Monitoring Energy Balance, Turbulent Flux Partitioning, Evapotranspiration and Biophysical Parameters of Nopalea cochenillifera (Cactaceae) in the Brazilian Semi-Arid Environment
Abstract
:1. Introduction
2. Results
2.1. Surface Energy Balance
2.2. NDVI Signatures, Environmental Data and the Impact of Drought
2.3. Growth Parameters, Phenological Characteristics, and Cutting Time
2.4. Water Relations, Bowen Ratio, Biophysical Efficiency and Yield
2.5. Interrelationships between Environmental Variables and Plant Responses
3. Discussion
3.1. Mean Daytime Patterns, Seasonal Variations in the Energy Fluxes and Evapotranspiration
3.2. Variations in the NDVI, Seasonal Environmental Changes and Soil Moisture
3.3. Allometry, Phenological Phase, and Cutting Time
3.4. Water Relations and Biophysical Parameters of Cladodes
3.5. Principal Component Analysis (PCA)
4. Materials and Methods
4.1. Location and Information of the Experimental Area
4.2. Measuring the Meteorological Variables
4.3. Surface Energy Balance Method
Data Selection Criteria for the Energy Balance Method
4.4. Resource Use Efficiency
4.4.1. Water Efficiency
4.4.2. Radiation Use Efficiency
4.4.3. Nutrient Use Efficiency
4.5. Analysing Growth, Phenology, Cutting Time and Yield
4.6. Measuring the Plant Water Status
4.7. Indicators of Water and Environmental Stress
4.8. Soil Moisture
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jardim, A.M.d.R.F.; Santos, H.R.B.; Alves, H.K.M.N.; Ferreira-Silva, S.L.; de Souza, L.S.B.; Araújo Júnior, G.d.N.; Souza, M.d.S.; de Araújo, G.G.L.; de Souza, C.A.A.; da Silva, T.G.F. Genotypic differences relative photochemical activity, inorganic and organic solutes and yield performance in clones of the forage cactus under semi-arid environment. Plant Physiol. Biochem. 2021, 162, 421–430. [Google Scholar] [CrossRef]
- Kumar, S.; Palsaniya, D.R.; Kumar, T.K.; Misra, A.K.; Ahmad, S.; Rai, A.K.; Sarker, A.; Louhaichi, M.; Hassan, S.; Liguori, G.; et al. Survival, morphological variability, and performance of Opuntia ficus-indica in a semi-arid region of India. Arch. Agron. Soil Sci. 2022, 69, 708–725. [Google Scholar] [CrossRef]
- Winter, K.; Smith, J.A.C. CAM photosynthesis: The acid test. N. Phytol. 2022, 233, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Hartzell, S.; Bartlett, M.S.; Inglese, P.; Consoli, S.; Yin, J.; Porporato, A. Modelling nonlinear dynamics of Crassulacean acid metabolism productivity and water use for global predictions. Plant. Cell Environ. 2021, 44, 34–48. [Google Scholar] [CrossRef]
- Ho, C.L.; Chiang, J.M.; Lin, T.C.; Martin, C.E. First report of C4/CAM-cycling photosynthetic pathway in a succulent grass, Spinifex littoreus (Brum. f.) Merr., in coastal regions of Taiwan. Flora 2019, 254, 194–202. [Google Scholar] [CrossRef]
- Nobel, P.S. Achievable productivities of certain CAM plants: Basis for high values compared with C3 and C4 plants. New Phytol. 1991, 119, 183–205. [Google Scholar] [CrossRef]
- Scalisi, A.; Morandi, B.; Inglese, P.; Lo Bianco, R. Cladode growth dynamics in Opuntia ficus-indica under drought. Environ. Exp. Bot. 2016, 122, 158–167. [Google Scholar] [CrossRef]
- Dubeux, J.C.B.; dos Santos, M.V.F.; da Cunha, M.V.; dos Santos, D.C.; Souza, R.T.d.A.; de Mello, A.C.L.; de Souza, T.C. Cactus (Opuntia and Nopalea) nutritive value: A review. Anim. Feed Sci. Technol. 2021, 275, 114890. [Google Scholar] [CrossRef]
- Pessoa, D.V.; Pereira de Andrade, A.; Magalhães, A.L.R.; Teodoro, A.L.; Cordeiro dos Santos, D.; de Araújo, G.G.L.; de Medeiros, A.N.; do Nascimento, D.B.; Valença, R.d.L.; Cardoso, D.B. Forage nutritional differences within the genus Opuntia. J. Arid Environ. 2020, 181, 104243. [Google Scholar] [CrossRef]
- Rocha Filho, R.R.; Santos, D.C.; Véras, A.S.C.; Siqueira, M.C.B.; Monteiro, C.C.F.; Mora-Luna, R.E.; Farias, L.R.; Santos, V.L.F.; Chagas, J.C.; Ferreira, M.A. Miúda (Nopalea cochenillifera (L.) Salm-Dyck)—The Best Forage Cactus Genotype for Feeding Lactating Dairy Cows in Semiarid Regions. Animals 2021, 11, 1774. [Google Scholar] [CrossRef]
- Araújo Júnior, G.d.N.; da Silva, T.G.F.; de Souza, L.S.B.; de Araújo, G.G.L.; de Moura, M.S.B.; Alves, C.P.; da Silva Salvador, K.R.; de Souza, C.A.A.; de Assunção Montenegro, A.A.; da Silva, M.J. Phenophases, morphophysiological indices and cutting time in clones of the forage cacti under controlled water regimes in a semiarid environment. J. Arid Environ. 2021, 190, 104510. [Google Scholar] [CrossRef]
- Campos, A.R.F.; da Silva, A.J.P.; de Jong van Lier, Q.; do Nascimento, F.A.L.; Fernandes, R.D.M.; de Almeida, J.N.; Paz, V.P.d.S. Yield and morphology of forage cactus cultivars under drip irrigation management based on soil water matric potential thresholds. J. Arid Environ. 2021, 193, 104564. [Google Scholar] [CrossRef]
- Consoli, S.; Inglese, G.; Inglese, P. Determination of Evapotranspiration and Annual Biomass Productivity of a Cactus Pear [Opuntia ficus-indica L. (Mill.)] Orchard in a Semiarid Environment. J. Irrig. Drain. Eng. 2013, 139, 680–690. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, J.G.; Patten, D.T. Plant temperatures and heat flux in a Sonoran Desert ecosystem. Oecologia 1970, 5, 165–184. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, V.H.A.; Dalagnol, R.; Cassol, H.L.G.; Rosan, T.M.; de Almeida, C.T.; Silva Junior, C.H.L.; Campanharo, W.A.; House, J.I.; Sitch, S.; Hales, T.C.; et al. Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nat. Commun. 2021, 12, 1785. [Google Scholar] [CrossRef]
- Prévosto, B.; Helluy, M.; Gavinet, J.; Fernandez, C.; Balandier, P. Microclimate in Mediterranean pine forests: What is the influence of the shrub layer? Agric. For. Meteorol. 2020, 282–283, 107856. [Google Scholar] [CrossRef]
- Zheng, C.; Liu, S.; Song, L.; Xu, Z.; Guo, J.; Ma, Y.; Ju, Q.; Wang, J. Comparison of sensible and latent heat fluxes from optical-microwave scintillometers and eddy covariance systems with respect to surface energy balance closure. Agric. For. Meteorol. 2023, 331, 109345. [Google Scholar] [CrossRef]
- Perrino, E.V.; Signorile, G.; Marvulli, M. A first checklist of the vascular flora of the Polignano a mare coast (Apulia, Southern Italy). Nat. Croat. 2013, 22, 295–318. [Google Scholar]
- Pierini, N.A.; Vivoni, E.R.; Robles-Morua, A.; Scott, R.L.; Nearing, M.A. Using observations and a distributed hydrologic model to explore runoff thresholds linked with mesquite encroachment in the Sonoran Desert. Water Resour. Res. 2014, 50, 8191–8215. [Google Scholar] [CrossRef] [Green Version]
- Accogli, R.; Tomaselli, V.; Direnzo, P.; Perrino, E.V.; Albanese, G.; Urbano, M.; Laghetti, G. Edible Halophytes and Halo-Tolerant Species in Apulia Region (Southeastern Italy): Biogeography, Traditional Food Use and Potential Sustainable Crops. Plants 2023, 12, 549. [Google Scholar] [CrossRef]
- Jardim, A.M.d.R.F.; de Morais, J.E.F.; de Souza, L.S.B.; Lopes, D.d.C.; da Silva, M.V.; Pandorfi, H.; de Oliveira-Júnior, J.F.; da Silva, J.L.B.; Steidle Neto, A.J.; Morellato, L.P.C.; et al. A systematic review of energy and mass fluxes, and biogeochemical processes in seasonally dry tropical forests and cactus ecosystems. J. South Am. Earth Sci. 2023, 126, 104330. [Google Scholar] [CrossRef]
- Jardim, A.M.R.F.; Araújo Júnior, G.N.; Silva, M.V.; Santos, A.; Silva, J.L.B.; Pandorfi, H.; Oliveira-Júnior, J.F.; Teixeira, A.H.C.; Teodoro, P.E.; de Lima, J.L.M.P.; et al. Using Remote Sensing to Quantify the Joint Effects of Climate and Land Use/Land Cover Changes on the Caatinga Biome of Northeast Brazilian. Remote Sens. 2022, 14, 1911. [Google Scholar] [CrossRef]
- Alves, J.D.N.; Ribeiro, A.; Rody, Y.P.; Loos, R.A. Energy balance and surface decoupling factor of a pasture in the Brazilian Cerrado. Agric. For. Meteorol. 2022, 319, 108912. [Google Scholar] [CrossRef]
- Anderson, C.A.; Vivoni, E.R. Impact of land surface states within the flux footprint on daytime land-atmosphere coupling in two semiarid ecosystems of the Southwestern U.S. Water Resour. Res. 2016, 52, 4785–4800. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Liu, D.; Liu, H.; Lei, H.; Guo, F.; Xie, S.; Meng, X.; Huang, Q. Energy flux observation in a shrub ecosystem of a gully region of the Chinese Loess Plateau. Ecohydrol. Hydrobiol. 2022, 22, 323–336. [Google Scholar] [CrossRef]
- Awada, H.; Di Prima, S.; Sirca, C.; Giadrossich, F.; Marras, S.; Spano, D.; Pirastru, M. Daily Actual Evapotranspiration Estimation in a Mediterranean Ecosystem from Landsat Observations Using SEBAL Approach. Forests 2021, 12, 189. [Google Scholar] [CrossRef]
- Guevara-Escobar, A.; González-Sosa, E.; Cervantes-Jimenez, M.; Suzán-Azpiri, H.; Queijeiro-Bolanos, M.E.; Carrillo-Ángeles, I.; Cambron-Sandoval, V.H. Machine learning estimates of eddy covariance carbon flux in a scrub in the Mexican highland. Biogeosciences 2021, 18, 367–392. [Google Scholar] [CrossRef]
- Hicks, B.B.; Eash, N.S.; O’Dell, D.L.; Oetting, J.N. Augmented Bowen Ratio Analysis –I: Site Adequacy, Fetch and Heat Storage (ABRA). Agric. For. Meteorol. 2020, 290, 108035. [Google Scholar] [CrossRef]
- Bowen, I.S. The Ratio of Heat Losses by Conduction and by Evaporation from any Water Surface. Phys. Rev. 1926, 27, 779. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Zhao, C.; Li, J.; Wang, F.; Chen, Y. Discussion and reassessment of the method used for accepting or rejecting data observed by a Bowen ratio system. Hydrol. Process. 2014, 28, 4506–4510. [Google Scholar] [CrossRef]
- Pokhariyal, S.; Patel, N. Evaluation of variation in radiative and turbulent fluxes over winter wheat ecosystem along Indo-Gangetic region. Arab. J. Geosci. 2021, 14, 1956. [Google Scholar] [CrossRef]
- Pozníková, G.; Fischer, M.; van Kesteren, B.; Orság, M.; Hlavinka, P.; Žalud, Z.; Trnka, M. Quantifying turbulent energy fluxes and evapotranspiration in agricultural field conditions: A comparison of micrometeorological methods. Agric. Water Manag. 2018, 209, 249–263. [Google Scholar] [CrossRef]
- Chen, J.; Dong, G.; Chen, J.; Jiang, S.; Qu, L.; Legesse, T.G.; Zhao, F.; Tong, Q.; Shao, C.; Han, X. Energy balance and partitioning over grasslands on the Mongolian Plateau. Ecol. Indic. 2022, 135, 108560. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 56, ISBN 9251042195. [Google Scholar]
- Cheng, M.; Shi, L.; Jiao, X.; Nie, C.; Liu, S.; Yu, X.; Bai, Y.; Liu, Y.; Liu, Y.; Song, N.; et al. Up-scaling the latent heat flux from instantaneous to daily-scale: A comparison of three methods. J. Hydrol. Reg. Stud. 2022, 40, 101057. [Google Scholar] [CrossRef]
- Hermance, J.F.; Augustine, D.J.; Derner, J.D. Quantifying characteristic growth dynamics in a semi-arid grassland ecosystem by predicting short-term NDVI phenology from daily rainfall: A simple four parameter coupled-reservoir model. Int. J. Remote Sens. 2015, 36, 5637–5663. [Google Scholar] [CrossRef]
- Lewis, D.A.; Nobel, P.S.; Boyd, P.L. Thermal Energy Exchange Model and Water Loss of a Barrel Cactus, Ferocactus acanthodes. Plant Physiol. 1977, 60, 609–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, T.V.; Mendes, K.; Mutti, P.; Medeiros, S.; Silva, L.; Perez-Marin, A.M.; Campos, S.; Lúcio, P.S.; Lima, K.; dos Reis, J.; et al. Environmental and biophysical controls of evapotranspiration from Seasonally Dry Tropical Forests (Caatinga) in the Brazilian Semiarid. Agric. For. Meteorol. 2020, 287, 107957. [Google Scholar] [CrossRef]
- Shao, C.; Chen, J.; Li, L.; Dong, G.; Han, J.; Abraha, M.; John, R. Grazing effects on surface energy fluxes in a desert steppe on the Mongolian Plateau. Ecol. Appl. 2017, 27, 485–502. [Google Scholar] [CrossRef]
- da Silva, P.F.; Lima, J.R.d.S.; Antonino, A.C.D.; Souza, R.; de Souza, E.S.; Silva, J.R.I.; Alves, E.M. Seasonal patterns of carbon dioxide, water and energy fluxes over the Caatinga and grassland in the semi-arid region of Brazil. J. Arid Environ. 2017, 147, 71–82. [Google Scholar] [CrossRef]
- Yue, P.; Zhang, Q.; Zhang, L.; Li, H.; Yang, Y.; Zeng, J.; Wang, S. Long-term variations in energy partitioning and evapotranspiration in a semiarid grassland in the Loess Plateau of China. Agric. For. Meteorol. 2019, 278, 107671. [Google Scholar] [CrossRef]
- Nassar, A.; Torres-rua, A.; Kustas, W.; Alfieri, J.; Hipps, L.; Prueger, J.; Nieto, H.; Alsina, M.M.; White, W.; McKee, L.; et al. Assessing Daily Evapotranspiration Methodologies from One-Time-of-Day sUAS and EC Information in the GRAPEX Project. Remote Sens. 2021, 13, 2887. [Google Scholar] [CrossRef]
- Cao, J.J.; Hu, S.; Dong, Q.; Liu, L.J.; Wang, Z.L. Green roof cooling contributed by plant species with different photosynthetic strategies. Energy Build. 2019, 195, 45–50. [Google Scholar] [CrossRef]
- Montesinos-Navarro, A.; Verdú, M.; Querejeta, J.I.; Valiente-Banuet, A. Nurse shrubs can receive water stored in the parenchyma of their facilitated columnar cacti. J. Arid Environ. 2019, 165, 10–15. [Google Scholar] [CrossRef]
- Novoa, A.; Foxcroft, L.C.; Keet, J.H.; Pyšek, P.; Le Roux, J.J. The invasive cactus Opuntia stricta creates fertility islands in African savannas and benefits from those created by native trees. Sci. Rep. 2021, 11, 20748. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wu, J.; Lafleur, P. Comparison of energy fluxes between an undisturbed bog and an adjacent abandoned peatland pasture. Agric. For. Meteorol. 2020, 291, 108086. [Google Scholar] [CrossRef]
- Flanagan, L.B.; Flanagan, J.E.M. Seasonal controls on ecosystem-scale CO2 and energy exchange in a Sonoran Desert characterized by the saguaro cactus (Carnegiea gigantea). Oecologia 2018, 187, 977–994. [Google Scholar] [CrossRef] [PubMed]
- de Lima, F.J.L.; Martins, F.R.; Costa, R.S.; Gonçalves, A.R.; dos Santos, A.P.P.; Pereira, E.B. The seasonal variability and trends for the surface solar irradiation in northeastern region of Brazil. Sustain. Energy Technol. Assess. 2019, 35, 335–346. [Google Scholar] [CrossRef]
- da Silva, T.G.F.; de Queiroz, M.G.; Zolnier, S.; de Souza, L.S.B.; de Souza, C.A.A.; de Moura, M.S.B.; de Araújo, G.G.L.; Steidle Neto, A.J.; dos Santos, T.S.; de Melo, A.L.; et al. Soil properties and microclimate of two predominant landscapes in the Brazilian semiarid region: Comparison between a seasonally dry tropical forest and a deforested area. Soil Tillage Res. 2021, 207, 104852. [Google Scholar] [CrossRef]
- Jung, M.; Koirala, S.; Weber, U.; Ichii, K.; Gans, F.; Camps-Valls, G.; Papale, D.; Schwalm, C.; Tramontana, G.; Reichstein, M. The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data 2019, 6, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhungel, R.; Aiken, R.; Evett, S.R.; Colaizzi, P.D.; Marek, G.; Moorhead, J.E.; Baumhardt, R.L.; Brauer, D.; Kutikoff, S.; Lin, X. Energy Imbalance and Evapotranspiration Hysteresis Under an Advective Environment: Evidence From Lysimeter, Eddy Covariance, and Energy Balance Modeling. Geophys. Res. Lett. 2021, 48, e2020GL091203. [Google Scholar] [CrossRef]
- Goldstein, G.; Ortega, J.K.E.; Nerd, A.; Nobel, P.S. Diel Patterns of Water Potential Components for the Crassulacean Acid Metabolism Plant Opuntia ficus-indica when Well-Watered or Droughted. Plant Physiol. 1991, 95, 274–280. [Google Scholar] [CrossRef] [Green Version]
- Lima, L.R.; Silva, T.G.F.; Jardim, A.M.R.F.; Souza, C.A.A.; Queiroz, M.G.; Tabosa, J.N. Growth, water use and efficiency of forage cactus sorghum intercropping under different water depths. Rev. Bras. Eng. Agrícola Ambient. 2018, 22, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Felker, P. Field validation of water-use efficiency of the CAM plant Opuntia ellisiana in south Texas. J. Arid Environ. 1997, 36, 133–148. [Google Scholar] [CrossRef]
- Ouko, E.; Omondi, S.; Mugo, R.; Wahome, A.; Kasera, K.; Nkurunziza, E.; Kiema, J.; Flores, A.; Adams, E.C.; Kuraru, S.; et al. Modeling Invasive Plant Species in Kenya’s Northern Rangelands. Front. Environ. Sci. 2020, 8, 69. [Google Scholar] [CrossRef]
- da Silva, M.V.; Pandorfi, H.; de Almeida, G.L.P.; de Lima, R.P.; dos Santos, A.; Jardim, A.M.d.R.F.; Rolim, M.M.; da Silva, J.L.B.; Batista, P.H.D.; da Silva, R.A.B.; et al. Spatio-temporal monitoring of soil and plant indicators under forage cactus cultivation by geoprocessing in Brazilian semi-arid region. J. S. Am. Earth Sci. 2021, 107, 103155. [Google Scholar] [CrossRef]
- Jardim, A.M.d.R.F.; da Silva, T.G.F.; de Souza, L.S.B.; Araújo Júnior, G.d.N.; Alves, H.K.M.N.; Souza, M.d.S.; de Araújo, G.G.L.; de Moura, M.S.B. Intercropping forage cactus and sorghum in a semi-arid environment improves biological efficiency and competitive ability through interspecific complementarity. J. Arid Environ. 2021, 188, 104464. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, J.A.; Kustas, W.P. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology. J. Geophys. Res. Atmos. 2007, 112, 1–13. [Google Scholar] [CrossRef]
- Ventura-Aguilar, R.I.; Bosquez-Molina, E.; Bautista-Baños, S.; Rivera-Cabrera, F. Cactus stem (Opuntia ficus-indica Mill): Anatomy, physiology and chemical composition with emphasis on its biofunctional properties. J. Sci. Food Agric. 2017, 97, 5065–5073. [Google Scholar] [CrossRef]
- Amorim, D.M.; da Silva, T.G.F.; Pereira, P.d.C.; de Souza, L.S.B.; Minuzzi, R.B. Phenophases and cutting time of forage cactus under irrigation and cropping systems. Pesqui. Agropecuária Trop. 2017, 47, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Jardim, A.M.d.R.F.; de Souza, L.S.B.; Alves, C.P.; de Araújo, J.F.N.; de Souza, C.A.A.; Pinheiro, A.G.; de Araújo, G.G.L.; Campos, F.S.; Tabosa, J.N.; da Silva, T.G.F. Intercropping forage cactus with sorghum affects the morphophysiology and phenology of forage cactus. African J. Range Forage Sci. 2023, 40, 129–140. [Google Scholar] [CrossRef]
- Souza, M.d.S.; da Silva, T.G.F.; de Souza, L.S.B.; Alves, H.K.M.N.; Leite, R.M.C.; de Souza, C.A.A.; Araújo, G.G.L.D.; Campos, F.S.; Silva, M.J.D.; Souza, P.J.D.O.P. Growth, phenology and harvesting time of cactus-millet intercropping system under biotic mulching. Arch. Agron. Soil Sci. 2022, 68, 764–778. [Google Scholar] [CrossRef]
- Bilderback, A.H.; Torres, A.J.; Vega, M.; Ball, B.A. The structural and nutrient chemistry during early-stage decomposition and desiccation of cacti in the Sonoran Desert. J. Arid Environ. 2021, 195, 104636. [Google Scholar] [CrossRef]
- Melero-Meraz, V.; Zegbe, J.A.; Herrera, M.D.; Guzmán-Maldonado, S.H.; Medina-García, G.; Sánchez-Toledano, B.I.; Cruz-Bravo, R.K.; Servín-Palestina, M. On-Farm Supplemental Irrigation of “Roja Lisa” Cactus Pear: Pre- and Postharvest Effects. Horticulturae 2022, 8, 483. [Google Scholar] [CrossRef]
- de Cortazar, V.G.; Acevedo, E.; Nobel, P.S. Modeling of par interception and productivity by Opuntia ficus-indica. Agric. For. Meteorol. 1985, 34, 145–162. [Google Scholar] [CrossRef]
- Mbava, N.; Mutema, M.; Zengeni, R.; Shimelis, H.; Chaplot, V. Factors affecting crop water use efficiency: A worldwide meta-analysis. Agric. Water Manag. 2020, 228, 105878. [Google Scholar] [CrossRef]
- Du Toit, A.; De Wit, M.; Hugo, A. Cultivar and Harvest Month Influence the Nutrient Content of Opuntia spp. Cactus Pear Cladode Mucilage Extracts. Molecules 2018, 23, 916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nedjimi, B. Determination of Some Major and Trace Elements in Cladodes of Barbary fig (Opuntia ficus-indica Mill.) by X-ray Fluorescence Spectrometry. Biol. Trace Elem. Res. 2021, 199, 4353–4359. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, F.M.; Dubeux, J.C.B.; da Cunha, M.V.; Menezes, R.S.C.; Dos Santos, M.V.F.; Camelo, D.; Ferraz, I. Manure Source and Cropping System Affect Nutrient Uptake by Cactus (Nopalea cochenillifera Salm Dyck). Agronomy 2021, 11, 1512. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.d.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Zeitschrift 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leite-Filho, A.T.; de Sousa Pontes, V.Y.; Costa, M.H. Effects of Deforestation on the Onset of the Rainy Season and the Duration of Dry Spells in Southern Amazonia. J. Geophys. Res. Atmos. 2019, 124, 5268–5281. [Google Scholar] [CrossRef]
- Salack, S.; Klein, C.; Giannini, A.; Sarr, B.; Worou, O.N.; Belko, N.; Bliefernicht, J.; Kunstman, H. Global warming induced hybrid rainy seasons in the Sahel. Environ. Res. Lett. 2016, 11, 104008. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Heilman, J.L.; Brittin, C.L.; Neale, C.M.U. Fetch requirements for bowen ratio measurements of latent and sensible heat fluxes. Agric. For. Meteorol. 1989, 44, 261–273. [Google Scholar] [CrossRef]
- Gavilán, P.; Berengena, J. Accuracy of the Bowen ratio-energy balance method for measuring latent heat flux in a semiarid advective environment. Irrig. Sci. 2007, 25, 127–140. [Google Scholar] [CrossRef]
- Perez, P.J.; Castellvi, F.; Ibañez, M.; Rosell, J.I. Assessment of reliability of Bowen ratio method for partitioning fluxes. Agric. For. Meteorol. 1999, 97, 141–150. [Google Scholar] [CrossRef]
- Ortega-Farias, S.O.; Cuenca, R.H.; Ek, M. Daytime variation of sensible heat flux estimated by the bulk aerodynamic method over a grass canopy. Agric. For. Meteorol. 1996, 81, 131–143. [Google Scholar] [CrossRef]
- Unland, H.E.; Houser, P.R.; Shuttleworth, W.J.; Yang, Z.L. Surface flux measurement and modeling at a semi-arid Sonoran Desert site. Agric. For. Meteorol. 1996, 82, 119–153. [Google Scholar] [CrossRef] [Green Version]
- Mulovhedzi, N.E.; Araya, N.A.; Mengistu, M.G.; Fessehazion, M.K.; du Plooy, C.P.; Araya, H.T.; van der Laan, M. Estimating evapotranspiration and determining crop coefficients of irrigated sweet potato (Ipomoea batatas) grown in a semi-arid climate. Agric. Water Manag. 2020, 233, 106099. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, X.; Li, Y.; Zhao, J.; Yang, Y.; Zang, H.; Zeng, Z. Peanut residue incorporation benefits crop yield, nitrogen yield, and water use efficiency of summer peanut—Winter wheat systems. F. Crop. Res. 2022, 279, 108463. [Google Scholar] [CrossRef]
- Raza, M.A.; Feng, L.Y.; van der Werf, W.; Cai, G.R.; Bin Khalid, M.H.; Iqbal, N.; Hassan, M.J.; Meraj, T.A.; Naeem, M.; Khan, I.; et al. Narrow-wide-row planting pattern increases the radiation use efficiency and seed yield of intercrop species in relay-intercropping system. Food Energy Secur. 2019, 8, e170. [Google Scholar] [CrossRef]
- Pinheiro, K.M.; Silva, T.G.F.; Carvalho, H.F.d.S.; Santos, J.E.O.; Morais, J.E.F.; Zolnier, S.; dos Santos, D.C. Correlações do índice de área do cladódio com características morfogênicas e produtivas da palma forrageira. Pesqui. Agropecuária Bras. 2014, 49, 939–947. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, C.R.F.; Silva, E.N.; Ferreira-Silva, S.L.; Voigt, E.L.; Viégas, R.A.; Silveira, J.A.G. High K+ supply avoids Na+ toxicity and improves photosynthesis by allowing favorable K+:Na+ ratios through the inhibition of Na+ uptake and transport to the shoots of Jatropha curcas plants. J. Plant Nutr. Soil Sci. 2013, 176, 157–164. [Google Scholar] [CrossRef]
- Loupassaki, M.H.; Chartzoulakis, K.S.; Digalaki, N.B.; Androulakis, I.I. Effects of salt stress on concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium in leaves, shoots, and roots of six olive cultivars. J. Plant Nutr. 2007, 25, 2457–2482. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, Y.; Wu, Z.; Yan, X.; Gunina, A.; Kuzyakov, Y.; Xiong, Z. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation. J. Clean. Prod. 2020, 242, 118435. [Google Scholar] [CrossRef]
- Silva, T.G.F.; Miranda, K.R.; Santos, D.C.; Queiroz, M.G.; Silva, M.C.; Cruz Neto, J.F.; Araújo, J.E.M. Área do cladódio de clones de palma forrageira: Modelagem, análise e aplicabilidade. Rev. Bras. Ciências Agrárias 2014, 9, 626–632. [Google Scholar] [CrossRef]
- Arnold, C.Y. The determination and significance of the base temperature in a linear heat unit system. J. Am. Soc. Hortic. Sci. 1959, 74, 430–445. [Google Scholar]
- Corrado, G.; Chiaiese, P.; Lucini, L.; Miras-Moreno, B.; Colla, G.; Rouphael, Y. Successive Harvests Affect Yield, Quality and Metabolic Profile of Sweet Basil (Ocimum basilicum L.). Agronomy 2020, 10, 830. [Google Scholar] [CrossRef]
- Anghileri, D.; Bozzini, V.; Molnar, P.; Sheffield, J. Comparison of hydrological and vegetation remote sensing datasets as proxies for rainfed maize yield in Malawi. Agric. Water Manag. 2022, 262, 107375. [Google Scholar] [CrossRef]
- Wolf, S.; Keenan, T.F.; Fisher, J.B.; Baldocchi, D.D.; Desai, A.R.; Richardson, A.D.; Scott, R.L.; Law, B.E.; Litvak, M.E.; Brunsell, N.A.; et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl. Acad. Sci. USA 2016, 113, 5880–5885. [Google Scholar] [CrossRef]
- Prăvălie, R.; Sîrodoev, I.; Nita, I.A.; Patriche, C.; Dumitraşcu, M.; Roşca, B.; Tişcovschi, A.; Bandoc, G.; Săvulescu, I.; Mănoiu, V.; et al. NDVI-based ecological dynamics of forest vegetation and its relationship to climate change in Romania during 1987–2018. Ecol. Indic. 2022, 136, 108629. [Google Scholar] [CrossRef]
- Hurni, K.; Van Den Hoek, J.; Fox, J. Assessing the spatial, spectral, and temporal consistency of topographically corrected Landsat time series composites across the mountainous forests of Nepal. Remote Sens. Environ. 2019, 231, 111225. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Bielski, C.H.; Twidwell, D.; Fuhlendorf, S.D.; Wonkka, C.L.; Allred, B.W.; Ochsner, T.E.; Krueger, E.S.; Carlson, J.D.; Engle, D.M. Pyric herbivory, scales of heterogeneity and drought. Funct. Ecol. 2018, 32, 1599–1608. [Google Scholar] [CrossRef]
- Lyra, G.B.; de Souza, J.L.; da Silva, E.C.; Lyra, G.B.; Teodoro, I.; Ferreira-Júnior, R.A.; de Souza, R.C. Soil water stress co-efficient for estimating actual evapotranspiration of maize in northeastern Brazil. Meteorol. Appl. 2016, 23, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Pardo, J.J.; Martínez-Romero, A.; Léllis, B.C.; Tarjuelo, J.M.; Domínguez, A. Effect of the optimized regulated deficit irrigation methodology on water use in barley under semiarid conditions. Agric. Water Manag. 2020, 228, 105925. [Google Scholar] [CrossRef]
- Thornthwaite, C.W.; Mather, J.R. The Water Balance; Publications in Climatology; Laboratory of Climatology: Centerton, NJ, USA, 1955; Volume 8. [Google Scholar]
- Aparecido, L.E.d.O.; Lorençone, J.A.; Lorençone, P.A.; de Meneses, K.C.; de Moraes, J.R.d.S.C. Climate risk to peanut cultivation in Brazil across different planting seasons. J. Sci. Food Agric. 2021, 101, 5002–5015. [Google Scholar] [CrossRef]
- Almagbile, A.; Zeitoun, M.; Hazaymeh, K.; Sammour, H.A.; Sababha, N. Statistical analysis of estimated and observed soil moisture in sub-humid climate in north-western Jordan. Environ. Monit. Assess. 2019, 191, 96. [Google Scholar] [CrossRef]
- R Core Team. R: The R Project for Statistical Computing, Vienna, Austria; v. 4.1.3, 2022. Available online: https://www.r-project.org/ (accessed on 23 May 2023).
Season | Partition Ratio (%) | ||
---|---|---|---|
LE/Rn | H/Rn | G/Rn | |
Wet | 30 | 57 | 13 |
Wet-dry | 23 | 58 | 19 |
Dry | 26 | 55 | 19 |
Dry-wet | 17 | 64 | 19 |
Mean ratio | 24 | 58.5 | 17.5 |
Variable | Mean Value | Standard Deviation |
---|---|---|
β (dimensionless) | 3.53 | ±2.45 |
Yield (Mg ha−1) | 12.47 | ±2.20 |
RUE (g MJ−1) | 3.95 | ±0.70 |
WUE (kg m−3) | 1.75 | ±0.31 |
NUE[Calcium] (mg m−3) | 29.03 | ±1.14 |
NUE[Magnesium] (mg m−3) | 12.44 | ±2.25 |
NUE[Phosphorus] (mg m−3) | 62.13 | ±11.71 |
NUE[Potassium] (mg m−3) | 50.88 | ±5.50 |
NUE[Sodium] (mg m−3) | 0.22 | ±0.02 |
Available Energy † | Vapour Pressure Gradient | Bowen Ratio | Heat Flux |
---|---|---|---|
Rn − G > 0 | ∆e > 0 | β > −1 | LE > 0 and H ≤ 0 for −1 < β ≤ 0 or H > 0 for β > 0 |
∆e < 0 | β < −1 | LE < 0 and H > 0 | |
Rn − G < 0 | ∆e > 0 | β > −1 | LE > 0 and H < 0 |
∆e < 0 | β < −1 | LE < 0 and H ≥ 0 for −1 < β ≤ 0 or H < 0 for β > 0 |
Type of Error | Applied Conditions |
---|---|
A | Rn − G > 0, ∆e > 0 and β < −1 + |ε| |
B | Rn − G > 0, ∆e < 0 and β > −1 − |ε| |
C | Rn − G < 0, ∆e > 0 and β > −1 − |ε| |
D | Rn − G < 0, ∆e < 0 and β < −1 + |ε| |
E | Referring to a rapid change in temperature and vapour pressure. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jardim, A.M.d.R.F.; Morais, J.E.F.d.; Souza, L.S.B.d.; Souza, C.A.A.d.; Araújo Júnior, G.d.N.; Alves, C.P.; Silva, G.Í.N.d.; Leite, R.M.C.; Moura, M.S.B.d.; de Lima, J.L.M.P.; et al. Monitoring Energy Balance, Turbulent Flux Partitioning, Evapotranspiration and Biophysical Parameters of Nopalea cochenillifera (Cactaceae) in the Brazilian Semi-Arid Environment. Plants 2023, 12, 2562. https://doi.org/10.3390/plants12132562
Jardim AMdRF, Morais JEFd, Souza LSBd, Souza CAAd, Araújo Júnior GdN, Alves CP, Silva GÍNd, Leite RMC, Moura MSBd, de Lima JLMP, et al. Monitoring Energy Balance, Turbulent Flux Partitioning, Evapotranspiration and Biophysical Parameters of Nopalea cochenillifera (Cactaceae) in the Brazilian Semi-Arid Environment. Plants. 2023; 12(13):2562. https://doi.org/10.3390/plants12132562
Chicago/Turabian StyleJardim, Alexandre Maniçoba da Rosa Ferraz, José Edson Florentino de Morais, Luciana Sandra Bastos de Souza, Carlos André Alves de Souza, George do Nascimento Araújo Júnior, Cléber Pereira Alves, Gabriel Ítalo Novaes da Silva, Renan Matheus Cordeiro Leite, Magna Soelma Beserra de Moura, João L. M. P. de Lima, and et al. 2023. "Monitoring Energy Balance, Turbulent Flux Partitioning, Evapotranspiration and Biophysical Parameters of Nopalea cochenillifera (Cactaceae) in the Brazilian Semi-Arid Environment" Plants 12, no. 13: 2562. https://doi.org/10.3390/plants12132562
APA StyleJardim, A. M. d. R. F., Morais, J. E. F. d., Souza, L. S. B. d., Souza, C. A. A. d., Araújo Júnior, G. d. N., Alves, C. P., Silva, G. Í. N. d., Leite, R. M. C., Moura, M. S. B. d., de Lima, J. L. M. P., & Silva, T. G. F. d. (2023). Monitoring Energy Balance, Turbulent Flux Partitioning, Evapotranspiration and Biophysical Parameters of Nopalea cochenillifera (Cactaceae) in the Brazilian Semi-Arid Environment. Plants, 12(13), 2562. https://doi.org/10.3390/plants12132562