Photosynthesis under Environmental Fluctuations: A Challenge for Plants, a Challenge for Researchers
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bag, P. Light harvesting in fluctuating environments: Evolution and function of antenna proteins across photosynthetic lineage. Plants 2021, 10, 1184. [Google Scholar] [CrossRef] [PubMed]
- Ort, D.; Merchant, S.S.; Alric, J.; Barkan, A.; Blankenship, R.E.; Bock, R.; Croce, R.; Hanson, M.R.; Hibberd, J.M.; Long, S.P.; et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl. Acad. Sci. USA 2015, 112, 8529–8536. [Google Scholar] [CrossRef]
- Colpo, A.; Demaria, S.; Baldisserotto, C.; Pancaldi, S.; Brestič, M.; Živčak, M.; Ferroni, L. Long-term alleviation of the functional phenotype in chlorophyll-deficient wheat and impact on productivity: A semi-field phenotyping experiment. Plants 2023, 12, 822. [Google Scholar] [CrossRef] [PubMed]
- Slattery, R.A.; Walker, B.J.; Weber, A.P.M.; Ort, D.R. The impacts of fluctuating light on crop performance. Plant Physiol. 2018, 176, 990–1003. [Google Scholar] [CrossRef] [PubMed]
- Cinq-Mars, M.; Samson, G. Down-regulation of photosynthetic electron transport and decline in CO2 assimilation under low frequencies of pulsed lights. Plants 2021, 10, 2033. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-T.; Gao, H.-Y.; Zhang, Z.-S. Effects of environmental and non-environmental factors on dynamic photosynthetic carbon assimilation in leaves under changing light. Plants 2023, 12, 2015. [Google Scholar] [CrossRef]
- Wang, X.-Q.; Zeng, Z.-L.; Shi, Z.-M.; Wang, J.-H.; Huang, W. Variation in photosynthetic efficiency under fluctuating light between rose cultivars and its potential for improving dynamic photosynthesis. Plants 2023, 12, 1186. [Google Scholar] [CrossRef]
- Sun, H.; Shi, Q.; Zhang, S.-B.; Huang, W. Coordination of cyclic electron flow and water–water cycle facilitates photoprotection under fluctuating light and temperature stress in the epiphytic orchid Dendrobium officinale. Plants 2021, 10, 606. [Google Scholar] [CrossRef]
- Filaček, A.; Živčák, M.; Ferroni, L.; Barboričová, M.; Gašparovič, K.; Yang, X.; Landi, M.; Brestič, M. Pre-acclimation to elevated temperature stabilizes the activity of Photosystem I in wheat plants exposed to an episode of severe heat stress. Plants 2022, 11, 616. [Google Scholar] [CrossRef] [PubMed]
- Brestič, M.; Živčák, M.; Kunderlikova, K.; Allakhverdiev, S.I. High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines. Photosynth. Res. 2016, 130, 251–266. [Google Scholar] [CrossRef] [PubMed]
- Kreslavski, V.D.; Khudyakova, A.Y.; Kosobryukhov, A.A.; Balakhnina, T.I.; Shirshikova, G.N.; Alharby, H.F.; Allakhverdiev, S.I. The effect of short-term heating on photosynthetic activity, pigment content, and pro-/antioxidant balance of A. thaliana phytochrome mutants. Plants 2023, 12, 867. [Google Scholar] [CrossRef] [PubMed]
- Pashkovskiy, P.; Ivanov, Y.; Ivanova, A.; Kartashov, A.; Zlobin, I.; Lyubimov, V.; Ashikhmin, A.; Bolshakov, M.; Kreslavski, V.; Kuznetsov, V.; et al. Effect of light of different spectral compositions on pro/antioxidant status, content of some pigments and secondary metabolites and expression of related genes in scots pine. Plants 2023, 12, 2552. [Google Scholar] [CrossRef] [PubMed]
- López-Pozo, M.; Adams, W.W., III; Polutchko, S.K.; Demmig-Adams, B. Terrestrial and floating aquatic plants differ in acclimation to light environment. Plants 2023, 12, 1928. [Google Scholar] [CrossRef] [PubMed]
- Bunce, J. Leaf gas exchange and Photosystem II fluorescence responses to CO2 cycling. Plants 2023, 12, 1620. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-C.; Li, M.-S.; Chen, K.-T.; Lin, Y.-H.; Ko, S.-S. Photosynthetic and morphological responses of sacha inchi (Plukenetia volubilis L.) to waterlogging stress. Plants 2022, 11, 249. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferroni, L.; Živčak, M. Photosynthesis under Environmental Fluctuations: A Challenge for Plants, a Challenge for Researchers. Plants 2023, 12, 4146. https://doi.org/10.3390/plants12244146
Ferroni L, Živčak M. Photosynthesis under Environmental Fluctuations: A Challenge for Plants, a Challenge for Researchers. Plants. 2023; 12(24):4146. https://doi.org/10.3390/plants12244146
Chicago/Turabian StyleFerroni, Lorenzo, and Marek Živčak. 2023. "Photosynthesis under Environmental Fluctuations: A Challenge for Plants, a Challenge for Researchers" Plants 12, no. 24: 4146. https://doi.org/10.3390/plants12244146
APA StyleFerroni, L., & Živčak, M. (2023). Photosynthesis under Environmental Fluctuations: A Challenge for Plants, a Challenge for Researchers. Plants, 12(24), 4146. https://doi.org/10.3390/plants12244146