Effect of Light of Different Spectral Compositions on Pro/Antioxidant Status, Content of Some Pigments and Secondary Metabolites and Expression of Related Genes in Scots Pine
Abstract
:1. Introduction
2. Results
2.1. The Content of Hydrogen Peroxide and Products of Lipid Peroxidation
2.2. Activity of Antioxidant Enzymes
2.3. The Content of Glutathione and Ascorbic Acid
2.4. TEAC and Content of Total Phenolics, Flavonoids (Catechins, Proanthocyanidins, Anthocyanins), and Lignin
2.5. Content of Carotenoids
2.6. Gene Expression
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Experimental Design
4.2. Determination of H2O2
4.3. Lipid Peroxidation
4.4. Enzyme Activities
4.5. Ascorbic Acids
4.6. Glutathione Content
4.7. Anthocyanin Extraction and Measurement
4.8. HPLC Analysis of Carotenoids
4.9. Phenolic Compound Contents
4.10. Cell-Wall Preparation and Lignin Quantification
4.11. RNA Extraction and RT-PCR
4.12. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Riikonen, J. Applications of Different Light Spectra in Growing Forest Tree Seedlings. Forests 2021, 12, 1194. [Google Scholar] [CrossRef]
- Bian, Z.; Cheng, R.; Wang, Y.; Yang, Q.; Lu, C. Effect of Green Light on Nitrate Reduction and Edible Quality of Hydroponically Grown Lettuce (Lactuca sativa L.) under Short-Term Continuous Light from Red and Blue Light-Emitting Diodes. Environ. Exp. Bot. 2018, 153, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Pashkovskiy, P.; Vereshchagin, M.; Kreslavski, V.; Ivanov, Y.; Kumachova, T.; Ryabchenko, A.; Voronkov, A.; Kosobryukhov, A.; Kuznetsov, V.; Allakhverdiev, S.I. Effect of Phytochrome Deficiency on Photosynthesis, Light-Related Genes Expression and Flavonoid Accumulation in Solanum Lycopersicum under Red and Blue Light. Cells 2022, 11, 3437. [Google Scholar] [CrossRef]
- Haliapas, S.; Yupsanis, T.A.; Syros, T.D.; Kofidis, G.; Economou, A.S. Petunia\times Hybrida during Transition to Flowering as Affected by Light Intensity and Quality Treatments. Acta Physiol. Plant. 2008, 30, 807–815. [Google Scholar] [CrossRef]
- Fan, X.-X.; Xu, Z.-G.; Liu, X.-Y.; Tang, C.-M.; Wang, L.-W.; Han, X. Effects of Light Intensity on the Growth and Leaf Development of Young Tomato Plants Grown under a Combination of Red and Blue Light. Sci. Hortic. 2013, 153, 50–55. [Google Scholar] [CrossRef]
- Pashkovskiy, P.; Ivanov, Y.; Ivanova, A.; Kreslavski, V.D.; Vereshchagin, M.; Tatarkina, P.; Kuznetsov, V.V.; Allakhverdiev, S.I. Influence of Light of Different Spectral Compositions on Growth Parameters, Photosynthetic Pigment Contents and Gene Expression in Scots Pine Plantlets. Int. J. Mol. Sci. 2023, 24, 2063. [Google Scholar] [CrossRef]
- Ahmad, P. Water Stress and Crop Plants: A Sustainable Approach; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Naznin, M.T.; Lefsrud, M.; Gravel, V.; Azad, M.O.K. Blue Light Added with Red LEDs Enhance Growth Characteristics, Pigments Content, and Antioxidant Capacity in Lettuce, Spinach, Kale, Basil, and Sweet Pepper in a Controlled Environment. Plants 2019, 8, 93. [Google Scholar] [CrossRef] [Green Version]
- Contreras, D.L.; Duijnstee, I.A.P.; Ranks, S.; Marshall, C.R.; Looy, C.V. Evolution of Dispersal Strategies in Conifers: Functional Divergence and Convergence in the Morphology of Diaspores. Perspect. Plant Ecol. Evol. Syst. 2017, 24, 93–117. [Google Scholar] [CrossRef] [Green Version]
- Fernbach, E.; Mohr, H. Coaction of Blue/Ultraviolet-A Light and Light Absorbed by Phytochrome in Controlling Growth of Pine (Pinus sylestris L.) Seedlings. Planta 1990, 180, 212–216. [Google Scholar] [CrossRef]
- Zotikova, A.P.; Zaitseva, T.A. Effect of White and Red Light on the Pigment Content and Functional Activity in Pine Chloroplasts. Russ. J. Plant Physiol. 2000, 47, 748–753. [Google Scholar] [CrossRef]
- Riikonen, J.; Kettunen, N.; Gritsevich, M.; Hakala, T.; Särkkä, L.; Tahvonen, R. Growth and Development of Norway Spruce and Scots Pine Seedlings under Different Light Spectra. Environ. Exp. Bot. 2016, 121, 112–120. [Google Scholar] [CrossRef]
- Alakärppä, E.; Taulavuori, E.; Valledor, L.; Marttila, T.; Jokipii-Lukkari, S.; Karppinen, K.; Nguyen, N.; Taulavuori, K.; Häggman, H. Early Growth of Scots Pine Seedlings Is Affected by Seed Origin and Light Quality. J. Plant Physiol. 2019, 237, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Johansen, N.S.; Vänninen, I.; Pinto, D.M.; Nissinen, A.I.; Shipp, L. In the Light of New Greenhouse Technologies: 2. Direct Effects of Artificial Lighting on Arthropods and Integrated Pest Management in Greenhouse Crops. Ann. Appl. Biol. 2011, 159, 1–27. [Google Scholar] [CrossRef]
- Vänninen, I.; Pinto, D.M.; Nissinen, A.I.; Johansen, N.S.; Shipp, L. In the Light of New Greenhouse Technologies: 1. Plant-Mediated Effects of Artificial Lighting on Arthropods and Tritrophic Interactions. Ann. Appl. Biol. 2010, 157, 393–414. [Google Scholar] [CrossRef]
- Rahman, I.; Kode, A.; Biswas, S.K. Assay for Quantitative Determination of Glutathione and Glutathione Disulfide Levels Using Enzymatic Recycling Method. Nat. Protoc. 2006, 1, 3159–3165. [Google Scholar] [CrossRef]
- Pashkovskiy, P.; Kreslavski, V.D.; Ivanov, Y.; Ivanova, A.; Kartashov, A.; Shmarev, A.; Strokina, V.; Kuznetsov, V.V.; Allakhverdiev, S.I. Influence of Light of Different Spectral Compositions on the Growth, Photosynthesis, and Expression of Light-Dependent Genes of Scots Pine Seedlings. Cells 2021, 10, 3284. [Google Scholar] [CrossRef]
- Jain, C.; Khatana, S.; Vijayvergia, R. Bioactivity of Secondary Metabolites of Various Plants: A Review. Int. J. Pharm. Sci. Res. 2019, 10, 494–504. [Google Scholar]
- Agati, G.; Brunetti, C.; Di Ferdinando, M.; Ferrini, F.; Pollastri, S.; Tattini, M. Functional Roles of Flavonoids in Photoprotection: New Evidence, Lessons from the Past. Plant Physiol. Biochem. 2013, 72, 35–45. [Google Scholar] [CrossRef]
- Yang, M.-J.; Hung, Y.-A.; Wong, T.-W.; Lee, N.-Y.; Yuann, J.-M.P.; Huang, S.-T.; Wu, C.-Y.; Chen, I.-Z.; Liang, J.-Y. Effects of Blue-Light-Induced Free Radical Formation from Catechin Hydrate on the Inactivation of Acinetobacter Baumannii, Including a Carbapenem-Resistant Strain. Molecules 2018, 23, 1631. [Google Scholar] [CrossRef] [Green Version]
- Tao, R.; Bai, S.; Ni, J.; Yang, Q.; Zhao, Y.; Teng, Y. The Blue Light Signal Transduction Pathway Is Involved in Anthocyanin Accumulation in ‘Red Zaosu’Pear. Planta 2018, 248, 37–48. [Google Scholar] [CrossRef]
- Sng, B.J.R.; Mun, B.; Mohanty, B.; Kim, M.; Phua, Z.W.; Yang, H.; Lee, D.-Y.; Jang, I.-C. Combination of Red and Blue Light Induces Anthocyanin and Other Secondary Metabolite Biosynthesis Pathways in an Age-Dependent Manner in Batavia Lettuce. Plant Sci. 2021, 310, 110977. [Google Scholar] [CrossRef] [PubMed]
- Sarala, M.; Taulavuori, E.; Karhu, J.; Laine, K.; Taulavuori, K. Growth and Pigmentation of Various Species under Blue Light Depletion. Boreal Environ. Res. 2011, 16, 381–394. [Google Scholar]
- Wang, Q.; Gong, X.; Xie, Z.; Qi, K.; Yuan, K.; Jiao, Y.; Pan, Q.; Zhang, S.; Shiratake, K.; Tao, S. Cryptochrome-Mediated Blue-Light Signal Contributes to Lignin Biosynthesis in Stone Cells in Pear Fruit. Plant Sci. 2022, 318, 111211. [Google Scholar] [CrossRef]
- Li, C.; Luo, Y.; Jin, M.; Sun, S.; Wang, Z.; Li, Y. Response of Lignin Metabolism to Light Quality in Wheat Population. Front. Plant Sci. 2021, 12, 729647. [Google Scholar] [CrossRef]
- Anderson, N.A.; Tobimatsu, Y.; Ciesielski, P.N.; Ximenes, E.; Ralph, J.; Donohoe, B.S.; Ladisch, M.; Chapple, C. Manipulation of Guaiacyl and Syringyl Monomer Biosynthesis in an Arabidopsis Cinnamyl Alcohol Dehydrogenase Mutant Results in Atypical Lignin Biosynthesis and Modified Cell Wall Structure. Plant Cell 2015, 27, 2195–2209. [Google Scholar] [CrossRef]
- Novaes, E.; Kirst, M.; Chiang, V.; Winter-Sederoff, H.; Sederoff, R. Lignin and Biomass: A Negative Correlation for Wood Formation and Lignin Content in Trees. Plant Physiol. 2010, 154, 555–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karpinski, S.; Gabrys, H.; Mateo, A.; Karpinska, B.; Mullineaux, P.M. Light Perception in Plant Disease Defence Signalling. Curr. Opin. Plant Biol. 2003, 6, 390–396. [Google Scholar] [CrossRef]
- Robson, F.; Okamoto, H.; Patrick, E.; Harris, S.-R.; Wasternack, C.; Brearley, C.; Turner, J.G. Jasmonate and Phytochrome A Signaling in Arabidopsis Wound and Shade Responses Are Integrated through JAZ1 Stability. Plant Cell 2010, 22, 1143–1160. [Google Scholar] [CrossRef] [Green Version]
- Focsan, A.L.; Polyakov, N.E.; Kispert, L.D. Photo Protection of Haematococcus Pluvialis Algae by Astaxanthin: Unique Properties of Astaxanthin Deduced by EPR, Optical and Electrochemical Studies. Antioxidants 2017, 6, 80. [Google Scholar] [CrossRef] [Green Version]
- Molnár, P.; Szabolcs, J. (Z/E)-Photoisomerization of C 40-Carotenoids by Iodine. J. Chem.Soc. Perkin Trans. 1993, 2, 261–266. [Google Scholar] [CrossRef]
- Avenson, T.J.; Ahn, T.K.; Zigmantas, D.; Niyogi, K.K.; Li, Z.; Ballottari, M.; Bassi, R.; Fleming, G.R. Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna. J. Biol. Chem. 2008, 283, 3550–3558. [Google Scholar] [CrossRef] [Green Version]
- Latowski, D.; Kuczyńska, P.; Strza\lka, K. Xanthophyll Cycle–a Mechanism Protecting Plants against Oxidative Stress. Redox Rep. 2011, 16, 78–90. [Google Scholar] [CrossRef]
- van Loon, L.C.; Rep, M.; Pieterse, C.M. Significance of Inducible Defense-Related Proteins in Infected Plants. Annu. Rev. Phytopathol. 2006, 44, 135–162. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Mao, R.; Chen, J.; Guo, Z. Regulation Mechanism of MYC Family Transcription Factors in Jasmonic Acid Signalling Pathway on Taxol Biosynthesis. Int. J. Mol. Sci. 2019, 20, 1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanov, Y.V.; Kartashov, A.V.; Ivanova, A.I.; Savochkin, Y.V.; Kuznetsov, V.V. Effects of Zinc on Scots Pine (Pinus Sylvestris L.) Seedlings Grown in Hydroculture. Plant Physiol. Biochem. 2016, 102, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kreslavski, V.D.; Lyubimov, V.Y.; Shirshikova, G.N.; Shmarev, A.N.; Kosobryukhov, A.A.; Schmitt, F.-J.; Friedrich, T.; Allakhverdiev, S.I. Preillumination of Lettuce Seedlings with Red Light Enhances the Resistance of Photosynthetic Apparatus to UV-A. J. Photochem. Photobiol. B Biol. 2013, 122, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, Y.V.; Kartashov, A.V.; Ivanova, A.I.; Savochkin, Y.V.; Kuznetsov, V.V. Effects of Copper Deficiency and Copper Toxicity on Organogenesis and Some Physiological and Biochemical Responses of Scots Pine (Pinus Sylvestris L.) Seedlings Grown in Hydroculture. Environ. Sci. Pollut. Res. 2016, 23, 17332–17344. [Google Scholar] [CrossRef]
- Chance, B.; Maehly, A.E. Methods in Enzymol. In SP Colowick and NO Kaplan; Academic Press, Inc.: New York, NY, USA, 1957; Volume 4, p. 273. [Google Scholar]
- Ridge, I.; Osborne, D.J. Role of Peroxidase When Hydroxyproline-Rich Protein in Plant Cell Walls Is Increased by Ethylene. Nat. New Biol. 1971, 229, 205–208. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Hydrogen Peroxide Is Scavenged by Ascorbate-Specific Peroxidase in Spinach Chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
- Ivanov, Y.V.; Ivanova, A.I.; Kartashov, A.V.; Kuznetsov, V.V. Phytotoxicity of Short-Term Exposure to Excess Zinc or Copper in Scots Pine Seedlings in Relation to Growth, Water Status, Nutrient Balance, and Antioxidative Activity. Environ. Sci. Pollut. Res. 2021, 28, 14828–14843. [Google Scholar] [CrossRef]
- Fankhauser, C.; Casal, J.J. Phenotypic Characterization of a Photomorphogenic Mutant. Plant J. 2004, 39, 747–760. [Google Scholar] [CrossRef] [PubMed]
- Makhneva, Z.; Bolshakov, M.; Moskalenko, A. Heterogeneity of Carotenoid Content and Composition in LH2 of the Purple Sulphur Bacterium Allochromatium Minutissimum Grown under Carotenoid-Biosynthesis Inhibition. Photosynth. Res. 2008, 98, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Ashikhmin, A.; Makhneva, Z.; Bolshakov, M.; Moskalenko, A. Incorporation of Spheroidene and Spheroidenone into Light-Harvesting Complexes from Purple Sulfur Bacteria. J. Photochem. Photobiol. B Biol. 2017, 170, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Britton, G. Carotenoids. 1, B. Spectroscopy; Birkhäuser: Basel, Switzerland, 1995. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Kim, D.-O.; Chun, O.K.; Kim, Y.J.; Moon, H.-Y.; Lee, C.Y. Quantification of Polyphenolics and Their Antioxidant Capacity in Fresh Plums. J. Agric. Food Chem. 2003, 51, 6509–6515. [Google Scholar] [CrossRef]
- Sun, B.; Ricardo-da-Silva, J.M.; Spranger, I. Critical Factors of Vanillin Assay for Catechins and Proanthocyanidins. J. Agric. Food Chem. 1998, 46, 4267–4274. [Google Scholar] [CrossRef]
- Ivanov, Y.V.; Ivanova, A.I.; Kartashov, A.V.; Zlobin, I.E.; Kuznetsov, V.V. The Actual Lead Toxicity for Scots Pine Seedlings in Hydroculture. Russ. J. Plant Physiol. 2021, 68, S103–S115. [Google Scholar] [CrossRef]
- Varela, M.C.; Arslan, I.; Reginato, M.A.; Cenzano, A.M.; Luna, M.V. Phenolic Compounds as Indicators of Drought Resistance in Shrubs from Patagonian Shrublands (Argentina). Plant Physiol. Biochem. 2016, 104, 81–91. [Google Scholar] [CrossRef]
- Lange, B.M.; Lapierre, C.; Sandermann, H., Jr. Elicitor-Induced Spruce Stress Lignin (Structural Similarity to Early Developmental Lignins). Plant Physiol. 1995, 108, 1277–1287. [Google Scholar] [CrossRef] [Green Version]
- Kolosova, N.; Miller, B.; Ralph, S.; Ellis, B.E.; Douglas, C.; Ritland, K.; Bohlmann, J. Isolation of High-Quality RNA from Gymnosperm and Angiosperm Trees. BioTechniques 2004, 36, 821–824. [Google Scholar] [CrossRef] [PubMed]
- Pashkovskiy, P.P.; Vankova, R.; Zlobin, I.E.; Dobrev, P.; Ivanov, Y.V.; Kartashov, A.V.; Kuznetsov, V.V. Comparative Analysis of Abscisic Acid Levels and Expression of Abscisic Acid-Related Genes in Scots Pine and Norway Spruce Seedlings under Water Deficit. Plant Physiol. Biochem. 2019, 140, 105–112. [Google Scholar] [CrossRef] [PubMed]
White Fluorescent Light (WFL) | White Light (WL) | Blue Light (BL) | Red Light (RL) | |
---|---|---|---|---|
roots | ||||
H2O2, µmol g−1 FW | 0.139 ± 0.009 a | 0.218 ± 0.062 a | 0.056 ± 0.014 b,× | 0.117 ± 0.006 a |
MDA, nmol g−1 FW | 8.42 ± 0.61 a | 7.40 ± 0.56 a | 8.72 ± 0.30 a | 9.08 ± 1.00 a |
4-HNE, nmol g−1 FW | 27.92 ± 3.60 a | 24.38 ± 1.11 a | 25.57 ± 3.10 a | 30.68 ± 2.91 a |
needles | ||||
H2O2, µmol g−1 FW | 0.054 ± 0.004 c | 0.125 ± 0.006 b,* | 0.142 ± 0.008 b,* | 0.207 ± 0.009 a,× |
MDA, nmol g−1 FW | 11.35 ± 0.47 b | 13.43 ± 0.48 a,* | 11.23 ± 0.60 b | 10.15 ± 0.55 b |
4-HNE, nmol g−1 FW | 159.4 ± 17.0 b | 169.4 ± 9.3 b | 109.6 ± 7.3 c,* | 246.3 ± 12.8 a,* |
White Fluorescent Light (WFL) | White Light (WL) | Blue Light (BL) | Red Light (RL) | |
---|---|---|---|---|
Roots | ||||
POD, µmol guaiacol min−1 mg−1 protein | 78.72 ± 8.40 a | 74.47 ± 7.79 a | 55.43 ± 7.93 a,* | 72.91 ± 10.06 a |
SOD, relative units mg−1 protein | 103.8 ± 10.0 b | 135.8 ± 13.4 a,× | 103.6 ± 10.8 b | 73.76 ± 5.66 c,* |
APX, µmol ascorbic acid min−1 mg−1 protein | 139.6 ± 13.5 a | 161.6 ± 12.4 a | 138.1 ± 11.9 a | 143.1 ± 15.8 a |
CAT, mmol H2O2 min−1 mg−1 protein | 7.11 ± 0.69 a | 8.63 ± 0.61 a | 6.90 ± 0.64 a | 7.29 ± 0.81 a |
Needles | ||||
POD, µmol guaiacol min−1 mg−1 protein | 17.82 ± 1.07 a | 18.19 ± 1.10 a | 10.55 ± 0.78 b,* | 15.68 ± 1.82 a |
SOD, relative units mg−1 protein | 101.4 ± 2.3 a | 96.25 ± 2.05 ab | 86.94 ± 2.49 b,* | 92.65 ± 1.25 b,× |
APX, µmol ascorbic acid min−1 mg−1 protein | 63.50 ± 5.04 a | 64.21 ± 2.98 a | 50.22 ± 3.69 a,* | 56.36 ± 4.41 a |
CAT, mmol H2O2 min−1 mg−1 protein | 12.91 ± 1.14 a | 15.53 ± 1.52 a | 12.28 ± 0.97 a | 13.23 ± 1.55 a |
White Fluorescent Light (WFL) | White Light (WL) | Blue Light (BL) | Red Light (RL) | |
---|---|---|---|---|
Roots | ||||
GSH total, nmol g−1 FW | 1.57 ± 0.34 b | 2.25 ± 0.40 ab | 3.03 ± 0.27 a,* | 0.87 ± 0.31 b |
GSSG, nmol g−1 FW | 1.33 ± 0.16 a | 1.36 ± 0.35 a | 1.64 ± 0.31 a | 1.61 ± 0.20 a |
Needles | ||||
Ascorbic acid, µmol g−1 FW | 2.11 ± 0.21 a | 2.19 ± 0.17 a | 2.87 ± 0.22 a | 2.34 ± 0.23 a |
GSH total, nmol g−1 FW | 407.1 ± 17.7 b | 395.7 ± 27.3 b | 515.1 ± 15.9 a,* | 368.8 ± 30.8 b |
GSH, nmol g−1 FW | 400.0 ± 18.0 b | 388.6 ± 26.6 b | 501.3 ± 18.2 a,* | 363.6 ± 30.8 b |
GSSG, nmol g−1 FW | 3.55 ± 0.37 b | 3.59 ± 1.12 b | 6.91 ± 1.36 a,* | 2.58 ± 0.31 b |
White Fluorescent Light (WFL) | White Light (WL) | Blue Light (BL) | Red Light (RL) | |
---|---|---|---|---|
Roots | ||||
TEAC, µmol Trolox g−1 FW | 43.87 ± 1.64 a | 43.30 ± 1.36 a | 47.87 ± 2.09 a | 44.43 ± 1.60 a |
GAE, mg g−1 FW | 3.05 ± 0.11 ab | 2.80 ± 0.08 b | 3.33 ± 0.14 a | 3.22 ± 0.12 a |
Flavonoids, mg catechin g−1 FW | 2.91 ± 0.11 ab | 2.64 ± 0.07 b | 3.20 ± 0.14 a | 3.01 ± 0.09 a |
Catechins + proanthocyanidins, mg catechin g−1 FW | 2.96 ± 0.15 b | 2.87 ± 0.09 b | 3.68 ± 0.23 a,* | 3.42 ± 0.18 ab |
Proanthocyanidins, mg cyanidin g−1 FW | 1.26 ± 0.06 ab | 1.16 ± 0.03 b | 1.39 ± 0.06 a | 1.34 ± 0.06 a |
Lignin, mg g−1 DW | 83.66 ± 3.59 a | 83.78 ± 2.42 a | 67.38 ± 2.88 b,* | 80.44 ± 3.43 a |
Hypocotyls | ||||
TEAC, µmol Trolox g−1 FW | 87.57 ± 2.27 a | 70.32 ± 2.17 b,* | 65.83 ± 2.15 b,* | 73.13 ± 4.18 b,* |
GAE, mg g−1 FW | 4.44 ± 0.13 a | 3.70 ± 0.14 b,* | 3.45 ± 0.11 bc,* | 3.25 ± 0.18 c,* |
Flavonoids, mg catechin g−1 FW | 3.49 ± 0.10 a | 2.77 ± 0.10 b,* | 2.59 ± 0.09 b,* | 2.45 ± 0.16 b,* |
Catechins + proanthocyanidins, mg catechin g−1 FW | 5.34 ± 0.26 a | 4.69 ± 0.18 ab | 4.31 ± 0.24 b,* | 3.54 ± 0.27 c,* |
Proanthocyanidins, mg cyanidin g−1 FW | 2.07 ± 0.07 a | 1.74 ± 0.07 b,* | 1.67 ± 0.06 b,* | 1.53 ± 0.09 b,* |
Lignin, mg g−1 DW | 138.6 ± 2.2 b | 154.3 ± 3.0 a,* | 132.1 ± 2.5 c | 144.5 ± 4.3 b |
Needles | ||||
TEAC, µmol Trolox g−1 FW | 49.28 ± 2.65 a | 35.93 ± 1.44 b,* | 36.50 ± 1.85 b,* | 39.50 ± 2.26 b,* |
GAE, mg g−1 FW | 2.16 ± 0.10 a | 1.46 ± 0.13 b,* | 1.62 ± 0.08 b,* | 1.58 ± 0.12 b,* |
Flavonoids, mg catechin g−1 FW | 0.75 ± 0.04 a | 0.53 ± 0.03 bc,* | 0.48 ± 0.03 c,* | 0.60 ± 0.03 b,* |
Catechins + proanthocyanidins, mg catechin g−1 FW | 1.67 ± 0.12 a | 1.18 ± 0.10 bc,* | 0.92 ± 0.11 c,* | 1.30 ± 0.13 b |
Proanthocyanidins, mg cyanidin g−1 FW | 0.65 ± 0.04 a | 0.46 ± 0.03 bc,* | 0.37 ± 0.03 c,* | 0.51 ± 0.05 b |
Anthocyanins, relative level mg−1 FW | 0.156 ± 0.012 a | 0.127 ± 0.014 a | 0.122 ± 0.008 a,* | 0.167 ± 0.020 a |
Lignin, mg g−1 DW | 29.88 ± 1.07 ab | 31.11 ± 1.11 ab | 27.74 ± 1.03 b | 32.79 ± 1.43 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pashkovskiy, P.; Ivanov, Y.; Ivanova, A.; Kartashov, A.; Zlobin, I.; Lyubimov, V.; Ashikhmin, A.; Bolshakov, M.; Kreslavski, V.; Kuznetsov, V.; et al. Effect of Light of Different Spectral Compositions on Pro/Antioxidant Status, Content of Some Pigments and Secondary Metabolites and Expression of Related Genes in Scots Pine. Plants 2023, 12, 2552. https://doi.org/10.3390/plants12132552
Pashkovskiy P, Ivanov Y, Ivanova A, Kartashov A, Zlobin I, Lyubimov V, Ashikhmin A, Bolshakov M, Kreslavski V, Kuznetsov V, et al. Effect of Light of Different Spectral Compositions on Pro/Antioxidant Status, Content of Some Pigments and Secondary Metabolites and Expression of Related Genes in Scots Pine. Plants. 2023; 12(13):2552. https://doi.org/10.3390/plants12132552
Chicago/Turabian StylePashkovskiy, Pavel, Yury Ivanov, Alexandra Ivanova, Alexander Kartashov, Ilya Zlobin, Valery Lyubimov, Aleksandr Ashikhmin, Maksim Bolshakov, Vladimir Kreslavski, Vladimir Kuznetsov, and et al. 2023. "Effect of Light of Different Spectral Compositions on Pro/Antioxidant Status, Content of Some Pigments and Secondary Metabolites and Expression of Related Genes in Scots Pine" Plants 12, no. 13: 2552. https://doi.org/10.3390/plants12132552
APA StylePashkovskiy, P., Ivanov, Y., Ivanova, A., Kartashov, A., Zlobin, I., Lyubimov, V., Ashikhmin, A., Bolshakov, M., Kreslavski, V., Kuznetsov, V., & Allakhverdiev, S. I. (2023). Effect of Light of Different Spectral Compositions on Pro/Antioxidant Status, Content of Some Pigments and Secondary Metabolites and Expression of Related Genes in Scots Pine. Plants, 12(13), 2552. https://doi.org/10.3390/plants12132552