The Role of Home Gardens in Promoting Biodiversity and Food Security
Abstract
:1. Introduction
2. Home Gardens Supporting Food and Nutritional Security, and Providing Other Benefits
3. The Importance of Plant Genetic Resources
4. The Role of Home Gardens in Enhancing the Diversity, Adaptation, and Conservation of Crop Plants
(a) Landraces Adapted to Specific Conditions | ||||
Species | Landrace | Region | Reference | Comments |
Allium sp. | Several landraces | Cuba | Esquivel et al., 1988 [58] | Superior drought resistance |
Lycopersicon esculentum (tomato) | Several landraces | Guatemala | Esquivel et al., 1988 [58] | Superior salinity resistance |
Phaseolus vulgaris (common bean) | Negrito | Cuba | Esquivel and Hammer 1992 [53] | Superior resistance to diseases and harsh weather |
(b) Cultivated Plants Developed via Introgression | ||||
Taxon 1 | Taxon 2 | Region | Reference | Comments |
Lycopersicon esculentum(tomato) | L. esculentum var. cerasiforme (wild tomato) | Cuba | Esquivel and Hammer 1991 [59] | Fruit characters and disease tolerance |
Phaseolus lunatus landraces (lima bean) | P. lunatus landraces | Cuba | Castiñeiras et al., 1991 [61] | Heterosis in seed characters |
Zea mays landraces (maize) | Z. mays landraces | Cuba | Hatheway 1957 [60] | Hybridization typical in maize evolution |
(c) Crop Wild Relatives Brought into Use | ||||
Species | Region | Reference | Comments | |
Amaranthus viridis (green amaranth) | India | Barbhuiya et al., 2016 [24] | Annual herb/leafy vegetable | |
Brassica oleracea (cabbage) | Romania | Papp et al., 2013 [64] | Biannual plant/diverse vegetable | |
Nasturtium officinale (watercress) | Nepal | Gautam et al., 2006 [65] | Aquatic perennial/leafy vegetable |
5. How to Improve the Conservation of Biodiversity in Home Gardens?
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014.
- Henry, R.J. Innovations in plant genetics adapting agriculture to climate change. Curr. Opin. Plant Biol. 2020, 56, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Niñez, V.K. Household gardens: Theoretical and policy considerations. Agric. Syst. 1987, 23, 167–186. [Google Scholar] [CrossRef]
- Galhena, D.H.; Freed, R.; Maredia, K.M. Home gardens: A promising approach to enhance household food security and wellbeing. Agric. Food Secur. 2013, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Vasey, D.E. An Ecological History of Agriculture, 10,000 B.C.–A.D.10,000; Iowa State University Press: Ames, IA, USA, 1992. [Google Scholar]
- Marsh, R. Building on traditional gardening to improve household food security. Food Nutr. Agric. 1998, 22, 4–14. [Google Scholar]
- Eigenbrod, C.; Gruda, N. Urban vegetable for food security in cities: A review. Agron. Sustain. Dev. 2015, 35, 483–498. [Google Scholar] [CrossRef] [Green Version]
- Kumar, B.M.; Nair, P.K.R. The enigma of tropical homegardens. In New Vistas in Agroforestry. Advances in Agroforestry; Nair, P.K.R., Rao, M.R., Buck, L.E., Eds.; Springer: Dordrecht, The Netherlands, 2004; Volume 1, pp. 135–152. [Google Scholar]
- Salako, V.K.; Fandohan, B.; Kassa, B.; Assogbadjo, A.E.; Idohou, A.F.R.; Gbedomon, R.C.; Chakeredza, S.; Dulloo, M.E.; Glele Kakaï, R. Home gardens: An assessment of their biodiversity and potential contribution to conservation of threatened species and crop wild relatives in Benin. Genet. Resour. Crop Evol. 2014, 61, 313–330. [Google Scholar] [CrossRef]
- Fresco, L.O.; Westphal, E. A hierarchical classification of farm systems. Exp. Agric. 1988, 24, 399–419. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, R.; Hanstad, T. Small Homegarden Plots and Sustainable Livelihoods for the Poor; LSP Working Paper 11; FAO: Rome, Italy, 2004. [Google Scholar]
- Weiling, F. Historical study: Johann Gregor Mendel 1822–1884. Am. J. Med. Genet. 1991, 40, 1–25. [Google Scholar] [CrossRef]
- Calvet-Mir, L.; Gomez-Baggethun, E.; Reyes-Garcia, V. Beyond food production: Ecosystem services provided by home gardens. A case study in Vall Fosca, Catalan Pyrenees, Northeastern Spain. Ecol. Econ. 2012, 74, 153–160. [Google Scholar] [CrossRef]
- Clarke, L.W.; Li, L.; Jenerette, G.D.; Yu, Z. Drivers of plant biodiversity and ecosystem service production in home gardens across the Beijing Municipality of China. Urban Ecosyst. 2014, 17, 741–760. [Google Scholar] [CrossRef]
- Cruz-Garcia, G.S.; Struik, P.C. Spatial and seasonal diversity of wild food plants in home gardens of northeast Thailand. Econ. Bot. 2015, 69, 99–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setiani, S.; Setiawan, E.; Huang, W.-C. Taneyan Lanjang shared home gardens and sustainable rural livelihoods of ethnic Madurese in Madura Island, Indonesia. Sustainability 2022, 14, 5960. [Google Scholar] [CrossRef]
- Sileshi, M.; Sieber, S.; Friedrichs, K.; Rybak, C.; Feyisa, B.W.; Lana, M.A. Adoption and impact of kitchen garden on food and nutritional security of farming households in Tanzania. Ecol. Food Nutr. 2022, 61, 651–668. [Google Scholar] [CrossRef] [PubMed]
- Engels, J. Home gardens—A genetic resources perspective. In Home Gardens and In Situ Conservation of Plant Genetic Resources in Farming Systems, Proceedings of the Second International Home Gardens Workshops, Witzenhausen, Germany, 17–19 July 2001; Watson, J.W., Eyzaguirre, P.B., Eds.; IPGRI: Rome, Italy, 2002; pp. 3–9. [Google Scholar]
- Galluzzi, G.; Eyzaguirre, P.; Negri, V. Home gardens: Neglected hotspots of agro-biodiversity and cultural diversity. Biodivers. Conserv. 2010, 19, 3635–3654. [Google Scholar] [CrossRef]
- Ebert, A.W. The role of vegetable genetic resources in nutrition security and vegetable breeding. Plants 2020, 9, 736. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, T.; Bosseva, Y.; Chervenkov, M.; Dimitrova, D. Enough to feed ourselves!—Food plants in Bulgarian rural home gardens. Plants 2021, 10, 2520. [Google Scholar]
- Rybak, C.; Mbwana, H.A.; Bonatti, M.; Sieber, S.; Müller, K. Status and scope of kitchen gardening of green leafy vegetables in rural Tanzania: Implications for nutrition interventions. Food Secur. 2018, 10, 1437–1447. [Google Scholar] [CrossRef]
- Girard, A.W.; Self, J.L.; McAuliffe, C.; Olude, O. The effects of household food production strategies on the health and nutrition outcomes of women and young children: A systematic review. Paediatr. Perinat. Epidemiol. 2012, 26 (Suppl. S1), 205–222. [Google Scholar] [CrossRef] [PubMed]
- Barbhuiya, A.R.; Sahoo, U.K.; Upadhyaya, K. Plant diversity in the indigenous home gardens in the Eastern Himalayan region of Mizoram, Northeast India. Econ. Bot. 2016, 70, 115–131. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Dubey, R.K.; Bundela, A.K.; Abhilash, P.C. The trilogy of wild crops, traditional agronomic practices, and UN-Sustainable Development Goals. Agronomy 2020, 10, 648. [Google Scholar] [CrossRef]
- Keats, E.C.; Das, J.K.; Salam, R.A.; Lassi, Z.S.; Imdad, A.; Black, R.E.; Bhutta, Z.A. Effective interventions to address maternal and child malnutrition: An update of the evidence. Lancet Child Adolesc. Health 2021, 5, 367–384. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Mansoor, G.F.; Paya, P.M.; Ludin, M.H.; Ahrar, M.J.; Mashal, M.O.; Todd, C.S. Review of policies, data, and interventions to improve maternal nutrition in Afghanistan. Matern. Child Nutr. 2020, 16, e13003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubey, S.D. Impact of planned and non-planned kitchen gardening for improvement of nutrition and economical benefits of societies. J Pharm. Phytoch. 2021, 10 (Suppl. S1), 502–504. [Google Scholar]
- Knapp, M.B.; Hall, M.T.; Mundorf, A.R.; Partridge, K.L.; Johnson, C.C. Perceptions of School-Based Kitchen Garden Programs in Low-Income, African American Communities. Health Promot. Pract. 2019, 20, 667–674. [Google Scholar] [CrossRef]
- Gatto, N.M.; Martinez, L.C.; Spruijt-Metz, D.; Davis, J.N. LA sprouts randomized controlled nutrition, cooking and gardening programme reduces obesity and metabolic risk in Hispanic/Latino youth. Pediatr. Obes. 2017, 12, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Rochira, A.; Tedesco, D.; Ubiali, A.; Fantini, M.P.; Gori, D. School gardening activities aimed at obesity prevention improve body mass index and waist circumference parameters in school-aged children: A systematic review and meta-analysis. Child. Obes. 2020, 16, 154–173. [Google Scholar] [CrossRef]
- Gliessman, S. Why is there a food crisis? Agroecol. Sust. Food Syst. 2022, 46, 1301–1303. [Google Scholar] [CrossRef]
- Lal, R. Home gardening and urban agriculture for advancing food and nutritional security in response to the COVID-19 pandemic. Food Sec. 2020, 12, 871–876. [Google Scholar] [CrossRef]
- Siegner, A.; Sowerwine, J.; Acey, C. Does urban agriculture improve food security? Examining the nexus of food access and distribution of urban produced foods in the United States: A systematic review. Sustainability 2018, 10, 2988. [Google Scholar]
- Engels, J.M.M.; Ebert, A.W. A critical review of the current global ex situ conservation system for plant agrobiodiversity. I. History of the development of the global system in the context of the political/legal framework and its major conservation components. Plants 2021, 10, 1557. [Google Scholar] [CrossRef]
- Swarup, S.; Cargill, E.J.; Crosby, K.; Flagel, L.; Kniskern, J.; Glenn, K.C. Genetic diversity is indispensable for plant breeding to improve crops. Crop Sci. 2021, 61, 839–852. [Google Scholar] [CrossRef]
- Korpelainen, H. Plant genetic resources for food and agriculture: Novel materials for adapting to changing environmental conditions. Ann. Acad. Sci. Fenn. 2023, in press. [Google Scholar] [CrossRef]
- Khoury, C.K.; Brush, S.; Costich, D.E.; Curry, H.A.; de Haan, S.; Engels, J.M.M.; Guarino, L.; Hoban, S.; Mercer, K.L.; Miller, A.J.; et al. Crop genetic erosion: Understanding and responding to loss of crop diversity. New Phytol. 2022, 233, 84–118. [Google Scholar] [CrossRef] [PubMed]
- Miedaner, T.; Juroszek, P. Climate change will influence disease resistance breeding in wheat in Northwestern Europe. Theor. Appl. Genet. 2021, 134, 1771–1785. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.; Bayer, P.E.; Edwards, D. Climate change and the need for agricultural adaptation. Curr. Opin. Plant Biol. 2021, 56, 197–202. [Google Scholar] [CrossRef]
- Hübner, S.; Kantar, M.B. Tapping diversity from the wild: From sampling to implementation. Front. Plant Sci. 2021, 12, 626565. [Google Scholar] [CrossRef]
- Maxted, N.; Kell, S.P. Establishment of a Global Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs; FAO: Rome, Italy, 2009. [Google Scholar]
- Engels, J.M.M.; Thormann, I. Main challenges and actions needed to improve conservation and sustainable use of our crop wild relatives. Plants 2020, 9, 968. [Google Scholar] [CrossRef]
- Viruel, J.; Kantar, M.B.; Gargiulo, R.; Hesketh-Prichard, P.; Leong, N.; Cockel, C.; Forest, F.; Gravendeel, B.; Pérez-Barrales, R.; Leitch, I.J.; et al. Crop wild phylorelatives (CWPs): Phylogenetic distance, cytogenetic compatibility and breeding system data enable estimation of crop wild relative gene pool classification. Bot. J. Linn. Soc. 2020, 195, 1–33. [Google Scholar] [CrossRef]
- Dempewolf, H.; Baute, G.; Anderson, J.; Kilian, B.; Smith, C.; Guarino, L. Past and future use of wild relatives in crop breeding. Crop Sci. 2017, 57, 1070–1082. [Google Scholar] [CrossRef] [Green Version]
- Kamenya, S.N.; Mikwa, E.O.; Song, B.; Odeny, D.A. Genetics and breeding for climate change in Orphan crops. Theor. Appl. Genet. 2021, 134, 1787–1815. [Google Scholar] [CrossRef]
- Gautam, R.; Suwal, R.; Sthapit, B.R. Securing family nutrition through promotion of home gardens: Underutilized production systems in Nepal. Acta Hortic. 2009, 806, 99–106. [Google Scholar] [CrossRef]
- Gbedomon, R.C.; Fandohan, A.B.; Salako, V.K.; Idohou, A.F.; Kakaï, R.G.; Assogbadjo, A.E. Factors affecting home gardens ownership, diversity and structure: A case study from Benin. J. Ethnobiol. Ethnomed. 2015, 11, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suwardi, A.B.; Navia, Z.I.; Mubarak, A.; Mardudi, M. Diversity of home garden plants and their contribution to promoting sustainable livelihoods for local communities living near Serbajadi protected forest in Aceh Timur region, Indonesia. Biol. Agric. Hortic. 2023, in press. [Google Scholar] [CrossRef]
- Slotten, V.; Lentz, D.; Sheets, P. Landscape management and polyculture in the ancient gardens and fields at Joya de Cerén, El Salvador. J. Anthrop. Arch. 2020, 59, 101191. [Google Scholar] [CrossRef]
- Bharucha, Z.; Pretty, J. The roles and values of wild foods in agricultural systems Philos. Trans. Roy. Soc. B Biol. Sci. 2010, 365, 2913–2926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgarella, C.; Barnaud, A.; Kane, N.A.; Jankowski, F.; Scarcelli, N.; Billot, C.; Vigouroux, Y.; Berthouly-Salazar, C. Adaptive introgression: An untapped evolutionary mechanism for crop adaptation. Front. Plant Sci. 2019, 10, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esquivel, M.; Karl Hammer, K. The Cuban homegarden ‘conuco’: A perspective environment for evolution and in situ conservation of plant genetic resources. Gen. Res. Crop Evol. 1992, 39, 9–22. [Google Scholar] [CrossRef]
- Ellstrand, N.C.; Prentice, H.C.; Hancock, J.F. Gene flow and introgression from domesticated plants into their wild relatives. Annu. Rev. Ecol. Syst. 1999, 30, 539–563. [Google Scholar] [CrossRef]
- Santalla, M.; De Ron, A.M.; De La Fuente, M. Integration of genome and phenotypic scanning gives evidence of genetic structure in Mesoamerican common bean (Phaseolus vulgaris L.) landraces from the southwest of Europe. Theor. Appl. Genet. 2010, 120, 1635–1651. [Google Scholar] [CrossRef]
- Jiménez, O.R.; Korpelainen, H. Microsatellite markers reveal promising genetic diversity and seed trait associations in common bean landraces (Phaseolus vulgaris L.) from Nicaragua. Plant Gen. Res. Charact. Util. 2012, 10, 108–118. [Google Scholar] [CrossRef]
- Jiménez, O.R.; Korpelainen, H. Preliminary evaluation of F1 generation derived from two common bean landraces (Phaseolus vulgaris) from Nicaragua. Plant Breed. 2013, 132, 205–210. [Google Scholar] [CrossRef]
- Esquivel, M.; Shagarodsky, T.; Krieghoff, K.; Rodriguez, B.; Hammer, K. Collecting plant genetic resources in Cuba. Report of the second mission 1986. Genet. Resour. Crop Evol. 1988, 36, 437–449. [Google Scholar] [CrossRef]
- Esquivel, M.; Hammer, K. The cultivated species of the Solanaceae family in Cuba. In Solanaceae III: Taxonomy, Chemistry, Evolution; Hawkes, J.G., Lester, R.N., Nee, M., Estrada-Ramos, N., Eds.; Royal Botanic Gardens: Kew, UK, 1991; pp. 357–364. [Google Scholar]
- Hatheway, W.H. Races of Maize in Cuba; National Academy of Sciences, National Research Council: Washington, DC, USA, 1957; Volume 453. [Google Scholar]
- Castiñeiras, L.; Esquivel, M.; Lioi, L.; Hammer, K. Origin, diversity and utilization of the Cuban germplasm of common bean (Phaseolus vulgaris L.). Euphytica 1991, 57, 1–8. [Google Scholar] [CrossRef]
- Zohary, D.; Hopf, M. Domestication of Plants in the Old World, 3rd ed.; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Hughes, C.E.; Govindarajulu, R.; Robertson, A.; Filer, D.L.; Harris, S.A.; Bailey, C.D. Serendipitous backyard hybridization and the origin of crops. Proc. Natl. Acad. Sci. USA 2007, 104, 14389–14394. [Google Scholar] [CrossRef] [Green Version]
- Papp, N.; Birkás-Frendl, K.; Farkas, A.; Pieroni, A. An ethnobotanical study on home gardens in a Transylvanian Hungarian Csángó village (Romania). Genet. Resour. Crop Evol. 2013, 60, 1423–1432. [Google Scholar] [CrossRef]
- Gautam, R.; Suwal, R.; Shrestha, P. Status of home gardens of Nepal: Findings of baseline survey conducted in four sites of Home Garden Project. In Home Gardens in Nepal, Proceedings of the Workshop on “Enhancing the Contribution of Home Garden to On-farm Management of Plant Genetic Resources and to Improve the Livelihoods of Nepalese Farmers: Lessons Learned and Policy Implications”, Pokhara, Nepal, 6–7 August 2004; Gautam, R., Sthapit, B.R., Shrestha, P.K., Eds.; LI-BIRD, Bioversity International and SDC: Pokhara, Nepal, 2006; pp. 54–65. [Google Scholar]
- Korpelainen, H.; Pietiläinen, M. Sorrel (Rumex acetosa L.): Not only a weed but a promising vegetable and medicinal plant. Bot. Rev. 2020, 86, 234–246. [Google Scholar] [CrossRef]
- Elshibli, S.; Korpelainen, H. Genetic profiling of the critically endangered palm species Medemia argun using newly developed chloroplast DNA markers. Plant Ecol. Divers. 2018, 11, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Elshibli, S.; Korpelainen, H. Genetic diversity and population structure of Medemia argun (Mart.) Wurttenb. ex H.Wendl. based on genome-wide markers. Front. Ecol. Evol. 2021, 9, 687188. [Google Scholar] [CrossRef]
- Edwardson, J.R. Hops—Their botany, history, production and utilization. Econ. Bot. 1952, 6, 160–175. [Google Scholar] [CrossRef]
- Korpelainen, H.; Pietiläinen, M. Hop (Humulus lupulus L.): Traditional and present use, and future potential. Econ. Bot. 2021, 75, 302–322. [Google Scholar] [CrossRef]
- Eriksen, R.L.; Rutto, L.K.; Dombrowski, J.E.; Henning, J.A. Photosynthetic activity of six hop (Humulus lupulus L.) cultivars under different temperature treatments. Hortscience 2020, 55, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Xia, Z.; He, Y.; Korpelainen, H.; Niinemets, Ü.; Li, C. Sex-specific interactions shape root phenolics and rhizosphere microbial communities in Populus cathayana. For. Ecol. Manag. 2022, 504, 119857. [Google Scholar] [CrossRef]
- Liu, M.; Wang, J.; Zhao, W.; Korpelainen, H.; Li, C. Females face more positive plant-soil feedback and intersexual competition under adequate nitrogen conditions compared to males in Populus cathayana. Sci. Total Environ. 2023, 874, 162479. [Google Scholar] [CrossRef] [PubMed]
- UNEP. Draft Post-2020 Global Biodiversity Framework; United Nations Environment Programme: Nairobi, Kenya, 2022; Available online: https://www.unep.org/resources/publication/1st-draft-post-2020-global-biodiversity-framework (accessed on 6 June 2023).
- Maxted, N.; Magos Brehm, J. Maximizing the crop wild relative resources available to plant breeders for crop improvement. Front. Sustain. Food Syst. 2023, 7, 1010204. [Google Scholar] [CrossRef]
Type | Description |
---|---|
Cultivars | Varieties produced by plant breeders, usually uniform and adapted to high farm management standards |
Landraces | Varieties developed over time in traditional farming systems, usually variable and adapted to local conditions |
Crop wild relatives | Wild taxa within the same genus as a crop |
Ecotypes | Populations of wild forms of domesticated species or their wild relative species, or other wild material; specific adaptations |
Genetic stocks | Material generally used by research or breeding programs resulting in specific information on a gene or character, or other data of value for breeding and research |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korpelainen, H. The Role of Home Gardens in Promoting Biodiversity and Food Security. Plants 2023, 12, 2473. https://doi.org/10.3390/plants12132473
Korpelainen H. The Role of Home Gardens in Promoting Biodiversity and Food Security. Plants. 2023; 12(13):2473. https://doi.org/10.3390/plants12132473
Chicago/Turabian StyleKorpelainen, Helena. 2023. "The Role of Home Gardens in Promoting Biodiversity and Food Security" Plants 12, no. 13: 2473. https://doi.org/10.3390/plants12132473
APA StyleKorpelainen, H. (2023). The Role of Home Gardens in Promoting Biodiversity and Food Security. Plants, 12(13), 2473. https://doi.org/10.3390/plants12132473