.J. Caesium inhibits the colonization of Medicago truncatula by arbuscular mycorrhizal fungi. J. Environ. Radioact. 2015, 141, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, H.; Wu, F.; Wu, S.; Cao, Z.; Lin, X.; Wong, M.H. Arbuscular mycorrhizal fungi influence the accumulation and partitioning of Cd and P in bashfulgrass (Mimosa pudica L.) grown on a moderately Cd-contaminated soil. Appl. Soil Ecol. 2014, 73, 51–57. [Google Scholar] [CrossRef]
- Yadav, V.K.; Jha, R.K.; Kaushik, P.; Altalayan, H.; Balawi, T.A.; Alam, P. Traversing arbuscular mycorrhizal fungi and Pseudomonas fluorescens for carrot production under salinity. Saudi J. Biol. Sci. 2021, 28, 4217–4223. [Google Scholar] [CrossRef]
- Sarr, P.S.; Sugiyama, A.; Begoude, A.D.B.; Yazaki, K.; Araki, S.; Nawata, E. Diversity and distribution of arbuscular mycorrhizal fungi in cassava (Manihot esculenta Crantz) croplands in Cameroon as revealed by Illumina MiSeq. Rhizosphere 2019, 10, 100147. [Google Scholar] [CrossRef]
- Straker, C.J.; Hilditch, A.J.; Rey, M.E.C. Arbuscular mycorrhizal fungi associated with cassava (Manihot esculenta Crantz) in South Africa. S. Afr. J. Bot. 2010, 76, 102–111. [Google Scholar] [CrossRef]
- Sehoane, E.; Mogni, V.; Pagani, A.; Gil-Cardeza, M.L. Taxonomical and functional analysis of four arbuscular mycorrhizal fungi populations obtained from a Ricinus communis rhizospheric Cr(VI) polluted soil. Environ. Adv. 2023, 11, 100343. [Google Scholar] [CrossRef]
- Gil-Cardeza, M.L.; Muller, D.R.; Amaya-Martin, S.M.; Viassolo, R.; Gomez, E. Differential responses to high soil chromium of two arbuscular mycorrhizal fungi communities isolated from Cr-polluted and non-polluted rhizospheres of Ricinus communis. Sci. Total Environ. 2018, 625, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Chen, L.; Xiao, Y. The combined use of arbuscular mycorrhizal fungi, biochar and nitrogen fertilizer is most beneficial to cultivate Cichorium intybus L. in Cd-contaminated soil. Ecotoxicol. Environ. Saf. 2021, 217, 112154. [Google Scholar] [CrossRef] [PubMed]
- Boonlue, S.; Surapat, W.; Pukahuta, C.; Suwanarit, P.; Suwanarit, A.; Morinaga, T. Diversity and efficiency of arbuscular mycorrhizal fungi in soils from organic chili (Capsicum frutescens) farms. Mycoscience 2012, 53, 10–16. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, J.; Liao, X.; Yan, Q.; Liang, G.; Liu, J.; Wang, D.; Guan, R. Different arbuscular mycorrhizal fungi established by two inoculation methods improve growth and droughts resistance of Cinnamomum Migao seedlings differently. Biology 2022, 11, 220. [Google Scholar] [CrossRef] [PubMed]
- Merlin, E.; Melato, E.; Lourenco, E.L.B.; Jacomassi, E.; Gasparotto Junior, A.; Sete da Cruz, R.M.; Otenio, J.K.; Da Silva, C.; Alberton, O. Inoculation of arbuscular mycorrhizal fungi and phosphorus addition increase coarse mint (Plectranthus amboinicus Lour.) plant growth and essential oil content. Rhizosphere 2020, 15, 100217. [Google Scholar] [CrossRef]
- Razakatiana, A.T.E.; Trap, J.; Baohanta, R.H.; Raherimandimby, M.; Le Roux, C.; Duponnois, R.; Ramanankierana, H.; Becquer, T. Benefits of dual inoculation with arbuscular mycorrhizal fungi and rhizobia on Phaseolus vulgaris planted in a low-fertility tropical soil. Pedobiologia 2020, 83, 150685. [Google Scholar] [CrossRef]
- Azizi, S.; Kouchaksaraei, M.T.; Hadian, J.; Nosrat Abad, A.R.; Sanavi, S.A.M.M.; Ammer, C.; Bader, M.K.-F. Dual inoculation of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria boost drought resistance and essential oil yield of common myrtle. For. Ecol. Manag. 2021, 497, 119478. [Google Scholar] [CrossRef]
- Kavadia, A.; Omirou, M.; Fasoula, D.A.; Louka, F.; Ehaliotis, C.; Ioannides, I.M. Co-inoculations with rhizobia and arbuscular mycorrhizal fungi alters mycorrhizal composition and lead to synergistic growth effects in cowpea that are fungal combination-dependent. Appl. Soil Ecol. 2021, 167, 104013. [Google Scholar] [CrossRef]
- Ogunkunle, C.O.; El-Imam, A.M.A.; Bassey, E.; Vishwakarma, V.; Fatoba, P.O. Co-application of indigenous arbuscular mycorrhizal fungi and nano-TiO2 reduced Cd uptake and oxidative stress in pre-flowering cowpea plants. Environ. Technol. Innov. 2020, 20, 101163. [Google Scholar] [CrossRef]
- Chen, S.; Jin, W.; Liu, A.; Zhang, S.; Liu, D.; Wang, F.; Lin, X.; He, C. Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperatures stress. Sci. Hortic. 2013, 160, 222–229. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.-L.; Li, M.; Lin, X.-G.; Liu, R.-J. Effects of arbuscular mycorrhizal fungi communities on soil quality and the growth of cucumber seedlings in a greenhouse soil of continuously planting cucumber. Pedosphere 2012, 22, 79–87. [Google Scholar] [CrossRef]
- Hu, J.-L.; Lin, X.-G.; Wang, J.-H.; Shen, W.-S.; Wu, S.; Peng, S.-P.; Mao, T.-T. Arbuscular mycorrhizal fungal inoculation enhances suppression of cucumber Fusarium wilt in greenhouse soils. Pedosphere 2010, 20, 586–593. [Google Scholar] [CrossRef]
- Hilali, R.E.; Symanczik, S.; Kinany, S.E.; Oehl, F.; Ouahmane, L.; Bouamri, R. Cultivation, identification, and application of arbuscular mycorrhizal fungi associated with date palm plants in Draa-Tafilalet oasis. Rhizosphere 2022, 22, 100521. [Google Scholar] [CrossRef]
- Jaiti, F.; Meddich, A.; El-Hadrami, I. Effectiveness of arbuscular mycorrhizal fungi in the protection of date palm (Phoenic dactylifera L.) against bayound disease. Physiol. Mol. Plant Pathol. 2007, 71, 166–173. [Google Scholar] [CrossRef]
- Kinany, S.E.; Achbani, E.; Faggroud, M.; Ouahmane, L.; El-Hilali, R.; Haggoud, A.; Bouamri, R. Effect of organic fertilizer and commercial arbuscular mycorrhizal fungi on the growth of micropropagated date plam cv. Feggouss. J. Saudi Soc. Agric. Sci. 2019, 18, 411–417. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Kuang, Y.; Cui, H.; Fu, L.; Sun, W. Metabolic changes of active components of important medicinal plants on the basis of traditional Chinese medicine under different environmental stress. Curr. Org. Chem. 2023, 23. [Google Scholar] [CrossRef]
- Di Miceli, G.; Vultaggio, L.; Sabatino, L.; De Pasquale, C.; La Bella, S.; Consentino, B.B. Synergistic effect of a plant-derived protein hydrolysate and arbuscular mycorrhizal fungi on eggplant grown in open fields: A two-year study. Horticulturae 2023, 9, 592. [Google Scholar] [CrossRef]
- Sharma, M.; Saini, I.; Kaushik, P.; Aldawsari, M.M.; Balawi, T.; Alam, P. Mycorrhizal fungi and Pseudomonas fluorescens application reduces root-knot nematode (Meloidogyne javanica) infestation in eggplant. Saudi J. Biol. Sci. 2021, 28, 3685–3691. [Google Scholar] [CrossRef]
- Alipour, A.; Rahimi, M.M.; Hosseini, S.M.A.; Bahrani, A. Mycorrhizal fungi and growth-promoting bacteria improves fennel essential oil yield under water stress. Ind. Crops Prod. 2021, 170, 113792. [Google Scholar] [CrossRef]
- Nogales, A.; Rottier, E.; Campos, C.; Victorino, G.; Costa, J.M.; Coito, J.L.; Pereira, H.S.; Viegas, W.; Lopes, C. The effects of field inoculation of arbuscular mycorrhizal fungi through rye donor plants on grapevine performance and soil properties. Agric. Ecosyst. Environ. 2021, 313, 107369. [Google Scholar] [CrossRef]
- Sun, S.; Fan, X.; Feng, Y.; Wang, X.; Gao, H.; Song, F. Arbuscular mycorrhizal fungi influence the uptake of cadmium in industrial hemp (Cannabis sativa L.). Chemosphere 2023, 330, 138728. [Google Scholar] [CrossRef] [PubMed]
- Gaveliene, V.; Socik, B.; Jankovska-Bortkevic, E.; Jurkoniene, S. Plant microbial biostimulants as a promising tool to enhance the productivity and quality of carrot root crops. Microorganisms 2021, 9, 1850. [Google Scholar] [CrossRef] [PubMed]
- Souza, B.C.D.; Cruz, R.M.S.D.; Lourenco, E.L.B.; Pinc, M.M.; Dalmagro, M.; Silva, C.D.; Nunes, M.G.L.F.; Souza, S.G.H.D.; Alberton, O. Inoculation of lemongrass with arbuscular mycorrhizal fungi and rhizobacteria alters plants growth and essential oil production. Rhizosphere 2022, 22, 100514. [Google Scholar] [CrossRef]
- Silva, A.M.M.; Jones, D.L.; Chadwick, D.R.; Qi, X.; Cotta, S.R.; Araujo, V.L.V.P.; Matteoli, F.P.; Lacerda-Junior, G.V.; Pereira, A.P.A.; Fernandes-Junior, P.I.; et al. Can arbuscular mycorrhizal fungi and rhizobacteria facilitate 33P uptake in maize plants under water stress? Microbiol. Res. 2023, 271, 127350. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-M.; Naseer, M.; Zhu, Y.; Zhu, S.-G.; Wang, S.; Wang, B.-Z.; Wang, J.; Zhu, H.; Wang, W.; Tao, H.-Y.; et al. Dual effects of nZVI on maize growth and water use are positively mediated by arbuscular mycorrhizal fungi via rhizosphere interactions. Environ. Pollut. 2022, 308, 119661. [Google Scholar] [CrossRef]
- Celebi, S.Z.; Demir, S.; Celebi, R.; Durak, E.D.; Yilmaz, I.H. The effect of arbuscular mycorrhizal fungi (AMF) applications on the silage maize (Zea mays L.) yield in different irrigation regimes. Eur. J. Soil Biol. 2010, 46, 302–305. [Google Scholar] [CrossRef]
- Sun, C.; Guo, Q.; Zeeshan, M.; Milham, P.; Qin, S.; Ma, J.; Yang, Y.; Lai, H.; Huang, J. Dual RNA and 16S ribosomal DNA sequencing reveal arbuscular mycorrhizal fungi-mediated mitigation of selenate stress in Zea mays L. and reshaping of soil microbiota. Ecotoxicol. Environ. Saf. 2022, 247, 114217. [Google Scholar] [CrossRef]
- Olowe, O.M.; Olawuyi, O.J.; Sobowale, A.A.; Odebode, A.C. Role of arbuscular mycorrhizal fungi as biocontrol agents against Fusarium verticillioides causing ear rot of Zea mays L. (Maize). Curr. Plant Biol. 2018, 15, 30–37. [Google Scholar] [CrossRef]
- Liu, L.-Z.; Gong, Z.-Q.; Zhang, Y.-L.; Li, P.-J. Growth, cadmium accumulation and physiology of marigold (Tagetes erecta L.) as affected by arbuscular mycorrhizal fungi. Pedosphere 2011, 21, 319–327. [Google Scholar] [CrossRef]
- Asrar, A.A.; Abdel-Fattah, G.M.; Elhindi, K.M. Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica 2021, 50, 305–316. [Google Scholar] [CrossRef]
- Alizadeh, S.; Gharagoz, S.F.; Pourakbar, L.; Moghaddam, S.S.; Jamalomidi, M. Arbuscular mycorrhizal fungi alleviate salinity stress and alter phenolic compounds of Moldavian balm. Rhizosphere 2021, 19, 100417. [Google Scholar] [CrossRef]
- Lu, N.; Zhou, X.; Cui, M.; Yu, M.; Zhou, J.; Qin, Y.; Li, Y. Colonization with arbuscular mycorrhizal fungi promotes the growth of Morus alba L. seedlings under greenhouse conditions. Forests 2015, 6, 734–747. [Google Scholar] [CrossRef]
- Aganchich, B.; Wahbi, S.; Yaakoubi, A.; El-Aououad, H.; Bota, J. Effect of arbuscular mycorrhizal fungi inoculation on growth and physiology performance of olive trees under regulated deficit irrigation and partial rootzone drying. S. Afr. J. Bot. 2022, 148, 1–10. [Google Scholar] [CrossRef]
- Tekaya, M.; Dabbaghi, O.; Guesmi, A.; Attia, F.; Chehab, H.; Khezami, L.; Algathami, F.K.; Hamadi, N.B.; Hammadi, M.; Prinsen, E.; et al. Arbuscular mycorrhizas modulate carbohydrate, phenolic compounds and hormonal metabolism to enhance water deficit tolerance of olive trees (Olea europaea). Agric. Water Manag. 2022, 274, 107947. [Google Scholar] [CrossRef]
- Khabou, W.; Hajji, B.; Zouari, M.; Rigane, H.; Abdallah, F.B. Arbuscular mycorrhizal fungi improve growth and mineral uptake of olive tree under gypsum substrate. Ecol. Eng. 2014, 73, 290–296. [Google Scholar] [CrossRef]
- Metwally, R.A.; Soliman, S.A.; Latef, A.A.H.A.; Abdelhameed, R.E. The individual and interactive role of arbuscular mycorrhizal fungi and Trichoderma viride on growth, protein content, amino acids fractionation, and phosphatases enzyme activities of onion plants amended with fish waste. Ecotoxicol. Environ. Saf. 2021, 214, 112072. [Google Scholar] [CrossRef]
- Pankaj, U.; Kurmi, A.; Lothe, N.B.; Verma, R.K. Influence of the seedlings emergence and initial growth of palmarosa (Cymbopogon martinii (Roxb.) Wats. var. Motia Burk) by arbuscular mycorrhizal fungi in soil salinity conditions. J. Appl. Res. Med. Aromat. Plants 2021, 24, 100317. [Google Scholar] [CrossRef]
- Hernandez-Montiel, L.G.; Rueda-Puente, E.O.; Cordoba-Matson, M.V.; Holguin-Pena, J.R.; Zulueta-Rodriguez, R. Mutualistic interaction of rhizobacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Fusarium oxysporum in Carica papaya seedlings. Crop Prot. 2013, 47, 61–66. [Google Scholar] [CrossRef]
- Xu, F.-J.; Zhang, A.-Y.; Yu, Y.-Y.; Sun, K.; Tang, M.-J.; Zhang, W.; Xie, X.-G.; Dai, C.C. Soil legacy of arbuscular mycorrhizal fungus Gigaspora margarita: The potassium-sequestering glomalin improves peanut (Arachis hypogaea) drought resistance and pod yield. Microbiol. Res. 2021, 249, 126774. [Google Scholar] [CrossRef]
- Sensoy, S.; Demir, S.; Turkmen, O.; Erdinc, C.; Savur, O.B. Responses of some different pepper (Capsicum annuum L.) genotypes to inoculation with two different arbuscular mycorrhizal fungi. Sci. Hortic. 2007, 113, 92–95. [Google Scholar] [CrossRef]
- Sharif, M.; Claassen, N. Action mechanisms of arbuscular mycorrhizal fungi in phosphorus uptake by Capsicum annuum L. Pedosphere 2011, 21, 502–511. [Google Scholar] [CrossRef]
- Singh, N.V.; Singh, S.K.; Singh, A.K.; Meshram, D.T.; Suroshe, S.S.; Mishra, D.C. Arbuscular mycorrhizal fungi (AMF) induced hardening of micropropagated pomegranate (Punica granatum L.) plantlets. Sci. Hortic. 2012, 136, 122–127. [Google Scholar] [CrossRef]
- Rahimi, S.; Baninasab, B.; Talebi, M.; Gholami, M.; Zarei, M. Arbuscular mycorrhizal fungi inoculation improves iron deficiency in quince via alterations in host root phenolic compounds and expression of genes. Sci. Hortic. 2021, 285, 110165. [Google Scholar] [CrossRef]
- Medina, C.; Mutis, A.; Bardehle, L.; Hormazabal, E.; Borie, F.; Aguilera, P.; Ortega, F.; Quiroz, A. Arbuscular mycorrhizal fungi enhance monoterpene production in red clover (Trifolium pratense L.): A potential tool for pest control. Nat. Prod. Res. 2023, 37, 981–984. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Shu, B.; Wang, Y.; Zhang, D.J.; Liu, J.F.; Xia, R.X. Diversity of arbuscular mycorrhizal fungi in red tangerine (Citrus reticulata Blanco) rootstock rhizospheric soils from hillside citrus orchards. Pedobiologia 2013, 56, 161–167. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Lu, M.; Zhang, Z.; Chen, M.; Li, S.; Cao, R. Rhizosphere interactions between earthworms and arbuscular mycorrhizal fungi increase nutrient availability and plant growth in the desertification soils. Soil Tillag. Res. 2019, 186, 146–151. [Google Scholar] [CrossRef]
- Li, H.; Chen, X.W.; Wong, M.H. Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains. Chemosphere 2016, 145, 224–230. [Google Scholar] [CrossRef]
- Li, H.; Luo, N.; Zhang, L.J.; Zhao, H.M.; Li, Y.W.; Cai, Q.Y.; Wong, M.H.; Mo, C.H. Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice? Sci. Total Environ. 2016, 571, 1183–1190. [Google Scholar] [CrossRef]
- Baki, M.Z.I.; Suzuki, K.; Takahashi, K.; Chowdhury, S.A.; Asiloglu, R.; Harada, N. Molecular genetic characterization of arbuscular mycorrhizal fungi associated with upland rice in Bangladesh. Rhizosphere 2021, 18, 100357. [Google Scholar] [CrossRef]
- Silva, H.F.O.D.; Tavares, O.C.H.; Silva, L.D.S.D.; Zonta, E.; Silva, E.M.R.D.; Saggin Junior, O.J.; Nobre, C.P.; Berbara, R.L.L.; Garcia, A.C. Arbuscular mycorrhizal fungi and humic substances increased the salinity tolerance of rice plants. Biocatal. Agric. Biotechnol. 2022, 44, 102472. [Google Scholar] [CrossRef]
- Beyene, B.B.; Tuji, F.A. Inoculation of rose (Rosa rubigniosa L., eglantine or the briar rose) flower root stocks with consortia of endophytic bacteria and arbuscular mycorrhizal fungi improves its establishment and success rate under greenhouse conditions. Rhizoshphere 2023, 26, 100698. [Google Scholar] [CrossRef]
- Han, Y.; Zveushe, O.K.; Dong, F.; Ling, Q.; Chen, Y.; Sajid, S.; Zhou, L.; Dios, V.R.D. Unraveling the effects of arbuscular mycorrhizal fungi on cadmium uptake and detoxification mechanisms in perennial ryegrass (Lolium perenne). Sci. Total Environ. 2021, 798, 149222. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Dai, Z.; Cui, M.; Lu, W.; Sun, H. Arbuscular mycorrhizal fungi alleviate boron toxicity in Puccinellia tenuiflora under the combined stresses of salt and drought. Environ. Pollut. 2018, 240, 557–565. [Google Scholar] [CrossRef]
- Caser, M.; Demasi, S.; Victorino, I.M.M.; Donno, D.; Faccio, A.; Lumini, E.; Bianciotto, V.; Scariot, V. Arbuscular mycorrhizal fungi modulate the crop performance and metabolic profile in saffron in soilless cultivation. Agronomy 2019, 9, 232. [Google Scholar] [CrossRef]
- Wang, S.; Feng, Z.; Wang, X.; Gong, W. Arbuscular mycorrhizal fungi alter the response of growth and nutrient uptake of snap bean (Phaseolus vulgaris L.) to O3. J. Environ. Sci. 2011, 23, 968–974. [Google Scholar] [CrossRef]
- Hadian-Deljou, M.; Esna-Ashari, M.; Mirzaie-asl, A. Alleviation of salt stress and expression of stress-responsive gene through the symbiosis of arbuscular mycorrhizal fungi with sour orange seedlings. Sci. Hortic. 2020, 268, 109373. [Google Scholar] [CrossRef]
- Sun, X.-G.; Tang, M. Effect of arbuscular mycorrhizal fungi inoculation on root traits and root volatile organic compound emissions of Sorghum bicolor. S. Afr. J. Bot. 2013, 88, 373–379. [Google Scholar] [CrossRef]
- Nakmee, P.S.; Techapinyawat, S.; Ngamprasit, S. Comparative potentials of native arbuscular mycorrhizal fungi to improve nutrient uptake and biomass of Sorghum bicolor Linn. Agric. Nat. Resour. 2016, 50, 173–178. [Google Scholar] [CrossRef]
- Chandra, P.; Singh, A.; Prajapat, K.; Rai, A.K.; Yadav, R.K. Native arbuscular mycorrhizal fungi improve growth, biomass yield, and phosphorus nutrition of sorghum in saline and sodic soils of the semi-arid region. Environ. Experim. Bot. 2022, 201, 104982. [Google Scholar] [CrossRef]
- Crossay, T.; Cavaloc, Y.; Majorel, C.; Redecker, D.; Medevielle, V.; Amir, H. Combinations of different arbuscular mycorrhizal fungi improve fitness and metal tolerance of sorghum in ultramafic soil. Rhizosphere 2020, 14, 100204. [Google Scholar] [CrossRef]
- Thiub, M.; Ewusi-Mensah, N.; Sarkodie-Addo, J.; Adjei-Gyapong, T. Arbuscular mycorrhizal fungi inoculation enhances phosphorus use efficiency and soybean productivity on a Haplic Acrisol. Soil Till. Res. 2019, 192, 174–186. [Google Scholar] [CrossRef]
- Barazetti, A.R.; Simionato, A.S.; Navarro, M.O.P.; Santos, I.M.O.D.; Modolon, F.; Andreata, M.F.D.L.; Liuti, G.; Cely, M.V.T.; Chryssafidis, A.L.; Dealis, M.L.; et al. Formulations of arbuscular mycorrhizal fungi inoculum applied to soybean and corn plant under controlled and field conditions. Appl. Soil Ecol. 2019, 142, 25–33. [Google Scholar] [CrossRef]
- Chiomento, J.L.T.; Nardi, F.S.D.; Filippi, D.; Trentin, T.D.S.; Dornelles, A.G.; Fornari, M.; Nienow, A.A.; Calvete, E.O. Morpho-horticultural performance of strawberry cultivated on substrate with arbuscular mycorrhizal fungi and biochar. Sci. Hortic. 2021, 282, 110053. [Google Scholar] [CrossRef]
- Moradtalab, N.; Hajoboland, R.; Aliasgharzad, N.; Hartmann, T.E.; Neumann, G. Silicon and the association with an arbuscular-mycorrhizal fungus (Rhizophagus clarus) mitigate the adverse effects of drought stress on strawberry. Agronomy 2019, 9, 41. [Google Scholar] [CrossRef]
- Wei, Z.; Sixi, Z.; Xiuqing, Y.; Guodong, X.; Baichun, W.; Baojing, G. Arbuscular mycorrhizal fungi alter rhizosphere bacterial community characteristics to improve Cr tolerance of Acorus calamus. Ecotoxicol. Environ. Saf. 2023, 253, 114652. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Lai, S.; Chen, M.; Long, X.; Fun, X.; Yang, H. Effects of grass cultivation on soil arbuscular mycorrhizal fungi community in a tangerine orchard. Rhizosphere 2022, 24, 100583. [Google Scholar] [CrossRef]
- Hua, J.; Lin, X.; Yin, R.; Jiang, Q.; Shao, Y. Effects of arbuscular mycorrhizal fungi inoculation on arsenic accumulation by tobacco (Nicotiana tabacum L.). J. Environ. Sci. 2009, 21, 1214–1220. [Google Scholar] [CrossRef]
- Ziane, H.; Hamza, N.; Meddad-Hamza, A. Arbuscular mycorrhizal fungi and fertilization rates optimize tomato (Solanum lycopersicum L.) growth and yield in a Mediterranean agroecosystem. J. Saudi Soc. Agric. Sci. 2021, 20, 454–458. [Google Scholar] [CrossRef]
- Arpanahi, A.A.; Feizian, M.; Mehdipourian, G.; Khojasteh, D.N. Arbuscular mycorrhizal fungi inoculation improve essential oil and physiological parameters and nutritional values of Thymus daenensis Celak and Thymus vulgaris L. under normal and drought stress conditions. Eur. J. Soil Biol. 2020, 100, 103217. [Google Scholar] [CrossRef]
- Li, J.-F.; He, X.-H.; Li, H.; Zheng, W.-J.; Liu, J.-F.; Wang, M.-Y. Arbuscular mycorrhizal fungi increase growth and phenolics synthesis in Poncirus trifoliata under iron deficiency. Sci. Hortic. 2015, 183, 87–92. [Google Scholar] [CrossRef]
- Amanifar, S.; Toghranegar, Z. The efficiency of arbuscular mycorrhizal for improving tolerance of Valeriana officinalis L. and enhancing valerenic acid accumulation under salinity stress. Ind. Crops Prod. 2020, 147, 112234. [Google Scholar] [CrossRef]
- Li, J.; Awasthi, M.K.; Xing, W.; Liu, R.; Bao, H.; Wang, X.; Wang, J.; Wu, F. Arbuscular mycorrhizal fungi increase the bioavailability and wheat (Triticum aestivum L.) uptake of selenium in soil. Ind. Crops Prod. 2020, 150, 112383. [Google Scholar] [CrossRef]
- Li, J.; Liu, R.; Zhang, C.; Yang, J.; Lyu, L.; Shi, Z.; Man, Y.B.; Wu, F. Selenium uptake and accumulation in winter wheat as affected by level of phosphate application and arbuscular mycorrhizal fungi. J. Hazard. Mat. 2022, 433, 128762. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Luo, W.; Li, J.; Wu, F. Arbuscular mycorrhizal fungi increase both concentrations and bioavailability of Zn in wheat (Triticum aestivum L.) grain on Zn-spiked soils. Appl. Soil Ecol. 2019, 135, 91–97. [Google Scholar] [CrossRef]
- Tchabi, A.; Coyne, D.; Hountondji, F.; Lawouin, L.; Wiemken, A.; Oehl, F. Efficacy of indigenous arbuscular mycorrhizal fungi for promoting white yam (Dioscorea rotundata) growth in West Africa. Appl. Soil Ecol. 2010, 45, 92–100. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. The important nutritional benefits and wonderful health benefits of cashew (Anacardium occidentale L.). Nat. Prod. J. 2023, 13, 2–10. [Google Scholar] [CrossRef]
- Eke, P.; Adamou, S.; Fokom, R.; Nya, V.D.; Fokou, P.V.T.; Wakam, L.N.; Nwaga, D.; Boyom, F.F. Arbuscular mycorrhizal fungi alter antifungal potential of lemongrass essential oil against Fusarium solani, causing root rot in common bean (Phaseolus vulgaris L.). Heliyon 2020, 6, e05737. [Google Scholar] [CrossRef]
- Baum, C.; El-Tohamy, W.; Gruda, N. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Sci. Hortic. 2015, 187, 131–141. [Google Scholar] [CrossRef]
- Siddiky, M.R.; Schaller, J.; Caruso, T.; Rillig, M.C. Arbuscular mycorrhizal fungi and collembola non-additively increase soil aggregation. Soil Biol. Biochem. 2012, 47, 93–99. [Google Scholar] [CrossRef]
- Kara, Z.; Arslan, D.; Guller, M.; Guler, S. Inoculation of arbuscular mycorrhizal fungi and application of micronized calcite to olive plant: Effects on some biochemical constituents of olive fruit and oil. Sci. Hortic. 2015, 185, 219–227. [Google Scholar] [CrossRef]
- Yu, Z.; Zhao, X.; Su, L.; Yan, K.; Li, B.; He, Y.; Zhan, F. Effect of an arbuscular mycorrhizal fungus on maize growth and cadmium migration in a sand column. Ecotoxicol. Environ. Saf. 2021, 225, 112782. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.M.; El-Soud, W.M.A.; Alotaibi, M.O.; Beemster, G.T.S.; Mohammed, A.E.; AbdElgawad, H. Chitosan nanoparticles support the impact of arbuscular mycorrhizae fungi on growth and sugar metabolism of wheat crop. Int. J. Biol. Macromol. 2023, 235, 123806. [Google Scholar] [CrossRef] [PubMed]
- Leventis, G.; Tsiknia, M.; Feka, M.; Ladikou, E.V.; Papadakis, I.E.; Chatzipavlidis, I.; Papadopoulou, K.; Ehaliotis, C. Arbuscular mycorrhizal fungi enhance growth of tomato under normal and drought conditions, via different water regulation mechanisms. Rhizosphere 2021, 19, 100394. [Google Scholar] [CrossRef]
- Tekaya, M.; Dahmen, S.; Mansour, M.B.; Ferhout, H.; Chehab, H.; Hammami, M.; Attia, F.; Mechri, B. Foliar application of fertilizers and biostimulant has a strong impact on the olive (Olea europaea) rhizosphere microbial community profile and the abundance of arbuscular mycorrhizal fungi. Rhizosphere 2021, 19, 100402. [Google Scholar] [CrossRef]
- Sarkar, A.; Asaeda, T.; Wang, Q.; Kaneko, Y.; Rashid, M.H. Response of Miscanthus saccharidlorus to zinc stress mediated by arbuscular mycorrhizal fungi. Flora 2017, 234, 60–68. [Google Scholar] [CrossRef]
- You, Y.; Wang, L.; Ju, C.; Wang, G.; Ma, F.; Wang, Y.; Yang, D. Effects of arbuscular mycorrhizal fungi on the growth and toxic element uptake of Phragmites australis (Cav.) Trin. Ex Steud under zinc/cadmium stress. Ecotoxicol. Environ. Saf. 2021, 213, 112023. [Google Scholar] [CrossRef]
- Ruscitti, M.; Arango, M.; Beltrano, J. Improvement of copper stress tolerance in pepper plants (Capsicum annuum L.) by inoculation with arbuscular mycorrhizal fungi. Theor. Exp. Plant Physiol. 2017, 29, 37–49. [Google Scholar] [CrossRef]
- Jiang, Q.Y.; Zhuo, F.; Long, S.H.; Zhao, H.D.; Yang, D.J.; Ye, Z.H.; Li, S.S.; Jing, Y.X. Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Sci. Rep. 2016, 6, 21805. [Google Scholar] [CrossRef]
- Dagher, D.J.; Pitre, F.E.; Hijri, M. Ectomycorrhizal fungi inoculation of sphaerosporella brunnea significantly increased stem biomass of Salix miyabeana and decreased lead, tin, and zinc, soil concentrations during the phytoremediation of an industrial landfill. J. Fungi 2020, 6, 87. [Google Scholar] [CrossRef]
- Alam, M.Z.; Hoque, M.A.; Ahammed, G.J.; Carpenter-Boggs, L. Effects of arbuscular mycorrhizal fungi, biochar, selenium, silica gel, and sulfur on arsenic uptake and biomass growth in Pisum sativum L. Emerg. Contam. 2020, 6, 312–322. [Google Scholar] [CrossRef]
- Baghaie, A.H.; Aghili, F.; Jafarinia, R. Soil-indigenous arbuscular mycorrhizal fungi and zeolite addition to soil synergistically increase grain yield and reduce cadmium uptake of bread wheat (through improved nitrogen and phosphorus nutrition and immobilization of Cd in roots). Environ. Sci. Pollut. Res. 2019, 26, 30794–30807. [Google Scholar] [CrossRef] [PubMed]
- Sbrana, C.; Avio, L.; Giovannetti, M. Beneficial mycorrhizal symbionts affecting the production of health-promoting phytochemicals. Electrophoresis 2014, 35, 1535–1546. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.D.; Cavagnaro, T.R.; Watts-Williams, D.J. The effects of soil phosphorus and zinc availability on plant responses to mycorrhizal fungi: A physiological and molecular assessment. Sci. Rep. 2019, 9, 14880. [Google Scholar] [CrossRef] [PubMed]
- Watts-Williams, S.J.; Cavagnaro, T.R. Arbuscular mycorrhizal fungi increase grain zinc concentration and modify the expression of root ZIP transporter genes in a modern barley (Hordeum vulgare) cultivar. Plant Sci. 2018, 274, 163–170. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, H.; Zou, C.; Li, Y.; Chen, Y.; Wang, Z.; Jiang, Y.; Liu, A.; Zhao, P.; Wang, M.; et al. Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front. Microbiol. 2017, 8, 2516. [Google Scholar] [CrossRef]
- Abdel-Fttah, G.M.; El-Haddad, S.A.; Hafez, E.E.; Rashad, Y.M. Induction of defense responses in common bean plants by arbuscular mycorrhizal fungi. Microbiol. Res. 2011, 166, 268–281. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Wu, B.; Li, Y.; Wang, H.; Teng, H.; Wei, D.; Yuan, Z.; Yuan, Z. Physiological and proteomic analyses reveal the important role of arbuscular mycorrhizal fungi on enhancing photosynthesis in wheat under cadmium stress. Ecotoxicol. Environ. Saf. 2023, 261, 115105. [Google Scholar] [CrossRef]
- Tofighi, C.; Khavari-Nejad, R.A.; Najafi, F.; Razavi, K.; Rejali, F. Brassinosteroid (BR) and arbuscular mycorrhizal (AM) fungi alleviate salinity in wheat. J. Plant Nutr. 2017, 40, 1091–1098. [Google Scholar] [CrossRef]
- Sallaku, G.; Sanden, H.; Babaj, I.; Kaciu, S.; Balliu, A.; Rewad, B. Specific nutrient absorption rates of transplanted cucumber seedlings are highly related to RGR and influenced by grafting method, AMF inoculation and salinity. Sci. Hortic. 2019, 243, 177–188. [Google Scholar] [CrossRef]
- Pandey, R.; Garg, N. High effectiveness of Rhizophagus irregularis is linked to superior modulation of antioxidant defence mechanisms in Cajanus cajan (L.) Millsp. genotypes grown under salinity stress. Mycorrhiza 2017, 27, 669–682. [Google Scholar] [CrossRef]
- Yu, H.; Liu, X.; Yang, C.; Peng, Y.; Yu, X.; Gu, H.; Zheng, X.; Wang, C.; Xiao, F.; Shu, L.; et al. Co-symbiosis of arbuscular mycorrhizal fungi (AMF) and diazotrophs promote biological nitrogen fixation in mangrove ecosystems. Soil Biol. Biochem. 2021, 161, 108382. [Google Scholar] [CrossRef]
- Selvaraj, A.; Thangavel, K.; Uthandi, S. Arbuscular mycorrhizal fungi (Glomus intraradices) and diazotrophic bacterium (Rhizobium BMBS) primed defense in blackgram against herbivorous insect (Spodoptera litura) infestation. Microbiol. Res. 2020, 231, 126355. [Google Scholar] [CrossRef] [PubMed]
- Porcel, R.; Ruiz-Lozano, J.M. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J. Exp. Bot. 2004, 55, 1743–1750. [Google Scholar] [CrossRef]
- Habibzadeh, Y.; Pirzad, A.; Zardashti, M.R.; Jalilian, J.; Eini, O. Effects of arbuscular mycorrhizal fungi on seed and protein yield under water deficit stress in mungbean. Agron. J. 2013, 105, 79–84. [Google Scholar] [CrossRef]
- Barzana, G.; Aroca, R.; Bienert, G.P.; Chaumont, F.; Ruiz-Lozano, J.M. New insights into the regulation of aquporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol. Plant Microbe Interact. 2014, 27, 349–363. [Google Scholar] [CrossRef] [PubMed]
- Jumrani, K.; Bhatia, V.S.; Kataria, S.; Alamri, S.A.; Siddiqui, M.H.; Rastogi, A. Inoculation with arbuscular mycorrhizal fungi alleviate the adverse effects of high temperature in soybean. Plants 2022, 11, 2210. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.S.; Zou, Y.N.; Liu, W.; Ye, X.F.; Zai, H.F.; Zhao, L.J. Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: Changes in leaf antioxidant defense systems. Plant Soil Environ. 2010, 56, 470–475. [Google Scholar] [CrossRef]
- Farghaly, F.A.; Nafady, N.A.; Abdel-Wahab, D.A. The efficiency of arbuscular mycorrhiza in increasing tolerance of Triticum aestivum L. to alkaline stress. BMC Plant Biol. 2022, 22, 490. [Google Scholar] [CrossRef]
- Mayo, K.; Davis, R.E.; Motta, J. Stimulation of germination spores of Glomus versiforme by spore-associated bacteria. Mycologia 1986, 78, 426–431. [Google Scholar] [CrossRef]
- Xavier, L. Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biol. Biochem. 2002, 34, 181–188. [Google Scholar] [CrossRef]
- Cruz, A.F.; Horii, S.; Ochiai, S.; Yasuda, A.; Ishii, T. Isolation and analysis of bacteria associated with spores of Gigaspora margarita. J. Appl. Microbiol. 2008, 104, 1711–1717. [Google Scholar] [CrossRef] [PubMed]
- Hasani, H.; Aminpanah, H. Effect of Pseudomonas fluorescens inoculation on yield and yield components of rice (Oryza sativa L.) under different levels of phosphorus fertilizer. J. Agric. Sci. 2015, 48, 157–163. [Google Scholar]
- Lally, R.D.; Galbally, P.; Moreira, A.S.; Spink, J.; Ryan, D.; Germaine, K.J.; Dowling, D.N. Application of endophytic Pseudomonas fluorescens and a bacterial consortium to Brassica napus can increase plant height and biomass under greenhouse and field conditions. Front. Plant Sci. 2017, 8, 2193. [Google Scholar] [CrossRef] [PubMed]
- Santana-Fernandez, A.; Beovides-Garcia, Y.; Simo-Gonzalez, J.E.; Perez-Penaranda, M.C.; Lopez-Torres, J.; Rayas-Cabrera, A.; Santos-Pino, A.; Basail-Perez, M. Effect of a Pseudomonas fluorescens-based biofertilizer on sweet potato yield components. Asian J. Appl. Sci. 2021, 9, 105–113. [Google Scholar] [CrossRef]
- Rungin, S.; Indananda, C.; Suttiviriya, P.; Kruasuwan, W.; Jaemsaeng, R.; Thamchaipenet, A. Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Van Leeuwenhoek 2012, 102, 463–472. [Google Scholar] [CrossRef]
- Verma, V.C.; Singh, S.K.; Prakash, S. Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachat indica. A. Juss. J. Basic Microbiol. 2011, 51, 550–556. [Google Scholar] [CrossRef]
- Mehnaz, S.; Mirza, M.S.; Haurat, J.; Bally, R.; Normand, P.; Bano, A.; Malik, K.A. Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can. J. Microbiol. 2001, 472, 110–117. [Google Scholar] [CrossRef]
- Arkhipova, T.N.; Veselov, S.U.; Melentiev, A.I.; Martynenko, E.V.; Kudoyarova, G.R. Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 2005, 272, 201–209. [Google Scholar] [CrossRef]
- Barazani, O.; Friedman, J. Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J. Chem. Ecol. 1999, 25, 2397–2406. [Google Scholar] [CrossRef]
- Hussain, A.; Hasnain, S. Cytokinin production by some bacteria: Its impacts on cell division in cucumber cotyledons. Afr. J. Microbiol. Res. 2009, 3, 704–712. [Google Scholar]
- Fulchieri, M.; Lucangeli, C.; Bottini, R. Inoculation with Azospirillum lipoferum affects growth and gibberellin status of corn seedling roots. Plant Cell Physiol. 1993, 34, 1305–1309. [Google Scholar]
- Bacilio, M.; Rodriguez, H.; Moreno, M.; Hernandez, J.P.; Bashan, Y. Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum liopferum. Biol. Fert. Soils 2004, 40, 188–193. [Google Scholar] [CrossRef]
- Marulanda, A.; Barea, J.-M.; Azcon, R. Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: Mechanisms related to bacterial effectiveness. J. Plant Growth Regul. 2009, 28, 115–124. [Google Scholar] [CrossRef]
- Bae, H.; Sicher, R.C.; Kim, M.S.; Kim, S.-H.; Strem, M.D.; Melnick, R.L.; Bailey, B.A. The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J. Exp. Bot. 2009, 60, 3279–3295. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.P.; Gill, S.S.; Tuteja, N. Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal. Behav. 2011, 6, 175–191. [Google Scholar] [CrossRef]
- Dal Cortivo, C.; Ferrari, M.; Visioli, G.; Lauro, M.; Fornasier, F.; Barion, G.; Panozzo, A.; Vamerali, T. Effects of seed-applied biofertilizers on rhizosphere biodiversity and growth common wheat (Triticum aestivum L.) in the field. Front. Plant Sci. 2020, 11, 1–14. [Google Scholar] [CrossRef]
- Das, K.; Prasanna, R.; Saxena, A.K. Rhizobia: A potential biocontrol agent for soilborne fungal pathogens. Folia Microbiol. 2017, 62, 425–435. [Google Scholar] [CrossRef]
- Mondal, M.; Skalicky, M.; Garai, S.; Hossain, A.; Sarkar, S.; Banerjee, H.; Kundu, R.; Brestic, M.; Barutcular, C.; Erman, M. Supplementing nitrogen in combination with rhizobium inoculation and soil mulch in peanut (Arachis hypogaea L.) production system: Part II. Effect on phenology, growth, yield attributes, pod quality, profitability and nitrogen use efficiency. Agronomy 2020, 10, 1513. [Google Scholar] [CrossRef]
- Igiehon, N.O.; Babalola, O.O.; Aremua, B.R. Genomic insights into plant growth promoting rhizobia capable of enhancing soybean germination under drought stress. BMC Microbiol. 2019, 19, 159. [Google Scholar] [CrossRef]
- Jain, D.; Sharma, J.; Kaur, G.; Bhojiya, A.A.; Chauhan, S.; Sharma, V.; Suman, A.; Mohanty, S.R.; Maharjan, E. Phenetic and molecular diversity of nitrogen fixation plant growth promoting Azotobacter isolated from semiarid regions of India. BioMed Res. Int. 2021, 2021, 6686283. [Google Scholar] [CrossRef]
- Fahsi, N.; Mahdi, I.; Mesfioui, A.; Biskri, L.; Allaoui, A. Plant growth-promoting rhizobacteria isolated from the jujube (Ziziphus lotus) plant enhance wheat growth, Zn uptake, and heavy metal tolerance. Agriculture 2021, 11, 316. [Google Scholar] [CrossRef]
- Anli, M.; Baslam, M.; Tahiri, A.; Raklami, A.; Symanczik, S.; Boutasknit, A.; Ait-El-Mokhtar, M.; Ben-Laouane, R.; Toubali, S.; Ait Rahou, Y.; et al. Biofertilizers as strategies to improve photosynthetic apparatus, growth, and drought stress tolerance in date palm. Front. Plant Sci. 2020, 11, 516818. [Google Scholar] [CrossRef] [PubMed]
- Ghadbane, M.; Medjekal, S.; Benderradji, L.; Belhadj, H.; Daoud, H. Assessment of arbuscular mycorrhizal fungi status and rhizobium on date palm (Phoenix dactylifera L.) cultivated in a Pb contaminated soil. In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, 2nd ed.; Springer: Cham, Switzerland, 2021; pp. 703–707. [Google Scholar] [CrossRef]
- Karthikeyan, B.; Abitha, B.; Henry, A.J.; Sa, T.; Joe, M.M. Interaction of rhizobacteria with arbuscular mycorrhizal fungi (AMF) and their role in stress abetment in agriculture. In Fungal Biology; Springer Science and Business Media LLC: Berlin, Germany, 2016; pp. 117–142. [Google Scholar] [CrossRef]
- Vafadar, F.; Amooaghaie, R.; Otroshy, M. Effect of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. J. Plant. Interact. 2013, 9, 128–136. [Google Scholar] [CrossRef]
- Hashem, A.; Abd-Allah, E.F.; Alqarawi, A.A.; Al-Huqail, A.A.; Shah, M.A. Induction of osmoregulation and modulation of salt stress in Acacia gerrardii Benth. by arbuscular mycorrhizal fungi and Bacillus subtilis (BERA 71). Biomed Res. Int. 2016, 2016, 6294098. [Google Scholar] [CrossRef] [PubMed]
- Zamljen, T.; Medic, A.; Veberic, R.; Hudina, M.; Grohar, M.C.; Slatnar, A. Influence of hydrolyzed animal protein-based biostimulant on primary, soluble and volatile secondary metabolism of Genovese and Greek-type basil grown under salt stress. Sci. Hortic. 2023, 319, 112178. [Google Scholar] [CrossRef]
- Anton-Herrero, R.; Garcia-Delgado, C.; Anton-Herrero, G.; Mayans, B.; Delgado-Moreno, L.; Eymar, E. Design of a hydroponic test to evaluate the biostimulant potential of new organic and organomineral products. Sci. Hortic. 2023, 310, 111753. [Google Scholar] [CrossRef]
- Distefano, M.; Steingass, C.B.; Leonardi, C.; Giuffrida, F.; Schweiggert, R.; Mauro, R.P. Effects of a plant-derived biostimulant application on quality and functional traits of greenhouse cherry tomato cultivars. Food Res. Int. 2022, 157, 111218. [Google Scholar] [CrossRef]
- Ahammed, G.J.; Shamsy, R.; Liu, A.; Chen, S. Arbuscular mycorrhizal fungi-induced tolerance to chromium stress in plants. Environ. Pollut. 2023, 327, 121597. [Google Scholar] [CrossRef]
- Bagu, H.M.M.K.; Hassan, E.A.; Nafady, N.A.; Dawood, M.F.A. Efficacy of arbuscular mycorrhizal fungi and endophytic strain Epicoccum nigrum ASU11 as biocontrol agents against blackleg disease of potato caused by bacterial strain Pectobacterium carotovora subsp. Biol. Control. 2019, 134, 103–113. [Google Scholar] [CrossRef]
- Juila, D.; Ghosh, S. Aspects, problems and utilization of arbuscular mycorrhizal (AM) application as bio-fertilizer in sustainable agriculture. Curr. Res. Microb. Sci. 2022, 3, 100107. [Google Scholar] [CrossRef]
- Larimer, A.L.; Clay, K.; Bever, J.D. Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology 2014, 95, 1045–1054. [Google Scholar] [CrossRef]
- Liao, X.; Zhao, J.; Xu, L.; Tang, L.; Li, J.; Zhang, W.; Xiao, J.; Xiao, D.; Hu, P.; Nie, Y.; et al. Arbuscular mycorrhizal fungi increase the interspecific competition between two forage plant species and stabilize the soil microbial network during a drought event: Evidence from the field. Appl. Soil Ecol. 2023, 185, 104805. [Google Scholar] [CrossRef]
- Lin, Y.; Jones, M.L. Evaluating the growth-promoting effects of microbial biostimulants on greenhouse floriculture crops. HortScience 2022, 57, 97–109. [Google Scholar] [CrossRef]
- Lu, X.; Koide, R.T. The effects of mycorrhizal infection on components of plant growth and reproduction. N. Phytol. 1994, 128, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Huang, C.-H.; Peng, F.; Wang, T.; Liao, J.; Ma, S.-X.; You, Q.-G.; Xue, X. Synergistic combination of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria modulates morpho-physiological characteristics and soil structure in Nitraria tangutorum bobr. under saline soil conditions. Res. Cold Arid Reg. 2022, 14, 393–402. [Google Scholar] [CrossRef]
- Sanjuan, J.; Napoles, M.C.; Perez-Mendoza, D.; Lorite, M.J.; Rodriguez-Navarro, D.N. Microbials for agriculture: Why do they call them biostimulants when they mean probiotics? Microorganisms 2023, 11, 153. [Google Scholar] [CrossRef]
- Ven, A.; Verlinden, M.S.; Verbruggen, E.; Vicca, S. Experimental evidence that phosphorus fertilization and arbuscular mycorrhizal symbiosis can reduce the carbon cost of phosphorus uptake. Funct. Ecol. 2019, 33, 2215–2225. [Google Scholar] [CrossRef]
- Xavier, L.J.C.; Germida, J.J. Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol. Biochem. 2003, 35, 471–478. [Google Scholar] [CrossRef]
- Zou, Y.N.; Wu, Q.S.; Kuca, K. Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol. 2021, 23 (Suppl. S1), 50–57. [Google Scholar] [CrossRef]
Type | Plant | Plant Family | Effects | Reference |
---|---|---|---|---|
Arbuscular Mycorrhizal Fungi (AMF) | ||||
Alfalfa (Medicago sativa L.) | Fabaceae | AMF inoculation may increase photosynthetic rates and the content of sugars in leaves. | [263] | |
Asparagus (Asparagus officinalis L.) | Asparagaceae | AMF improved P efficiency via increased P uptake and optimal growth by adding AMF to suitable P fertilization. | [264] | |
Asparagus (Asparagus officinalis L.) | Asparagaceae | AMF inoculation can enhance adaptation to salinity stress. | [265] | |
Barrel medic (Medicago truncatula Gaertn.) | Fabaceae | AMF inoculation may alleviate Pb toxicity by improving the transport of sucrose from shoot to root, increasing the cleaving sucrose in roots, and increasing minor amino acid accumulation. | [266] | |
Barrel medic (Medicago truncatula Gaertn.) | Fabaceae | AMF in combination with K can play an important role in reducing radiocesium uptake and its subsequent translocation to plant shoots. | [267] | |
Basket willow (Salix viminalis L.) | Salicaceae | Willow AMF promoted the dissipation of soil polycyclic aromatic hydrocarbons (PAHs). Willow AMF increased the content of organic acids beneficial to metabolizing PAHs. | [268] | |
Bishop’s flower (Ammi majus) | Apiaceae | Its application can induce the accumulation of phyto-molecules, coumarin, which might increase its medicinal and pharmacological applications. | [269] | |
Black cumin (Nigella sativa Linn.) | Ranunculaceae | Colonization can increase relative water content (RWC), Chl b content, and micronutrient uptake. | [270] | |
Black locust (Robinia pseudoacacia L.) | Fabaceae | AMF associated with black locusts may be useful to be used for improving the phytoremediation of Cd under elevated CO2 (ECO2). | [271] | |
Cacao (Theobroma cacao L.) | Malvaceae | It can improve the overall growth and can positively increase the yield of cacao plants in acidic soils. | [272] | |
Carob tree (Ceratonia siliqua L.) | Fabaceae | The used AMF inocula stimulated significantly the height of carob tree as well as the aerial dry weight. | [273] | |
Castor bean (Ricinus communis L.) | Euphorbiaceae | AMF could protect castor bean against drought and salt stress by improving leaf exchanges and photosynthetic capacity and altering concentrations of metabolites. | [274] | |
Chickpea (Cicer arietinum L.) | Fabaceae | AMF inoculation increased the final yield of chickpea. | [275] | |
Cocoa (Theobroma cacao L.) | Malvaceae | AMF application improved the physical (cell wall turgor, root growth) and biochemical (proline, polyamines, enzymatic) characteristics of cocoa seedlings to reduce water stress. | [276] | |
Durum wheat (Triticum turgidum subsp. durum (Desf.)) | Gramineae | AMF can decrease water deficiency in cultivars, resulting in the up- and downregulation of many amino acids, phenylpropanoids, lipids, alkaloids, and hormones. | [277] | |
Fenugreek (Trigonella foenum-graecum L.) | Fabaceae | AMF inoculation was effective in improving the tolerance of fenugreek to salinity. | [278] | |
Fig (Ficus carica L.) | Moraceae | Fig was positively responsiveness to mycorrhizal inoculation, and the AMF induced different root architecture models. | [279] | |
Foxtail millet (Setaria italica) | Poaceae | AMF application can decrease heavy metal phytoavailability and post-harvest transfer risks. | [280] | |
Ginseng (Panax quinquefolius L.) | Araliaceae | AMF inoculation can promote plant uptake of N and P by suppressing soil-borne pathogens. | [281] | |
Italian senna (Cassia italica Mill.) | Fabaceae | AMF inoculation increased the chlorophyll, protein, proline, and phenol content and lipid peroxidation. | [282] | |
Lemongrass (Cymbopogon citratus) | Gramineae | AMF inoculation modified lemongrass metabolism with consequences on the essential oil component, composition, and antioxidant properties during growth. | [283] | |
Maize (Zea mays L.) | Gramineae | Inoculation with AMF affects plant P constituent with or without P fertilizers addition. Inoculation may improve P availability in P-unamended and -amended soil. | [284] | |
Myrrh (Commiphora myrrha) | Burseraceae | Mycorrhizal seedlings had higher biomass than non-mycorrhizal seedlings. Mycorrhizal seedlings had higher nutrient concentrations than non-mycorrhizal seedlings. | [285] | |
Nemesia (Nemesia × hybridus) | Scrophulariaceae | AMF inoculation can improve flower yield and growth quality of nemesia. AMF can increase the response of the plant to irrigation with treated wastewater and reduce the cost associated with using other water sources. | [286] | |
Nitre-bush (Nitraria tangutorum Bobr.) | Zygophyllaceae | The combination of AMF and PGPR significantly increased mycorrhizal colonization, promoted biomass accumulation, boosted morphological development, and improved photosynthetic performance, stomatal adjustment ability, and the exchange of water and gas. | [287] | |
Oregano (Origanum vulgare) | Lamiaceae | The synchronous application of AMF and atmospheric CO2 (eCO2) promoted the accumulation of the majority of the detected sugars, amino acids, organic acids, phenolic acids, unsaturated fatty acids, and flavonoids. Both AMF and eCO2 treatments significantly promoted the growth and photosynthesis of oregano plants. Both AMF and eCO2 acted synergistically in improving the antioxidant capacity and anti-lipid peroxidation activity of oregano. | [288] | |
Rice (Oryza sativa L.) | Gramineae | AMF could inhibit the uptake of Hg, particularly methyl-Hg in grains of rice. AMF caused Hg transfer in the non-edible parts of rice, such as leaf and stem. AMF improved the growth index and micro-indexes of rice. | [289] | |
Rice (Oryza sativa L.) | Gramineae | The biochar combined with AMF improved soil nutrient availability and root growth strategy, and then promoted the nutrient absorption capacity of rice. | [290] | |
Rice (Oryza sativa L.) | Gramineae | AMF may have a significant function in wetlands. | [291] | |
Ryegrass (Lolium multiflorum) | Gramineae | AMF had a positive influence on the plant shoot biomass and the contents of P, N, Ca, K, and Mg in plants. | [292] | |
Prickly pear (Opuntia ficus-indica) | Cactaceae | AMF promoted physiological and biochemical factors, and led to a decline in malondialdehyde (MDA) and hydrogen peroxide (H2O2). | [293] | |
Seaberry (Hippophae rhamnoides) | Elaeagnaceae | AMF had a positive influence on the final yield. | [294] | |
Sorghum (Sorghum bicolor L. Moench) | Gramineae | The total phenolic, carotenoid, flavonoid, and tannin concentrations were significantly higher in AMF–sorghum grain for all cultivars. The total phenolic, carotenoid, flavonoid, and tannin concentrations were significantly higher in AMF–sorghum grain for all cultivars. | [295] | |
Sunflower (Helianthus annuus L.) | Asteraceae | AMF community has greater efficiency in promoting sunflower development and mycorrhizal colonization. | [296] | |
Sunflower (Helianthus annuus L.) | Asteraceae | The combination of AMF and biochar increased antioxidant enzyme activity, nutrient content, osmoprotectants, and relative water content. | [297] | |
Tomato (Solanum lycopersicum L.) | Solanaceae | AMF application has a significant influence on manganese, total nitrogen, and hydrophilic phenol components in the fruit. | [298] | |
Wheat (Triticum aestivum L.) | Geramineae | AMF mitigated earthworm-induced N2O emissions from upland soil in a rice-rotated wheat farming system. | [299,300] | |
Zucchini squash (Cucurbita pepo L.) | Cucurbitaceae | Inoculation may lead to better nutritional status of P, N, K, Mg, Ca, Zn, B, and Fe and low Al accumulation. | [301] | |
Glomus mosseae, Glomus etunicatum | Achnatherum (Achnatherum sibricium L.) | Gramineae | Simultaneous infections of both fungi significantly increased total phenolic concentrations. | [302] |
Glomus mosseae | Alfalfa (Medicago sativa L.) | Fabaceae | It significantly enhanced Cd uptake by the roots of alfalfa under ET. It has no significant effect on iron-regulated transport 1 (IRT1) and natural resistance-associated macrophage protein 1 (NRAMP1) gene expression. | [303] |
Claroideoglomus etunicatum | Alfalfa (Medicago sativa L.) | Fabaceae | The AMF alone or in combination with Si can alleviate salinity stress in alfalfa. | [304] |
Funneliformis mosseae | Apple (Malus domestica Borkh.) | Rosaceae | The synergistic effect of dopamine and AMF improved apple salt resistance, and overexpression of MdTYDC promoted AMF symbiosis. | [305] |
Rhizophagus irregularis | Barley (Hordeum vulgare L.) | Gramineae | The inoculation resulted in improved grain and straw Zn concentrations, especially at low soil Zn concentrations. AMF may be more appropriate for improving the quality of barley grain in terms of Zn concentrations, rather than improving yield. | [306] |
Rhizophagus intraradices | Barrel medic (Medicago truncatula Gaertn.) | Fabaceae | Mycorrhizal colonization had little effect on root or shoot cesium (Cs) concentrations. | [307] |
Glomus caledonium, Glomus versiforme | Bashfulgrass (Mimosa pudica L.) | Fabaceae | AMF inoculation significantly increased root mycorrhizal colonization rates and soil acid phosphate activities. | [308] |
Glomus mosseae, Gigaspora gigantea | Carrot (Daucus carota L.) | Apiaceae | AMF inoculation can lead to successful carrot production under salinity stress. | [309] |
Glomus sinuosum, Paraglomus occultum | Cassava (Manihot esculenta Crantz) | Euphorbiaceae | It can improve the final yield of cassava. | [310] |
Gloms rubiforme, Acaulospora scrobiculata, Glomus etunicatum, Glomus rubiforme, Acaulospora tuberculata | Cassava (Manihot esculenta Crantz) | Euphorbiaceae | The inoculation had positive effects on cassava. | [311] |
Rhizophagus irregularis, Paraglomus sp. | Castor bean (Ricinus communis L.) | Euphorbiaceae | Shoot Cr concentration doubled in non-AMF versus AMF plants; the content was similar. AMF vesicle percentage negatively correlated with Cr root concentration. | [312,313] |
Glomus tortuosum | Chicory (Cichorium intybus L.) | Asteraceae | AMF, biochar, and N fertilizer application enhanced biomass. | [314] |
Glomus tortuosum | Chicory (Cichorium intybus L.) | Asteraceae | AMF and biochar application increased nutrient absorption and reduced Cd absorption. | [314] |
Glomus clarum | Chili (Capsicum frutescens) | Solanaceae | The inoculation increased the growth, flowering, and fruit production, and also increased the P uptake significantly. | [315] |
Glomus etunicatum, Funneliformis mosseae | Cinnamomum (Cinnamomum migao) | Lauraceae | It markedly upregulated antioxidant enzyme activities and osmotic adjustment substances. | [316] |
Rhizophagus clarus | Coarse Mint (Mentha arvensis) | Lamiaceae | Inoculation of coarse mint with AMF Rhizophagus clarus and a high dose of P boosted plant growth and the essential oil yield, and it increased carvacrol content. | [317] |
Acaulospora sp., Glomus sp. | Common bean (Phaseolus vulgaris L.) | Fabaceae | The positive impact of co-infection by AMF and rhizobia on plant growth and the total N content of the plants was reported, along with a synergistic influence on the total P content, the number of nodules, and the mycorrhizal rate of the plants. | [318] |
Funneliformis mosseae, Rhizophagus irregularis | Common myrtle (Myrtus communis) | Myrtaceae | AMF boosted myrtle drought resistance through enhanced water and nutrient supply and stimulation of antioxidant defense. | [319] |
Dominikia disticha, Claroideoglomus etunicatum, Rhizophagus irregularis | Cowpea (Vigna unguiculata (L.) Walp.) | Fabaceae | Inoculation with all AMF led to high aboveground biomass production and accumulation of N as well as increased P content in plants. | [320] |
Glomus Spp. | Cowpea (Vigna unguiculata (L.) Walp.) | Fabaceae | The activity of AMF in alleviating Cd stress in pre-flowering cowpea has been proven. | [321] |
Funneliformis mosseae | Cucumber (Cucumis sativus L.) | Cucurbitaceae | The enhanced secondary metabolism and integrated transcriptional regulation might play a crucial role in AMF-mediated alleviation of chilling stress in plants. | [322] |
Glomus etunicatum, Glomus mosseae, Glomus versiforme, Glomus margarita | Cucumber (Cucumis sativus L.) | Cucurbitaceae | AMF communities increased plant growth, soluble sugar content, chlorophyll content, and root activity. | [323] |
Glomus spp., Acaulospora spp. | Cucumber (Cucumis sativus L.) | Cucurbitaceae | The AMF consortium could inhibit Fusarium wilt of cucumber, and, consequently, showed promising results as a biological control factor in greenhouse agro-ecosystems. | [324] |
Pervetustus simplex, Claroideoglomus etunicatum, Albahypha drummondii, Septoglomus xanthium, Funneliformis mosseae, and Rhizoglomus irregulare | Date palm (Phoenix dactylifera L.) | Arecaceae | Shoot length and stem diameter were significantly higher in treatments augmented with compost and AMF. | [325] |
Glomus monosporus, Glomus deserticola, Glomus clarum | Date palm (Phoenix dactylifera L.) | Arecaceae | All fungi significantly stimulated shoot height and biomass and increased the number of leaves per plant. | [326] |
Glomus iranicum | Date palm (Phoenix dactylifera L.) | Arecaceae | It showed increased biomass production, chlorophyll, and mineral nutrient content. | [327] |
Claroideoglomus etunicatum, Rhizoglomus irregulare, Diversispora versiformis | Eggplant (Solanum melongena L.) | Solanaceae | The inoculation is an effective strategy for alleviating cold stress. | [328] |
Rhizoglomus irregulare | Eggplant (Solanum melongena L.) | Solanaceae | AMF improved fruit quality by reducing glycoalkaloid concentration and fruit browning potential. | [329] |
Gigaspora gigantean, Glomus mosseae | Eggplant (Solanum melongena L.) | Solanaceae | Two mycorrhiza fungi affected plant growth indirectly, and in some situations, they reduced the inputs of chemical pesticides in eggplant. | [330] |
Glomus mosseae | Fennel (Foeniculum vulgare) | Apiaceae | The mycorrhiza and growth-promoting bacteria (Azospirillum) resulted in the highest yields, total carotenoids, and chlorophyll in fennel plants subjected to water deficit stress. | [331] |
Funneliformis mosseae | Grapevines (Vitis vinifera) | Vitaceae | The introduction of F. mosseae through donor plants is a suitable field inoculation method for grapevines and can help them to better withstand heat waves. | [332] |
Rhizophagus irregularis | Hemp (Cannabis sativa L.) | Cannabaceae | AMF increased the heavy metal tolerance of hemp, and they changed Cd chemical forms by changing the composition of low molecular weight organic acids, which in turn affected soil Cd bioavailability. | [333] |
Rhizophagus intraradices | Holy Basil (Ocimum tenuiflorum L.) | Lamiaceae | The inoculation increased the productivity of holy basil and boosted the quality of the final products. | [334] |
Rhizophagus clarus, Claroideoglomus etunicatum, Azospirillum brasilense | Lemon grass (Cymbopogon citratus (DC.) Stapf) | Graminaeae | It is concluded that inoculating lemongrass with AMF enhances plant growth and development and modifies the content and essential oil composition. | [335] |
Rhizophagus clarus | Maize (Zea mays L.) | Graminaeae | A combination of AMF (Rhizophagus clarus) and PGPR (Bacillus sp.) could enhance 33P uptake in maize plants under soil water stress. | [336] |
Funneliformis mosseae | Maize (Zea mays L.) | Graminaeae | AMF massively improved biomass. | [337] |
Glomus intraradices | Maize (Zea mays L.) | Graminaeae | After inoculation, there was an increase in leaf and stem ratios but a decrease in ear ratios. | [338] |
Funneliformis mosseae, Claroideoglomus etunicatum | Maize (Zea mays L.) | Graminaeae | The inoculation increased bacterial diversity, decreased the relative abundances of selenobacteria related to plant Se absorption, and improved bacterial network complexity in selenium (Se)(VI)-stressed soils. | [339] |
Glomus clarum, Glomus deserticola | Maize (Zea mays L.) | Graminaeae | 30 g of G. clarum and G. deserticola had biocontrol potential against Fusarium verticillioides. | [340] |
Glomus intraradices, Glomus constrictum, Glomus mosseae | Marigold (Tagetes erecta L.) | Asteraceae | It can improve the capability of reactive oxygen species (ROS) scavenging and reduce Cd concentration in plants to alleviate Cd stress in marigolds. | [341] |
Glomus constrictum Trappe | Marigold (Tagetes erecta L.) | Asteraceae | AMF affected the host plant positively in growth, pigments, phosphorous content, and flower quality, and thus alleviated the stress imposed by water deficiency. | [342] |
Funneliformis mosseae, Claroideoglomus etunicatum | Moldavian balm (Moldavian dragonhead) (Dracocephalum moldavica L.) | Lamiaceae | Inoculation may increase growth parameters and salinity tolerance under all salinity levels. | [343] |
Glomus mosseae, Glomus intraradices | Mulberry (Morus alba L.) | Moraceae | AMF species colonization increased P and N contents of seedlings. | [344] |
Glomus deserticola, Gigaspora margarita | Olive (Olea europaea L.) | Oleaceae | Mycorrhizal symbiosis decreased Na+ and Cl− content and improved RWC, dry and fresh weight, and photosynthetic activity. | [345] |
Rhizophagus irregularis | Olive (Olea europaea L.) | Oleaceae | The inoculation exhibited better performance under drought, especially under partial root-zone drying (PRD) treatment. | [345] |
Rhizophagus irregularis DAOM 197,198 | Olive (Olea europaea L.) | Oleaceae | Its colonization with olive roots significantly reduced the deleterious effect of water deficit stress by upregulating the primary and secondary metabolism and preserving a high stem water potential level in olive plants. | [346] |
Glomus intraradices | Olive (Olea europaea L.) | Oleaceae | The mycorrhizal inoculation played an important part in the attenuation of the impacts of sulfates contained in gypsum substrate on olive trees. | [347] |
Funneliformis mosseae, Funneliformis constrictum, Gigaspora margarita, and Rhizophagus irregularis | Onion (Allium cepa L.) | Amryllidaceae | Application of AMF and Trichoderma viride to onion plants assisted their growth in nutrient-deficient soils amended with fish waste. | [348] |
Rhizophagus intraradices | Palmarosa (Cymbopogon maritinii (Roxb.) Wats. Var. Motia Burk | Gramineae | It may influence palmarosa seedling emergence and growth under salinity conditions, and it is useful for health and significant seedling emergence. | [349] |
Glomus intraradices, Glomus mosseae, Glomus etunicatum | Papaya (Carica papaya L.) | Caricaceae | Rhizobacteria and AMF acting together formed a mutualistic relationship that enhanced disease control against Fusarium oxysporum and stimulated growth in papaya. | [350] |
Gigaspora margarita | Peanut (Arachis hypogaea) | Anacardiaceae | The inoculation significantly enhanced leaf K accumulation, drought resistance, and pod yield under drought stress. | [351] |
Glomus intraradices, Gigaspora margarita | Pepper (Capsicum annuum L.) | Solanaceae | Inoculated plants had greater dry weight compared to non-inoculated plants. The inoculation can increase P absorbance and P uptake. | [352,353] |
Glomus mosseae, Acaulospora laevis, Glomus manihotis, and a mixed AMF strain | Pomegranate (Punica granatum L.) | Punicaceae | Growth, physiological, and biochemical activities were effectively improved by bio-hardening. | [354] |
Funneliformis mossae, Rhizophagus intraradices | Quince (Cydonia oblonga Mill.) | Rosaceae | Inoculation with AMF led to significant enhancements in shoot and root dry weight and leaf chlorophyll content. | [355] |
Genera Scutellospora, Acaulospora, and Glomus | Red clover (Trifolium pratense L.) | Fabaceae | After inoculation, significant increases in monoterpenes such as myrcene, (-)-β-pinene, and linalool were observed. | [356] |
Glomus aggregatum, Funneliformis mosseae, Rhizophagus intraradices | Red tangerine (Citrus reticulata Blanco) | Rutaceae | AMF had a positive effect on red tangerine. | [357] |
Claroideoglomus etunicatum | Redtip (Photinia fraseri Dress) | Rosaceae | AMF had an impact on plant height and hyphal length density. | [358] |
Rhizophagus intraradices | Rice (Oryza sativa L.) | Gramineae | It significantly reduced total As and inorganic As components in rice grains. | [359,360] |
Acaulospora mellea; Glomus formosanum; Rhizoglomus clarum; Glomus spp. | Rice (Oryza sativa L.) | Gramineae | It stimulated plant growth, improved root morphological characteristics, and increased P accumulation in rice plants under salt stress conditions. | [361,362] |
Glomus sp1 | Rose (Rosa rubiginosa L.) | Rosaceae | The highest percentage of rose root stock establishment increment was achieved with the application of Glomus sp1. | [363] |
Glomus etunicatum, Glomus mosseae | Ryegrass (Lolium perenne) | Gramineae | AMF-inoculated plants showed lower Cd toxicity, despite the increase in Cd uptake. | [364] |
Funneliformis mosseae, Claroideoglomus etunicatum | Salt grass (Puccinellia tenuiflora) | Gramineae | It is able to alleviate boron (B) toxicity by improving biomass and reducing tissue B concentrations. It can help plants tolerate the combined stresses of salt and drought. | [365] |
Rhizophagus intraradices, Funneliformis mosseae | Saffron (Crocus sativus L.) | Iridaceae | The mixture of both species increased the spice yield, quality, antioxidant activity, and bioactive compound contents. | [366] |
Glomus mosseae | Snap bean (Phaseolus vulgaris L.) | Fabaceae | AMF increased the concentrations of P, N, Mg, and Ca in roots and shoots. It can be concluded that it may reduce the detrimental impacts of increasing O3 on host plants by improving plant nutrition and growth. | [367] |
Glomus mosseae, Glomus intraradices, Glomus hoi | Sour orange (Citrus aurantium L.) | Rutaceae | Under salt stress, mycorrhizal-inoculated plants had higher chlorophyll content, higher growth, lower electrolyte leakage, better water status, greater gas exchange capacity, higher malondialdehyde and hydrogen peroxide content, higher osmolyte accumulation, and better antioxidant defense systems. | [368] |
Glomus mosseae, Glomus intraradices | Sorghum (Sorghum bicolor L. Moench) | Gramineae | AMF can change the profile of VOCs emitted by roots as well as root morphology. AMF can positively affect the morphological traits of the host roots, total root length, and specific root length of mycorrhizal plants. | [369] |
Glomus sp. 1, Glomus sp. 2, Glomus sp. 3, Glomus aggregatum, Glomus fasciculatum, Acaulospora longula, Glomus occultum, Acaulospora scrobiculata, Acaulospora spinosa, Scutellospora sp. | Sorghum (Sorghum bicolor L. Moench) | Gramineae | AMF application improved P and K uptake in shoots. | [370] |
Funneliformis mosseae; Funneliformis geosporum | Sorghum | Gramineae | Plant height and fresh and dry biomass of AMF-inoculated plants were greater in normal soil, followed by sodic and saline soils. | [371] |
Acaulospora saccata, Acaulospora fragilissima, Scutellospora ovalis, Rhizophagus neocaledonicus, Claroideoglomus etunicatum nc, Pervetustus simplex nc | Sorghum (Sorghum bicolor L. Moench) | Gramineae | Inoculum of combined AMF isolates is appropriate to obtain higher yields and less contaminated biomass of forage sorghum in ultramafic environments. | [372] |
Glomus mosseae, Rhizophagus irregularis | Soybean (Glycine max L.) | Fabaceae | The inoculation can enhance P uptake and soybean productivity. | [373] |
Rhizophagus clarus | Soybean (Glycine max L.) | Fabaceae | AMF inoculation positively influenced grain yield, shoot dry weight, and P and N content in leaves. | [374] |
Cetraspora pellucida, Claroideoglomus etunicatum | Strawberry (Fragaria × ananassa Duch.) | Rosaceae | Plants grown with 9% biochar and inoculated with C. etunicatum showed a more profuse root system. | [375] |
Rhizophagus clarus | Strawberry (Fragaria × ananassa Duch.) | Rosaceae | AMF significantly enhanced plant biomass production by boosting photosynthesis rate, antioxidant enzyme defense, water content and use efficiency, and the nutritional status of Zn, in particular. | [376] |
Rhizophagus intraradices | Sweet flag (Acorus calamus) | Acoraceae | Under Cr stress, AMF promoted nutrient uptake by A. calamus and increased soil carbon input. AMF significantly increased the synergy between the dominant strains. | [377] |
Rhizophagus fasciculatus, Rhizophagus aggregatus, Rhizophagus irregularis | Tangerine orchard (Citrus reticulata L.) | Rutaceae | Inoculation had a positive effect on the final yield. | [378] |
Glomus versiforme | Tobacco (Nicotiana tabacum L.) | Solanaceae | AMF can protect tobacco against As uptake, and it can play an important role in food quality and safety. | [379] |
Claroideoglomus etunicatum, Claroideoglomus claroideum, Glomus microaggregatum, Rhizophagus intraradices, Funneliformis mosseae, Funneliformis geosporum | Tomato (Solanum lycopersicum L.) | Solanaceae | Mycorrhizal inoculation significantly boosted root colonization levels, height, root dry biomass, total yield, shoot dry biomass, and number of fruits. | [380] |
Funneliformis Mosseae and Rhizophagus intraradices | Thyme (Thymus vulgaris L.) | Lamiaceae | Their inoculation increased essential oil production in both Thymus vulgaris L. and Thymus daenensis under water stress conditions. | [381] |
Glomus versiforme | Trifoliate orange (Poncirus trifoliata) | Rutaceae | Mycorrhization significantly increased gallic acid, ferulic acid, salicylic acid, and phlorizin acid. | [382] |
Rhizophagus intraradices, Funneliformis mosseae | Valerian (Valeriana officinalis L.) | Caprifoliaceae | They considerably improved root proline and total soluble sugars and total phenolics in roots and shoots versus untreated valerian plants. | [383] |
Funneliformis mosseae, Glomus versiforme | Wheat (Triticum aestivum L.) | Graminae | Inoculation with AMF could increase Se bioavailability in the rhizosphere. | [384] |
Funneliformis mosseae, Glomus versiforme | Wheat (Triticum aestivum L.) | Graminae | AMF combined with 48.76 mgkg−1 P applied in soil can not only achieve high grain yield, but also fully exploit the biological potential of Se uptake in wheat. | [385] |
Funneliformis mosseae BGC HEB02, Rhizophagus intraradices BGC HEB07D | Wheat (Triticum aestivum L.) | Graminae | Zn in wheat grain can be significantly increased by inoculation with AMF, indicating the potential of AMF to cope with Zn deficiency. | [386] |
Glomus mosseae, Glomus hoi, Glomus etunicatum, Acaulospora scrobiculata, Acaulospora spinosa | White yam (Dioscorea rotundata) | Dioscoreaceae | AMF can increase yam tuber growth. | [387] |
Funneliformis mosseae, Laroideoglomus etunicatum, Rhizophagus intraradices | Willow (Salix viminalis) | Salicaceae | Organic acids including arachidonic acid, octadecanedioic acid, α-linolenic acid, 10,12,14-octadecarachidonic acid, and 5-methoxysalicylic acid were significantly increased under AMF inoculation treatment. AMF inoculation also increased the levels of polyphenol oxidase and dehydrogenase. | [388] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Shahrajabian, M.H. The Application of Arbuscular Mycorrhizal Fungi as Microbial Biostimulant, Sustainable Approaches in Modern Agriculture. Plants 2023, 12, 3101. https://doi.org/10.3390/plants12173101
Sun W, Shahrajabian MH. The Application of Arbuscular Mycorrhizal Fungi as Microbial Biostimulant, Sustainable Approaches in Modern Agriculture. Plants. 2023; 12(17):3101. https://doi.org/10.3390/plants12173101
Chicago/Turabian StyleSun, Wenli, and Mohamad Hesam Shahrajabian. 2023. "The Application of Arbuscular Mycorrhizal Fungi as Microbial Biostimulant, Sustainable Approaches in Modern Agriculture" Plants 12, no. 17: 3101. https://doi.org/10.3390/plants12173101
APA StyleSun, W., & Shahrajabian, M. H. (2023). The Application of Arbuscular Mycorrhizal Fungi as Microbial Biostimulant, Sustainable Approaches in Modern Agriculture. Plants, 12(17), 3101. https://doi.org/10.3390/plants12173101