Medicinal Plants as a Natural Greener Biocontrol Approach to “The Grain Destructor” Maize Weevil (Sitophilus zeamais) Motschulsky
Abstract
:1. Introduction
2. Methodology
3. Host Plants and Feeding
4. Disease Transmitted
5. Current Pest Management and Its Challenges
- ❖
- Pesticide resistance in some pests.
- ❖
- Water, soil, and air contamination that transfers chemical residues along the food chain.
- ❖
- Reduction of biodiversity and nitrogen fixation.
- ❖
- Destruction of marine and bird life and/or a contributing factor in the genetic defects in subsequent generations.
- ❖
- Non-target organisms are affected even though they might be beneficial to the crops.
6. Pesticide Resistance
7. Medicinal Plants as a Natural Approach to Technical Control of Maize Weevil
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nwosu, L.C. Chemical bases for maize grain resistance to infestation and damage by the maize weevil, Sitophilus zeamais Motschulsky. J. Stored Prod. Res. 2016, 69, 41–50. [Google Scholar] [CrossRef]
- Patino-Bayona, W.R.; Galeano, L.J.N.; Cortes, J.J.B.; Avila, W.A.D.; Daza, E.H.; Suarez, L.E.C.; Prieto-Rodriguez, J.A.; Patino-Ladino, O.J. Effects of essential oils from 24 plant species on Sitophilus zeamais Motsch (Coleoptera: Curculionidae). Insect Pest Vector Manag. 2021, 12, 532. [Google Scholar] [CrossRef] [PubMed]
- Tefera, T.; Kanampiu, F.; De Groote, H.; Hellin, J.; Mugo, S.; Kimenju, S.; Beyene, Y.; Boddupalli, P.; Shiferaw, B.; Banziger, M. The metal silo: An effective grain storage technology for reducing post-harvest insect and pathogen losses in maize while improving smallholder farmers’ food security in developing countries. Crop Prot. 2011, 30, 240–245. [Google Scholar] [CrossRef]
- Paneru, R.B.; Thapa, R.B.; Sharma, P.N.; Sherchan, D.P.; Yubak, D.G.C. Bionomics and management of maize weevil Sitophilus zeamais Motschulsky. J. Plant Prot. Res. 2018, 5, 2018. [Google Scholar] [CrossRef]
- Yang, Y.; Isman, M.B.; Tak, J. Insecticidal activity of 28 essential oils and a commercial product containing Cinnamomum cassia bark essential oil against Sitophilus zeamais Motschulsky. Natural products to control insect pests. Insects 2020, 11, 474. [Google Scholar] [CrossRef] [PubMed]
- Oadejo, J.A.; Adetunji, M.O. Economic analysis of maize (Zea mays) production in Oyo state of Nigeria. Res. J. Agric. Sci. 2012, 2, 77–83. [Google Scholar]
- FAO. What Are the World’s Most Important Staple Foods? In FAO Production Yearbook for 2019; FAO: Rome, Italy, 2019. [Google Scholar]
- Mangani, R.; Tesfamariam, E.H.; Engelbrecht, C.J.; Bellocchi, G.; Hassen, A.; Mangani, T. Potential impacts of extreme weather events in main maize (Zea mays L.) producing areas of South Africa under rainfed conditions. Reg. Environ. Chang. 2019, 19, 1441–1452. [Google Scholar] [CrossRef]
- FAO. Food and Agricultural Organization of the United Nations. In Integrated Management of the Fall Armyworm on Maize; FAO: Rome, Italy, 2018. [Google Scholar]
- Bekele, A.J.; Obeng-Ofori, D.; Hassanali, A. Evaluation of Ocimum kenyense (Ayobangira) as source of repellants, toxicants, and protectants in storage against three major stored product insect pests. J. Appl. Entomol. 1997, 121, 169–173. [Google Scholar] [CrossRef]
- Tembo, E.; Murfitt, R.F.A. Effects of combining vegetable oil with pirimiphos-methyl for protection of stored wheat against Sitophilus granaries L. J. Stored Prod. Res. 1995, 31, 77–81. [Google Scholar] [CrossRef]
- Hassaan, M.A.; Nemr, A.E. Pesticides pollution: Classifications, human health impact, extraction, and treatment techniques. Egyptian J. Aquat. Sci. 2020, 46, 207–220. [Google Scholar] [CrossRef]
- Marcelino, A.F.; Wachtel, C.C.; Ghisi, N.C. Are our farm workers in danger? Genetic damage in farmers exposed to pesticides. Int. Environ. Res. Health 2019, 16, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nwosu, L.C. Impact of age on the biological activities of Sitophilus zeamais (Coleoptera: Curculionida) Adults on stored maize: Implications for food security and pest management. J. Entomol. 2018, 111, 2454–2460. [Google Scholar] [CrossRef] [PubMed]
- Edelduok, E.; Akpabio, E.; Eyo, J.; Ekpe, E. Bio-insecticidal potentials of testa powder of melon, Citrullus vulgaris Schrad for reducing infestation of maize grains by the maize weevil, Sitophilus zeamais Motsch. Glob. J. Biol. Agric. Health Sci. 2012, 2, 13–17. [Google Scholar]
- Taye, W.; Asefa, W.; Woldu, M. Insecticidal activity of Lantana camara on maize weevils (Sitophilus zeamais Motsch.). International Res. J. Agric. Sci. 2014, 1, 2358–3997. [Google Scholar]
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Farook, U.B.; Khan, Z.H.; Ahad, I.; Maqbool, S.; Yanqoob, M.; Rafieq, I.; Rehman, S.A.; Sultan, N. A review on insect pest complex of wheat (Triticum aestivumI L.). J. Entomol. Zool Stud. 2019, 7, 1292–1298. [Google Scholar]
- Hagstrum, D.W.; Phillips, T.W.; Cuperus, G. Stored Product Protection; Kansas State University: Manhattan, CA, USA, 2012. [Google Scholar]
- Atanasova, D. First record of new food specialization of the maize weevil Sitophilus zeamais Motsch. (Coleoptera: Curculionidae) in Bulgaria. JBB 2020, 9, 77–80. [Google Scholar]
- Olotuah, O.F. Effect of Age of Eugenia aromatic Powder on the Control of Callosobruchus maculatus and Sitophilus zeamais. International Int. J. Plant Sci. 2015, 5, 227–233. [Google Scholar] [CrossRef]
- Babarinde, G.O.; Babarinde, S.A.; Ogunsola, S.O. Effect of maize weevil (Sitophilus zeamais Motschulsky 1855) infestation on the quality of three commercial pastas. Food Sci. Qual. Manag. 2013, 21, 1–11. [Google Scholar]
- Obata, H.; Manabe, A.; Nakamura, N.; Onishi, T.; Senba, Y. A new light on the evolution and propagation of prehistoric grain pests: The World’s oldest maize weevils found in Jomon potteries, Japan. PLoS ONE 2011, 6, e14785. [Google Scholar] [CrossRef]
- Haines, C.P. Insects, and Arachnids of Tropical Stored Products: Their Biology and Identification: A Training Manual; Natural Resource Institute UK: Chatham Maritime, UK, 1991. [Google Scholar]
- Bamaiyi, L.J.; Ndams, I.S.; Toro, W.A.; Odekina, S. Laboratory evaluation of mahogany (Khaya segalensis (Desv) seed oil and seed powder for the control of Callosobruchus maculatus (Fab) (Coleoptera: Bruchidae) on stored cowpea. J. Entomol. 2007, 4, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Danho, M.; Gaspar, C.; Haubruge, E. The impact of grain quantity on the biology of Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae): Oviposition, distribution of eggs, adult emergence, body weight and sex ratio. J. Stored Prod. Res. 2002, 38, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Ni, X.; Wilson, J.P.; Butin, G.D.; Guo., B.; Krakowsky, M.D.; Lee, R.D.; Cottrell, T.E.; Skully, B.T.; Huffaker, A.; Schmelz, E.A. Spatial patterns of aflatoxin levels in relation to ear-feeding insect damage in pre-harvest corn. Toxins 2011, 2, 920–931. [Google Scholar] [CrossRef] [PubMed]
- Vyavhare, S.; Pendleton, B.B. Maturity stages and moisture content of sorghum grain damaged by maize weevil. Southwest. Entomol. 2011, 36, 331–333. [Google Scholar] [CrossRef]
- Stuhl, C.J. Does prior feeding behavior by previous generations of the maize weevil (Coleoptera: Curculionidae) determine future descendants feeding preference and ovipositional suitability? Fla. Entomol. 2019, 102, 366–372. [Google Scholar] [CrossRef] [Green Version]
- Walgenbach, C.A.; Philips, D.L.; Faustini, D.L.; Burkholder, W.E. Male-produced aggregation pheromone of maize weevil, Sitophilus zeamais, and inter-specific attraction between three Sitophilus species. J. Chem. Ecol. 1983, 9, 831–841. [Google Scholar] [CrossRef]
- Muzemu, S. Evaluation of Eucalyptus tereticornis. Tagetes minuta, and Caprica papaya as stored maize grain protectants against Sitophilus zeamais (Motsch.) (Coleoptera: Curculionidae). Agric. For. Fish. 2013, 2, 196–201. [Google Scholar]
- Nwosu, L.C.; Adedire, C.O.; Ogunwolu, E.O.; Ashamo, M.O. Relative susceptibility of 20 elite maize varieties to infestation and damage by the maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculinidae). Int. J. Trop. Insect Sci. 2015, 35, 185–192. [Google Scholar] [CrossRef]
- Tongjura, J.D.C.; Amuga, G.A.; Mafuyai, H.B. Laboratory assessment of the susceptibility of some varieties of Zea mays infested with Sitophilus zeamais, Motsch. (Coleoptera, Curculinidae) in Jos, Plateau State. Sci. World J. 2010, 5, 55–57. [Google Scholar] [CrossRef] [Green Version]
- Makate, N. The susceptibility of different maize varieties to post-harvest infestation by Sitophilus zeamais (Motsch) Coleoptera: Cuculionidae. SRE 2010, 5, 30–34. [Google Scholar]
- Nwosu, L.C. Maize and the maize weevil: Advances and innovations in postharvest control of the pest. Food Qual. Saf. 2018, 2, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Gitonga, Z.M.; De Groote, H.; Kassie, M.; Tefera, T. Impact of metal silos on households’ maize storage, storage losses and food security: An application of a propensity score matching. Food Policy 2013, 43, 44–55. [Google Scholar] [CrossRef]
- Pu, Y.; Wang, S.; Yang, F.; Ehsani, R.; Zhao, L.; Li, C.; Xie, S.; Yang, M. Recent progress and future prospects for mechanized harvesting of fruit crops with shaking systems. Int. J. Agric. Biol. Eng. 2023, 16, 1–13. [Google Scholar] [CrossRef]
- Awika, J.M. Major cereal grains production and use around the world. In Advances in Cereal Science: Implications to Food Processing and Health; American Chemical Society: Washington, DC, USA, 2011. [Google Scholar]
- Enghiad, A.; Ufer, D.; Countryman, A.; Thilmany, D. An overview of global wheat market fundamentals in an era of climate concerns. Int. J. Agron. 2017, 2017, 3931897. [Google Scholar] [CrossRef]
- Mohidem, N.A.; Hashim, N.; Shamsudin, R.; Man, H.C. Rice for food security: Revisiting its production, diversity, rice milling process and nutrient content. Agriculture 2022, 12, 741. [Google Scholar] [CrossRef]
- ICRISAT & Partners. CGIAR Research Program: Grain Legume and Dryland Cereals Agri-Food Systems. Full Proposal. Patancheru, ICRISAT. Mimeo, Telengana, India. 2017. Available online: https://www.cgiar.org/research/program-platform/grain-legumes-and-dryland-cereals/ (accessed on 20 April 2023).
- Menon, R.; Gonzalez, T.; Ferruzzi, M.; Jackson, E.; Winder, D.; Watson, J. Chapter one-Oats-from farm to fork. Adv. Food Nutr. Res. 2016, 77, 1–55. [Google Scholar]
- Giraldo, P.; Benavente, E.; Manzano-Agugliaro, F.; Gimenez, E. Worldwide research trends on wheat and barley: A bibliometric comparative analysis. Agronomy 2019, 9, 352. [Google Scholar] [CrossRef] [Green Version]
- Fuller, M.F. The Encyclopedia of Farm Animal Nutrition; CABI Publishing Series: Wallingford, UK, 2004; p. 606. [Google Scholar]
- Gwirtz, J.A.; Garcia-Casal, M.N. Processing maize flour and corn meal food products. Ann. N. Y. Acad. Sci. 2013, 1312, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Ayana, W. Review on Major Pests of Maize, Their Biology, Ecology, Damage and Control Methods. Master’s Thesis, Jimma University, Jimma, Oromia Region, Ethiopia, 2019. [Google Scholar]
- Bhusal, K.; Khanal, D. Role of maize weevil, Sitophilus zeamais Motsch. on spread of Aspergillus section flavi in different Nepalese maize varieties. Adv. Agric. 2019, 2019, 7584056. [Google Scholar] [CrossRef] [Green Version]
- Agoligan, J.A.; Lamboni, Y.; Anihouvi, V.B. Exploring the potential of using the entomopathogenic fungus Beauveria bassiana as a biocontrol agent for maize weevil, Sitophilus zeamais. Int. J. Postharvest Technol. Innov. 2022, 8, 345–359. [Google Scholar] [CrossRef]
- Dunkel, F.V. The relationship of insects to the deterioration of stored grain by fungi. Int. J. Food Microbiol. 1988, 7, 227–244. [Google Scholar] [CrossRef]
- Sinha, K.K.; Sinha, A.K. Effect of Sitophilus oryzae infestation on Aspergillus flavus infection and aflatoxin contamination in stored wheat. J. Stored Prod. Res. 1991, 27, 410–416. [Google Scholar] [CrossRef]
- Barney, R.J.; Sedlacek, J.D.; Siddiqui, M.; Price, B.D. Quality of stored corn (maize) as influenced by Sitophilus zeamais Motsch. And several management practices. J. Stored Prod. Res. 1991, 27, 225–237. [Google Scholar] [CrossRef]
- Desneux, N.; Han, P.; Mansour, R.; Arno, J.; Brevault, T.; Campos, M.R.; Chailleux, A.; Guedes, R.N.C.; Karimi, J.; Konan, K.A.J.; et al. Integrated pest management of Tuta absoluta: Practical implementations across different world regions. J. Pest Sci. 2022, 95, 17–39. [Google Scholar] [CrossRef]
- Ojo, J.A.; Omoloye, A.A. Development and life history of Sitophilus zeamais (Coleoptera: Curculionidae) on cereal crops. Adv. Agric. 2016, 2016, 7836379. [Google Scholar]
- Cosmas, P.; John, C.T.; Agathar, K.; Ronald, M.; Kufa, M.; Betty, C. Use of Botanical Pesticides in Controlling Sitophilus Zeamais (Maize weevil) on Stored Zea Mays (Maize) Grain; Crimson Publishers: New York, NY, USA, 2018. [Google Scholar]
- Lale, N.E.S.; Ofuya, T.I. Overview of pest problems and control in the tropical storage environment. In Pest of Stored Cereals and Pulses in Nigeria—Biology, Ecology and Control; Ofuya, T.I., Lale, N.E.S., Eds.; Dave Collins Publications: Akure, Nigeria, 2001; pp. 1–23. [Google Scholar]
- Lale, N.E.S. Stored-Product Entomology and Acarology in Tropical Africa; Mole Publications: Maiduguri, Nigeria, 2002. [Google Scholar]
- Abebe, F.; Tefera, T.; Mugo, S.; Beyene, Y.; Vidal, S. Resistance of maize varieties to the maize weevil, Sitophilus zeamais (Motsch.) (Coleoptera: Curculionidae). Afr. J. Biotechnol. 2009, 8, 5937–5943. [Google Scholar]
- Saeed, M.B.E.E.E.M. Biological Control of Three Grain Storage Pests: Maize Weevil, Sitophilus zeamais (Motschulsky), Almond moth, Ephestia cautella (Walker) and Cigarette beetle, Lasioderma serricorne (Fabricius), Using Novel Strains of Beauveria bassiana (Balsamo) Vuillemin in Powder Formulation. Ph.D. Thesis, University of KwaZulu-Natal, KwaZulu-Natal, South Africa, 2017. [Google Scholar]
- FAO (Food and Agricultural Organization of the United Nations) Agricultural and Food Engineering Technologies Service. Household Metal Metal Silo: Key Allies in FAO’s Fight against Hunger; FAO: Rome, Italy, 2008. [Google Scholar]
- Edelduok, E.G.; Akpabio, E.E.; Eyo, J.E.; Ekpe, E.N. Evaluation of the insecticidal activities of cotyledon powder of melon, Citrullus vulgaris Schrad against the maize weevil, Sitophilus zeamais Motsculsky. J. Biopestic. Environ. 2015, 1, 50–57. [Google Scholar]
- Cooper, J.; Dobson, H. The benefits of pesticides to mankind and the environment. Crop Prot. 2007, 26, 1337–1348. [Google Scholar] [CrossRef]
- Aktar, M.W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Köhler, H.; Triebskorn, R. Wildlife ecotoxicology of pesticides: Can we track effects to the population level and beyond. Science 2013, 341, 759–765. [Google Scholar] [CrossRef] [Green Version]
- Guedes, R.N.C.; Smagghe, G.; Stark, J.D.; Desneux, N. Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Annu. Rev. Entomol. 2016, 61, 43–62. [Google Scholar] [CrossRef] [Green Version]
- Subramanyam, B.H.; Hagstrum, D.W. Resistance measurement and management. In Integrated Management of Insects in Stored Products; Subramanyam, B.H., Hagstrum, D.W., Eds.; Marcel Dekker: New York, NY, USA, 1995; pp. 331–397. [Google Scholar]
- Olakojo, S.A.; Akinlosotu, T.A. Comparative study of storage methods of maize grains in Southwestern Nigeria. Afr. J. Biotechnol. 2004, 3, 362–365. [Google Scholar]
- Marini-Bettolo, G.B. Natural Products and the Protection of Plants; Elsevier Scientific Publishing Company: New York, NY, USA, 1977. [Google Scholar]
- Parmar, B.S.; Devkumar, C. Botanical and Biopesticides; West Vill Publishing House: New Delhi, India, 1993. [Google Scholar]
- Obeng-ofori, D.; Reichmuth, C.H.; Benele, J.; Hassanali, A. Biological activity of 1, 8 cineole, a major component of essential oil of Ocimum kenyense (Ayobangira) against stored product beetles. J. Appl. Entomol. 1997, 121, 237–243. [Google Scholar] [CrossRef]
- Stoytcheva, M. Pesticides in the modern world-Risks and Benefits; BoD–Books on Demand: Rabat, Morocco, 2011; ISBN 978-953-458-0. [Google Scholar]
- Tanner, R.W.; Langston, J.W. Do environmental toxins cause Parkinson’s disease? A Critical Review. Neurology 1990, 40, 17–30. [Google Scholar]
- Naqqash, M.N.; Gökçe, A.; Bakhsh, A.; Salim, M. Insecticide resistance and its molecular basis in urban insect pests. Parasitol. Res. 2016, 115, 1363–1373. [Google Scholar] [CrossRef] [PubMed]
- Bohinc, T.; Horvat, A.; Andric, G.; Golic, M.P.; Kljajic’, P.; Trdan, S. Natural versus synthetic zeolites for controlling the maize weevil Sitophilus zeamais)—Like Messi versus Ronaldo? J. Appl. Entomol. 2020, 88, 101639. [Google Scholar] [CrossRef]
- Bohinc, T.; Dervić, A.; Horvat, A.; Kljajic, P.; Andric, G.; Golic, M.P.; Trdan, S. Effects of natural and synthetic zeolites against maize weevil (Sitophilus zeamais Motschulsky, Coleoptera, Curculionidae) adults under laboratory conditions. Integr. Prot. Stored Prod. 2018, 130, 241–250. [Google Scholar]
- Tapondjou, L.A.; Adlerb, C.; Boudaa, H.; Fontemc, D.A. Efficacy of powder and essential oil from Chenopodium ambrosioides leaves as post-harvest grain protectants against sixstored product beetles. J. Stored Prod. Res. 2002, 38, 395–402. [Google Scholar] [CrossRef]
- Mulungu, L.S.; Lupenza, G.; Reuben, S.O.W.M.; Misangu, R.N. Evaluation of Botanical products as stored Grain Protectant against Maize weevil, Sitophilus zeamais (L.) on maize. J. Entomol. 2007, 4, 202–258. [Google Scholar] [CrossRef] [Green Version]
- Sousa, J.; Nascimento, H.; Gomes, H.; Ferreira, R.; Nascimento, R. Pesticide rsidues in groundwater and surface water: Recent advances in soild-phase extraction and solid-phase microextraction sample preparation methods for multiclass analysis by gas chromatography-mass spectrometry. Microchem. J. 2021, 68, 106359. [Google Scholar] [CrossRef]
- Mojiri, A.; Zhou, J.L.; Robinson, B.; Ohashi, A.; Ozaki, N.; Kindaichi, T.; Farraji, H.; Vakili, M. Pesticides in aquatic environments and their removal by adsorption methods. Chemosphere 2020, 253, 126646. [Google Scholar] [CrossRef]
- Pietrzak, D.; Wątor, K.; Pękała, D.; Wójcik, J.; Chochorek, A.; Kmiecik, E.; Kania, J. LC-MS/MS method validation for determination of selected neonicotinoids in groundwater for the purpose of a column experiment. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2019, 54, 424–431. [Google Scholar] [CrossRef]
- Gupta, A.; Upadhyay, R.K.; Saxena, P.N. Toxicity evaluation of certain blood biochemical parameters in Passer domesticus (Linn.). J. Sci. Ind. Res. 2001, 60, 668–674. [Google Scholar]
- Adedire, C.O.; Ajayi, T.S. Assessment of the insecticidal properties of some plant extracts as grain protectants against the maize weevil, Sitophilus zeamais Motschulsky. Niger. J. Entomol. 1996, 13, 93–101. [Google Scholar]
- Shields, M.W.; Johnson, A.C.; Pandey, S.; Cullen, R.; González-Chang, M.; Wratten, S.D.; Gurr, G.M. History, current situation and challenges for conservation biological control. Biol. Control. 2019, 131, 25–35. [Google Scholar] [CrossRef]
- Baron, N.C.; Rigobelo, E.C.; Zied, D.C. Filamentous fungi in biological control: Current status and future perspectives. Chil. J. Agric. Res. 2019, 79, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Mascarin, G.M.; Lopes, R.B.; Delalibera, Í., Jr.; Fernandes, É.K.K.; Luz, C.; Faria, M. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. J. Invertebrate Pathol. 2018, 165, 46–53. [Google Scholar] [CrossRef]
- Cox, P.; Wilkin, D. The Potential use of Biological Control of Pests in Stored Grain; HGCA Research Review: London, UK, 1996. [Google Scholar]
- Usta, C. Microorganisms in Biological Pest Control—A Review (Bacterial Toxin Application and Effect of Environmental Factors); TECH Open Publisher: Rijeka, Croatis, 2013. [Google Scholar]
- Del Arco, L.; Riudavets, J.; Campos-Rivela, J.M.; Martinez-Ferrer, M.T.; Agusti, N.; Castane, C. Effectiveness of the parasitoid Anisopteromalus calandrae (Hymenoptera: Pteromalidae) in the control of Sitophilus zeamais and Rhyzopertha dominica in paddy rice. Biol. Control. 2022, 181, 105216. [Google Scholar] [CrossRef]
- Mbah, O.I.; Okoronkwo. An assessment of two plant product efficacy for the control of the maize weevil (Sitophilus zeamais Motschulsky) in stored maize. Afr. J. Agric. Res. 2008, 3, 494–498. [Google Scholar]
- Gahukar, G.T. Evaluation of plant-derived products against pests and diseases of medicinal plants: A review. Crop Prot. 2012, 42, 202–209. [Google Scholar] [CrossRef]
- Saeed, Q.; Saleem, M.A.; Ahmad, M. Toxcommonly used commonly used synthetic insecticides against Spodoptera exigua (Fab) (Lepidoptera: Noctuidae). Pakistan J. Zool. 2012, 44, 1120–1197. [Google Scholar]
- Attia, M.A.; Wahba, T.F.; Shaarawy, N.; Moustafa, F.I.; Narciso, R.; Gueded, C.; Dewer, Y. Stored grain pest prevalence and insecticide resistance in Egyptian populations of the red flour beetle Tribolium castaneum (Herbst) and the rice weevil Sitophilus oryzae (L.). J. Stored Prod. Res. 2020, 87, 101611. [Google Scholar] [CrossRef]
- Demeter, S.; Lebbe, O.; Hecq, F.; Nicolis, S.C.; Kemene, T.K.; Martin, H.; Fauconnier, M.; Hance, T. Isecticidal activity of 25 essential oils on the stored product pest, Sitophilus granaris. Foods 2021, 10, 200. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef] [Green Version]
- Boeke, S.J.; Baumgart, I.R.; Vanloon, J.J.A.; Van Huis, A.; Dicke, M.; Kossou, D.K. Toxicity and repellence of African plants traditionally used for the protection of stored cowpea against Callosobruchus maculatus. J. Stored Prod. Res. 2004, 40, 423–438. [Google Scholar] [CrossRef]
- Alemu, M. Applications of biotechnology for characterization of plants and pests as the key components of plant protection and production technologies: A review. Int. J. Appl. Sci. Biotechnol. 2020, 8, 247–288. [Google Scholar] [CrossRef]
- Mak, M. Elucidating Novel Biopesticide Modes of Action in Insects: Physiological, Cellular and Molecular Approaches. Ph.D. Thesis, Western Sydney University Thesis Collection, Sydney, Australia, 2020. [Google Scholar]
- Owusu, E.O. Effects of some Ghanaian plant components on control of two stored product insect pests of cereal. J. Stored Prod. Res. 2001, 37, 85–91. [Google Scholar] [CrossRef]
- Riley, D.G.; Sparks, A. Insecticide resistance management for diamondback moth in Georgia. Cooperative extension, college of agriculture and environmental science & family and consumer sciences, University of Georgia. Circular 2006, 899. Available online: https://secure.caes.uga.edu/extension/publications/files/pdf/C%20899_5.PDF (accessed on 30 April 2023).
- Coustau, C.; Chevillon, C.; Ffrench-Constant, R. Resistance to xenobiotics and parasites: Can we count the cost? Trends Ecol. Evol. 2000, 15, 378–383. [Google Scholar] [CrossRef]
- Raymond, M.; Berticat, C.; Weill, M. Insecticide resistance in mosquito Culex pipiens: What have we learned about adaptation? Genetica 2001, 112–113, 287–296. [Google Scholar] [CrossRef]
- Saeed, Q.; Ahmad, F.; Iqbal, N.; Muhammad, S. Chemical control of polyphagous pests on their auxiliary hosts can minimize insecticide resistance: A case study of Spodoptera exigua Hübner (Lepidoptera: Noctuidae) in cotton agroecosystem. Ecotoxicol. Environ. Saf. 2019, 171, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, L.; Haubruge, E. Insecticide resistance enhances male reproductive success in a beetle. Evolution 2007, 56, 2435–2444. [Google Scholar]
- Foster, S.P.; Young, S.; Williamson, M.S.; Duce, I.; Denholm, I.; Devine, G.J. Analogous pleitropic effects of insecticide resistance genotypes in peach-potato aphids and houseflies. Heredity 2003, 91, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Bird, L.J.; Drynan, L.J.; Walker, P.W. Relative fitness and stability of resistance in a near-isogenic strain of indoxacarb resistant Helicoverpa armigera. Pest Manag. Sci. 2020, 76, 4077–4085. [Google Scholar] [CrossRef] [PubMed]
- Brito, V.D.; Achimon, F.; Pizzolitto, R.P.; Sanchez, A.R.; Torres, E.A.G.; Zygadlo, J.A.; Zunino, M.P. An alternative to reduce the use of the synthetic insecticide against the maize weevil Sitophilus zeamais through the synergistic action of Pimenta racemosa and Citrus sinensis essential oils with chlorpyrifos. J. Pest Sci. 2020, 94, 409–421. [Google Scholar] [CrossRef]
- Mamoon-ur-Rashid, M.; Din, R.; Naeem, M.; Ahsad-Khan, M.; Ashfaq, M. Relative resistance of maize varieties against maize weevil, Sitophilus zeamais (Motschulsky, Coleoptera: Curcolionidae). J. Agric. Sci. 2021, 58, 1169–1176. [Google Scholar]
- Oboho, D.; Eyo, J.; Ekeh, F.; Okweche, S. Efficacy of Cymbopogon citratus Stapf leaf extract as seeds protectant against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) on stored maize (Zea mays L.). Biol. Control 2016, 30, 220–225. [Google Scholar] [CrossRef] [Green Version]
- Ogban, E.I.; Ukpong, I.G.; Oku, E.E.; Usua, E.J.; Udo, S.E.; Ogbeche, J.O.; Ajang, R.O. Potentials of two indigenous plants powder for the control of stored maize weevil, Sitophilus zeamais (Motschulsky). Am. J. Exp. Agric. 2015, 5, 12–17. [Google Scholar] [CrossRef]
- Okonkwo, E.U.; Okoye, W.J. The eficacy of four seed powders and the essential oils as protectants of cowpea and maize grains against infestation by Callosobruchus maculatus and Sitophilus zeamais in Nigeria. Int. J. Pest Manag. 1996, 42, 143–146. [Google Scholar] [CrossRef]
- Walia, S.; Saha, S.; Rana, V.S. Phytochemical pesticides. In Advances in Plant Biopesticides; Springer: Berlin/Heidelberg, Germany, 2014; pp. 295–322. [Google Scholar]
- Souto, A.L.; Sylvestre, M.; Tölke, E.D.; Tavares, J.F.; Barbosa-Filho, J.M.; Cebrián-Torrejón, G. Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges. Molecules 2021, 26, 4835. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Jaiswal, G. Evaluation of biological activities of Piper nigrum oil against Tribolium castaneum. Bull. Insectol. 2007, 60, 57–61. [Google Scholar]
- Weinzierl, R.A. Botanical insecticides, soaps, and oils. In Biological and Biotechnological Control of Insect Pests; Rechcigl, J.E., Rechcigl, N.A., Eds.; Lewis Publisher: New York, NY, USA, 2000; pp. 1–12. [Google Scholar]
- Isman, M.B. Plant essential oils for pest and disease management. Crop Prot. 2000, 19, 603–608. [Google Scholar] [CrossRef]
- Greenberg, S.M.; Showler, A.; Liu, T.X. Effects of neem-based insecticides on beet armyworm (Lepidoptera: Noctuidae). Insect Sci. 2005, 12, 17–23. [Google Scholar] [CrossRef]
- Iloba, B.N.; Ekrakene, T. Comparative assessment of insecticidal effects of Azadirachta indica, Hyptis suaveolens and Ocimum gratissimum on Sitophilus zeamais and Callosabruchus maculantus. J. Boll. Sch. 2006, 6, 626–630. [Google Scholar]
- Kubo, I.; Nakanish, K. Insect Antifeedants and Repellents from African Plants in: Symposition Series No 62: Host Plant Resistance to Pests; The American Chemical Society: Washington, DC, USA, 2001; pp. 165–175. [Google Scholar]
- Stoll, G. Natural Crop Protection in the tropics, Verlog Joset margrat; Science Book: Berlin, Germany, 2000; pp. 221–224. [Google Scholar]
- Emana, G.; Ahmed, I.; Fridissa, I. Review of lowland pulse insect pest research in Ethiopia. In Proceedings of the Grain Legume Workshop, Addis Ababa, Ethiopia, 22–27 September 2003. [Google Scholar]
- Jacobson, M. Control of stored product insect with phytochemicals. In Proceedings of the Third International Working Conference on Stored Product Entomology, Manhattan, KS, USA, 23–28 October 1983. [Google Scholar]
- Hassanali, A.; Lwande, W.; Ole-Sitayo, N.; Moreka, L.; Nokoe, S.; Chapya, A. Weevil repellent constituents of Ocimum suave leaves and Eugenia caryophylla cloves used as grain protectant in parts of East Africa. Discov. Innov. 1990, 2, 91–95. [Google Scholar]
- Poswal, M.A.T.; Akpan, A.D. Current trends in the use of traditional and organic methods for the control of crop pests and diseases in Nigeria. Trop. Pest Manag. 1991, 37, 329–333. [Google Scholar] [CrossRef]
- Mbaiguinam, M.; Naura, N.; Bianpambe, A.; Bono, G.; Alladcumbaye, E. Effects of commom plant seed oils on survival, eggs lying and development of the cowpea weevil, Callosobruchus maculantus (F.) Coleoptera: Brychidae. J. Boll. Sch. 2006, 6, 420–425. [Google Scholar]
- FAO. Guidelines on Efficacy Evaluation for the Registration of Plant Protection Products; FAO Publications: Rome, Italy, 2006; Volume 61. [Google Scholar]
- Ivbijaro, M.F.; Agbaje, M. Insecticidal activities of Piper guineense schum and thonn, and Capsicuum species on the cowpea bruchid, Callosobruchus maculates. J. Environ. Prot. Ecol. 1986, 12, 521–523. [Google Scholar]
- Ivbijaro, M.F. Prevention of cowpea, Vigna unquiculata Walp with the neem Journal of Biopesticides and Environment/vol. 1, May 2015. Page 50-57 seed, Azadiracta indica. Juss. Prot. Ecol. 1983, 5, 177–182. [Google Scholar]
- Ivbijaro, M.F. Toxic effects of groundnut oil on the rice weevil, Sitophilus oryzae. Insect Sci. Its Appl. 1983, 5, 251–252. [Google Scholar] [CrossRef]
- Rajapakse, R.; Van Emden, H.F. Potential of four vegetable oils and ten botanical powders for reducing infestation of cowpeas by Callosobruchus maculatus, C. chinesis and C. rhodesianus. J. Stored Prod. Res. 1997, 33, 59–68. [Google Scholar] [CrossRef]
- Firdissa, D.E.; Abraham, T. Effects of some botanicals and other materials against the maize weevil (Sitophilus zeamais Motsch.) on stored maize. Maize Production Technology for the Future: Challenges and opportunities. (eds. CIMMYT and EARO). In Proceedings of the 6th Eastern and Southern Africa Regional Maize Conference, Addis Ababa, Ethiopia, 21–25 September 1998. [Google Scholar]
- Ukeh, D.A.; Arong, G.A.; Ogban, E.I. Toxicity and oviposition deterrence of Piper guineense (Piperaceae) and Monodora myristica (Annonaceae) against Sitophilus zeamais (Motsch.) on stored maize. J. Biopestic. 2008, 5, 295–299. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, M.Y.; Haniffa, H.M.; Sujarajiini, V. Insecticidal effect of selected medicinal plants on Sitophilus zeamais Mostschulsky in stored maize. Biocatal. Agric. Biotechnol. 2023, 48, 102635. [Google Scholar] [CrossRef]
- Ileke, K.D.; Idoko, J.E.; Ojo, D.O.; Adesina, B.C. Evaluation of botanical powders and extracts from Nigerian plants as protectants of maize grains against maize weevil, Sitophilus zeamais (Motschulsky) [Coleoptera: Curculionidae]. Biocatal. Agric. Biotechnol. 2020, 27, 101702. [Google Scholar] [CrossRef] [PubMed]
- Olanrewaju, O.D.; Opara, J.C.; Nwite, O.P.; Umoru, U.; Aliyu, M.S. Comparative Effects of Botanical Powders in Controlling Sitophilus zeamais (Maize Weevils) in Stored Maize (Zea mays L.). Biol. Life Sci. 2023. [Google Scholar] [CrossRef]
- de Lira Pimentel, C.S.; Albuquerque, B.N.D.L.; da Rocha, S.K.L.; da Silva, A.S.; da Silva, A.B.V.; Bellon, R.; Agra-Neto, A.C.; de Aguiar, J.C.R.D.O.F.; Paiva, P.M.G.; Princival, J.L.; et al. Insecticidal activity of the essential oil of Piper corcovadensis leaves and its major compound (1-butyl-3, 4-methylenedioxybenzene) against the maize weevil, Sitophilus zeamais. Pest Manag. Sci. 2022, 78, 1008–1017. [Google Scholar] [CrossRef]
- Koomson, C.K. Entomopoison efficacy of Christmas bush, Alchornea cordifolia (Schum. & Thonn.) root powder against the maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Int. J. Fauna Biol. 2020, 7, 86–91. [Google Scholar]
- Ayalew, A.A. Insecticidal activity of Lantana camara extract oil on controlling maize grain weevils. Toxicol. Res. Appl. 2020, 4, 2397847320906491. [Google Scholar] [CrossRef] [Green Version]
- Abdullahi, A.M.; Sarki, A.; Hafizu, M.S.; Kunihya, I.Z.; Kolawole, A.A.; Nassai, I.; Haruna, M.Y. Phyto-chemicals of some plant leaf powder as anti-insect agents against maize weevils Sitophilus zeamais (Coleoptera: Curculionidae). FUDMA J. Sci. 2019, 3, 291–295. [Google Scholar]
- Achiri, T.D.; Agbor, E.C.; Anye, A.M.; Abdulai, A.N.; Nsobinenyui, D.; Jallow, M. Cypress (Cupressus macrocarpa) leaf powder modulates metabolism of maize weevil Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Eur. J. Food Saf. 2020, 12, 9–17. [Google Scholar] [CrossRef]
- Gariba, S.Y.; Dzidzienyo, D.K.; Eziah, V.Y. Assessment of four plant extracts as maize seed protectants against Sitophilus zeamais and Prostephanus truncatus in Ghana. Cogent Food Agric. 2021, 7, 1918426. [Google Scholar] [CrossRef]
- Emeka, C.P.O.; Ewete, F.K.; Ebeniro, S.T. Efficacy of Eucalyptus leaf (Eucalyptus camaldulensis), Moringa seed (Moringa oleifera) and Pirimiphos-methyl powders against maize weevil (Sitophilus zeamais) in Stored Maize. J. Exp. Agric. Int. 2020, 42, 85–90. [Google Scholar] [CrossRef]
- Ajao, A.M.; Ojo, J.A.; Adeoye, A.A.; Ibraheem, M.O.; Babarinde, T.M. Efficacy of extracts of Tithonia diversifolia (Hemsl.) A. Gray as protectant against maize weevil (Sitophilus zeamais [Motsch.]) and cowpea weevil, Callosobruchus maculatus F. on stored grains. Niger. J. Entomol. 2021, 37, 115–132. [Google Scholar] [CrossRef]
- Obembe, O.M. Phytochemical screening of Eucalyptus citriodora L. leaf and insecticidal activity of the leaf oil extracts against Sitophilus zeamais (Motschulsky, 1855) infesting three varieties a maize in storage. World Sci. News 2023, 179, 54–68. [Google Scholar]
- Wanna, R.; Khaengkhan, P. Insecticidal Activity of Essential Oil from Seeds of Foeniculum vulgare (Apiales: Apiaceae) against Sitophilus zeamais (Coleoptera: Curculionidae) and Its Effects on Crop Seed Germination. Entomol. Sci. 2023, 58, 104–116. [Google Scholar] [CrossRef]
- Niroumand, M.C.; Farzaei, M.H.; Razkenari, E.K.; Amin, G.; Khanavi, M.; Akbarzadeh, T.; Shams-Ardekani, M.R. An evidence-based review on medicinal plants used as insecticide and insect repellent in traditional Iranian medicine. Iran. Red Crescent Med. J. 2016, 18, e22361. [Google Scholar]
- Houghton, P.J.; Rena, Y.; Howes, M. Acetylcholinesterase inhibitors from plants and fungi. Nat. Prod. Rep. 2006, 23, 181–199. [Google Scholar] [CrossRef]
- Trivedi, A.; Nayak, N.; Kumar, J. Recent advances and review on use of botanicals from medicinal and aromatic plants in stored grain pest management. J. Entomol. Zool. Stud. 2018, 6, 295–300. [Google Scholar]
- Askar, S.I.; Al-Assaal, M.S.; Nassar, A.M.K. Efficiency of some essential oils and insecticides in the control of some Sitophilus insects (Coleoptera: Curculionidae). Egypt J. Plant Prot. Res. 2016, 4, 39–55. [Google Scholar]
- Rugumamu, C.P. A technique for assessment of intrinsic resistance of maize varieties for the control of Sitophilus zeamais (Coleoptera: Curculionidae). Tanz. J. Nat. Appl. Sci. 2012, 3, 481–488. [Google Scholar]
- Suleiman, M.; Rugumamu, C.P.; Ibrahim, N.D. Insecticidal toxicity of some botanicals against Sitophilus zeamais Motsch. (Coleoptera: Curculionidae) in stored sorghum grains in Nigeria. J. Entomol. Zool. Stud. 2018, 6, 1280–1287. [Google Scholar]
- Rajashekar, Y.; Raghavendra, A.; Bakthavatsalam, N. Acetylcholinesterase inhibition by biofumigant (Coumaran) from leaves of Lantana camara in stored grain and household insect pests. Biomed. Res. Inter. 2014, 2014, 187019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rattan, R.S. Mechanism of action of insecticidal secondary metabolites of plants origin. Crop Prot. 2010, 29, 913–920. [Google Scholar] [CrossRef]
- Bell, A.E.; Fellows, L.E.; Patil, B.D. Evaluation of some plants extracts as protectants against the pulse beetle (Callosobruchus maculatus) (F) infesting cowpea seeds. J. Entomol. Res. 1990, 2, 183–187. [Google Scholar]
Medicinal Plant | Biocompounds | Preparation Plant | Ref. |
---|---|---|---|
Annona muricata | Alkaloids, flavonoids, tannins, and saponins | Methanol extract | [131] |
Acanthus montanus | Alkaloids, saponin, tannin and flavonoid | Plant powder | [132] |
Zingiber officinale | N/A | Plant powder | [133] |
Piper corcovadensis | Phenylpropanoid, monoterpenes α-pinene, and terpinolene | Leaf essential oil | [134] |
Alchornea cordifolia | N/A | Plant powder | [135] |
Lantana camara | Phytol, Pyrroline, Paromomycin, Pyrrolizin, and 1-Eicosano | Plant powder and essential oil | [136] |
Lamium purpureum | Alkaloids, terpenoids, flavonoids, tannins, saponnins, phytosteroids, and phenolic compounds | Plant powder | [137] |
Cupressus macrocarpa | N/A | Plant powder | [138] |
Moringa oleifera | Alkaloids, saponins, tannins and phenolic, steroids, flavonoids, anthraquinones, phlobatannins, cardiac glycosides, and terpenoids | Plant powder | [139] |
Eucalyptus camaldulensis | N/A | Plant powder | [140] |
Tithonia diversifolia | Tannin, flavonoid, saponin, phenol, terpenoid, glucosides, and alkaloid | N-hexane extracts | [141] |
Eucalyptus citriodora | Saponins, tannins, flavonoids, phenols, quinones, and alkaloids | Essential oil | [142] |
Foeniculum vulgare | Anethole, fenchone, d-limonene, alpha-pinene, and p-cymene | Essential oil | [143] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phokwe, O.J.; Manganyi, M.C. Medicinal Plants as a Natural Greener Biocontrol Approach to “The Grain Destructor” Maize Weevil (Sitophilus zeamais) Motschulsky. Plants 2023, 12, 2505. https://doi.org/10.3390/plants12132505
Phokwe OJ, Manganyi MC. Medicinal Plants as a Natural Greener Biocontrol Approach to “The Grain Destructor” Maize Weevil (Sitophilus zeamais) Motschulsky. Plants. 2023; 12(13):2505. https://doi.org/10.3390/plants12132505
Chicago/Turabian StylePhokwe, Ompelege Jacqueline, and Madira Coutlyne Manganyi. 2023. "Medicinal Plants as a Natural Greener Biocontrol Approach to “The Grain Destructor” Maize Weevil (Sitophilus zeamais) Motschulsky" Plants 12, no. 13: 2505. https://doi.org/10.3390/plants12132505
APA StylePhokwe, O. J., & Manganyi, M. C. (2023). Medicinal Plants as a Natural Greener Biocontrol Approach to “The Grain Destructor” Maize Weevil (Sitophilus zeamais) Motschulsky. Plants, 12(13), 2505. https://doi.org/10.3390/plants12132505