Molecular Characterization and Genetic Diversity of Ginkgo (Ginkgo biloba L.) Based on Insertions and Deletions (InDel) Markers
Abstract
:1. Introduction
2. Results
2.1. Sequencing Data Quality and Processing
2.2. InDel Characteristics in the Ginkgo Genome
2.3. Experimental Validation of InDel Polymorphisms
2.4. Genetic Diversity and Population Structure Analysis
2.5. Establishment and Evaluation of the Ginkgo Core Collections
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Library Preparation, and Sequencing
4.3. InDel Detection and Annotation
4.4. Primer Design and Experiment Validation
4.5. Genetic Diversity and Population Structure Analysis
4.6. Core Germplasms Identification and Molecular Diversity Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, C.-P.; Wu, C.-S.; Huang, Y.-Y.; Chaw, S.-M. The complete chloroplast genome of Ginkgo biloba reveals the mechanism of inverted repeat contraction. Genome Biol. Evol. 2012, 4, 374–381. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhou, T.; Su, X.; Wang, G.; Zhang, X.; Guo, Q.; Cao, F. Structural characterization and comparative analysis of the chloroplast genome of Ginkgo biloba and other gymnosperms. J. For. Res. 2021, 32, 765–778. [Google Scholar] [CrossRef]
- Lu, X.; Chen, L.; Liu, T.; Ke, H.; Gong, X.; Wang, Q.; Zhang, J.; Fan, X. Chemical analysis, pharmacological activity and process optimization of the proportion of bilobalide and ginkgolides in Ginkgo biloba extract. J. Pharm. Biomed. Anal. 2018, 160, 46–54. [Google Scholar]
- Wang, H.Y.; Zhang, Y.Q. The main active constituents and detoxification process of Ginkgo biloba seeds and their potential use in functional health foods. J. Food Compos. Anal. 2019, 83, 103247. [Google Scholar] [CrossRef]
- Ding, S.; Dudley, E.; Plummer, S.; Tang, J.; Newton, R.P.; Brenton, A.G. Fingerprint profile of Ginkgo biloba nutritional supplements by LC/ESI-MS/MS. Phytochemistry 2008, 69, 1555–1564. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.; Ringstad, L.; Schäfer, P.; Just, S.; Hofer, H.W.; Malmsten, M.; Siegel, G. Reduction of atherosclerotic nanoplaque formation and size by Ginkgo biloba (EGb 761) in cardiovascular high-risk patients. Atherosclerosis 2007, 192, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Pautasso, M. Geographical genetics and the conservation of forest trees. Perspect. Plant Ecol. Evol. Syst. 2009, 11, 157–189. [Google Scholar] [CrossRef]
- Odong, T.L.; Jansen, J.; van Eeuwijk, F.A.; van Hintum, T.J.L. Quality of core collections for effective utilisation of genetic resources review, discussion and interpretation. Theor. Appl. Genet. 2013, 126, 289–305. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Gao, S.; Xu, Y.; Wang, M.; Ngiam, J.J.; Rui Wen, N.C.; Yi., J.J.J.; Weng, X.; Jia, L.; Salojärvi, J. Genetic diversity analysis of Sapindus in China and extraction of a core germplasm collection Using EST-SSR markers. Front. Plant Sci. 2022, 13, 857993. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Liu, J.; Li, J.; Cao, S.; Zhang, Z.; Zhang, J.; Zhang, Y.; Deng, Y.; Niu, D.; Su, L.; et al. Genetic diversity and core collection extraction of Robinia pseudoacacia L. germplasm resources based on phenotype, physiology, and genotyping markers. Ind. Crops Prod. 2022, 178, 114627. [Google Scholar] [CrossRef]
- Wu, D.-H.; Wu, H.-P.; Wang, C.-S.; Tseng, H.-Y.; Hwu, K.-K. Genome-wide InDel marker system for application in rice breeding and mapping studies. Euphytica 2013, 192, 131–143. [Google Scholar] [CrossRef]
- Das, S.; Upadhyaya, H.D.; Srivastava, R.; Bajaj, D.; Gowda, C.L.L.; Sharma, S.; Singh, S.; Tyagi, A.K.; Parida, S.K. Genome-wide insertion–deletion (InDel) marker discovery and genotyping for genomics-assisted breeding applications in chickpea. DNA Res. 2015, 22, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Thavamanikumar, S.; Southerton, S.G.; Bossinger, G.; Thumma, B.R. Dissection of complex traits in forest trees-opportunities for marker-assisted selection. Tree Genet. Genomes 2013, 9, 627–639. [Google Scholar] [CrossRef]
- Zhou, Q.; Mu, K.; Ni, Z.; Liu, X.; Li, Y.; Xu, L.A. Analysis of genetic diversity of ancient ginkgo populations using SSR markers. Ind. Crops Prod. 2020, 145, 111942. [Google Scholar] [CrossRef]
- Tang, H.; Xing, S.; Li, J.; Wang, X.; Sun, L.; Du, S.; Liu, X. Genetic diversity of Ginkgo biloba half-sib families based on AFLP technology. Biochem. Syst. Ecol. 2016, 68, 58–65. [Google Scholar] [CrossRef]
- Zhao, Y.P.; Fan, G.; Yin, P.P.; Sun, S.; Li, N.; Hong, X.; Hu, G.; Zhang, H.; Zhang, F.M.; Han, J.D.; et al. Resequencing 545 ginkgo genomes across the world reveals the evolutionary history of the living fossil. Nat. Commun. 2019, 10, 4201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Hu, S.; Gardner, C.; Lübberstedt, T. Emerging avenues for utilization of exotic germplasm. Trends Plant Sci. 2017, 22, 624–637. [Google Scholar] [CrossRef] [Green Version]
- Upadhyaya, H.D.; Gowda, C.L.L.; Buhariwalla, H.K.; Crouch, J.H. Efficient use of crop germplasm resources: Identifying useful germplasm for crop improvement through core and mini-core collections and molecular marker approaches. Plant Genet. Resour. 2006, 4, 25–35. [Google Scholar] [CrossRef]
- Hou, X.; Li, L.; Peng, Z.; Wei, B.; Tang, S.; Ding, M.; Liu, J.; Zhang, F.; Zhao, Y.; Gu, H.; et al. A platform of high-density INDEL/CAPS markers for map-based cloning in Arabidopsis. Plant J. 2010, 63, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Lü, Y.; Cui, X.; Li, R.; Huang, P.; Zong, J.; Yao, D.; Li, G.; Zhang, D.; Yuan, Z. Development of genome-wide insertion/deletion markers in rice based on graphic pipeline platform. J. Integr. Plant Biol. 2015, 57, 980–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moghaddam, S.M.; Song, Q.; Mamidi, S.; Schmutz, J.; Lee, R.; Cregan, P.; Osorno, J.M.; McClean, P.E. Developing market class specific InDel markers from next generation sequence data in Phaseolus vulgaris L. Front. Plant Sci. 2014, 5, 185. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Du, Q.; Xie, J.; Quan, M.; Chen, B.; Zhang, D. Dissection of Insertion–Deletion variants within differentially expressed genes involved in wood formation in Populus. Front. Plant Sci. 2018, 8, 2199. [Google Scholar] [CrossRef] [Green Version]
- Fang, Q.; Wang, L.; Yu, H.; Huang, Y.; Jiang, X.; Deng, X.; Xu, Q. Development of species-specific InDel markers in Citrus. Plant Mol. Biol. Rep. 2018, 36, 653–662. [Google Scholar] [CrossRef]
- Britten, R.J.; Rowen, L.; Williams, J.; Cameron, R.A. Majority of divergence between closely related DNA samples is due to indels. Proc. Natl. Acad. Sci. USA 2003, 100, 4661–4665. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.R.; Dunham, J.P.; Amores, A.; Cresko, W.A.; Johnson, E.A. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res. 2007, 17, 240–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parchman, T.L.; Jahner, J.P.; Uckele, K.A.; Galland, L.M.; Eckert, A.J. RADseq approaches and applications for forest tree genetics. Tree Genet. Genomes 2018, 14, 39. [Google Scholar] [CrossRef]
- Cartwright, R.A. Problems and solutions for estimating Indel rates and length distributions. Mol. Biol. Evol. 2008, 26, 473–480. [Google Scholar] [CrossRef] [Green Version]
- Väli, Ü.; Brandström, M.; Johansson, M.; Ellegren, H. Insertion-deletion polymorphisms (indels) as genetic markers in natural populations. BMC Genet. 2008, 9, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; An, Y.; Tong, W.; Qin, X.; Samarina, L.; Guo, R.; Xia, X.; Wei, C. Characterization of genome-wide genetic variations between two varieties of tea plant (Camellia sinensis) and development of InDel markers for genetic research. BMC Genom. 2019, 20, 935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.; Wei, H.; Cheng, W.; Yang, S.; Zhao, Y.; Li, X.; Luo, D.; Zhang, H.; Feng, X. Development of INDEL markers for genetic mapping based on whole genome resequencing in soybean. G3 Genes Genomes Genet. 2015, 5, 2793–2799. [Google Scholar] [CrossRef] [Green Version]
- Kizil, S.; Basak, M.; Guden, B.; Tosun, H.S.; Uzun, B.; Yol, E. Genome-Wide discovery of InDel markers in Sesame (Sesamum indicum L.) Using ddRADSeq. Plants 2020, 9, 1262. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, Y.; Shen, H.; Yang, W. In silico identification and experimental validation of Insertion-Deletion polymorphisms in tomato genome. DNA Res. 2014, 21, 429–438. [Google Scholar] [CrossRef] [Green Version]
- DeWoody, J.A.; Honeycutt, R.L.; Skow, L.C. Microsatellite markers in white-tailed deer. J. Hered. 1995, 86, 317–319. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.-X.; Shen, L.; Zhang, X.; Chen, X.-Y.; Fu, C.-X. Assessing genetic diversity of Ginkgo biloba L. (Ginkgoaceae) populations from China by RAPD markers. Biochem. Genet. 2004, 42, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.B.; Zheng, Y.Q.; Sun, Q.W. Genetic diversity and population structure of Taxus cuspidata in the Changbai Mountains assessed by chloroplast DNA sequences and microsatellite markers. Biochem. Syst. Ecol. 2015, 63, 157–164. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.-W.; Liufu, Y.-Q.; Lu, Y.-B.; Zhan, T.; Tang, S.-Q. Comparative analysis of genetic diversity and population genetic structure in Abies chensiensis and Abies fargesii inferred from microsatellite markers. Biochem. Syst. Ecol. 2014, 55, 351–357. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, R.; Jin, G.; Feng, Z.; Zhou, Z. Assessing the genetic diversity and genealogical reconstruction of Cypress (Cupressus funebris Endl.) breeding parents using SSR markers. Forests 2016, 7, 160. [Google Scholar] [CrossRef] [Green Version]
- Salgotra, R.K.; Chauhan, B.S. Genetic diversity, conservation, and utilization of plant genetic resources. Genes 2023, 14, 174. [Google Scholar] [CrossRef]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, F.S. An Illustrated Monograph of ‘Ginkgo biloba’ L. Cultivars in China; Science Press: Beijing, China, 2011. [Google Scholar]
- Francia, E.; Tacconi, G.; Crosatti, C.; Barabaschi, D.; Bulgarelli, D.; Dall’Aglio, E.; Valè, G. Marker assisted selection in crop plants. Plant Cell Tissue Organ Cult. 2005, 82, 317–342. [Google Scholar] [CrossRef]
- Xu, C.; Gao, J.; Du, Z.; Li, D.; Wang, Z.; Li, Y.; Pang, X. Identifying the genetic diversity, genetic structure and a core collection of Ziziphus jujuba Mill. var. jujuba accessions using microsatellite markers. Sci. Rep. 2016, 6, 31503. [Google Scholar] [CrossRef]
- Song, Y.; Fan, L.; Chen, H.; Zhang, M.; Ma, Q.; Zhang, S.; Wu, J. Identifying genetic diversity and a preliminary core collection of Pyrus pyrifolia cultivars by a genome-wide set of SSR markers. Sci. Hortic. 2014, 167, 5–16. [Google Scholar] [CrossRef]
- Baird, N.A.; Etter, P.D.; Atwood, T.S.; Currey, M.C.; Shiver, A.L.; Lewis, Z.A.; Selker, E.U.; Cresko, W.A.; Johnson, E.A. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 2008, 3, e3376. [Google Scholar] [CrossRef] [PubMed]
- Catchen, J.M.; Amores, A.; Hohenlohe, P.; Cresko, W.; Postlethwait, J.H. Stacks: Building and genotyping loci de novo from short-read sequences. G3 Genes Genomes Genet. 2011, 1, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.; Zhang, H.; Tang, Z.; Xu, J.; Yin, D.; Zhang, Z.; Yuan, X.; Zhu, M.; Zhao, S.; Li, X.; et al. rMVP: A memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genom. Proteom. Bioinform. 2021, 19, 619–628. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, L.; Tian, G.; Dong, Y.; Zhang, X.; Zhou, Z.; Luo, X.; Li, Y.; Yao, W. shinyCircos-V2.0: Leveraging the creation of Circos plot with enhanced usability and advanced features. iMeta 2023, 2, e109. [Google Scholar] [CrossRef]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [Green Version]
- Voorrips, R.E. MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhou, T.; Li, D.; Zhang, X.; Yu, W.; Cai, J.; Wang, G.; Guo, Q.; Yang, X.; Cao, F. The genetic diversity and population structure of Sophora alopecuroides (Faboideae) as determined by microsatellite markers developed from transcriptome. PLoS ONE 2019, 14, e0226100. [Google Scholar] [CrossRef] [Green Version]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Muse, S.V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Earl, D.A.; VonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2011, 4, 359–361. [Google Scholar] [CrossRef]
- Rosenberg, N.A. Distruct: A program for the graphical display of population structure. Mol. Ecol. Notes 2004, 4, 137–138. [Google Scholar] [CrossRef]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23, 1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cipriani, G.; Spadotto, A.; Jurman, I.; Di Gaspero, G.; Crespan, M.; Meneghetti, S.; Frare, E.; Vignani, R.; Cresti, M.; Morgante, M.; et al. The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theor. Appl. Genet. 2010, 121, 1569–1585. [Google Scholar] [CrossRef]
Locus | (Na) | (Ne) | (I) | (Ho) | (He) | (PIC) |
---|---|---|---|---|---|---|
IND57 | 6 | 5.810 | 0.630 | 0.899 | 0.743 | 0.681 |
IND67 | 4 | 3.633 | 0.535 | 0.528 | 0.359 | 0.520 |
IND81 | 4 | 3.333 | 0.452 | 0.682 | 0.418 | 0.483 |
IND111 | 3 | 2.094 | 0.824 | 0.651 | 0.522 | 0.448 |
IND114 | 5 | 3.306 | 0.385 | 0.568 | 0.328 | 0.410 |
IND146 | 5 | 4.772 | 0.641 | 0.727 | 0.630 | 0.651 |
IND218 | 4 | 3.566 | 0.541 | 0.605 | 0.457 | 0.474 |
IND249 | 3 | 2.925 | 0.673 | 0.506 | 0.480 | 0.416 |
IND266 | 3 | 2.644 | 0.533 | 0.538 | 0.492 | 0.450 |
IND288 | 4 | 3.648 | 0.551 | 0.503 | 0.371 | 0.520 |
IND295 | 4 | 3.517 | 0.524 | 0.636 | 0.541 | 0.483 |
IND327 | 3 | 2.724 | 0.591 | 0.524 | 0.405 | 0.396 |
IND347 | 4 | 3.277 | 0.353 | 0.618 | 0.407 | 0.527 |
IND407 | 5 | 4.154 | 0.451 | 0.718 | 0.631 | 0.620 |
IND459 | 5 | 4.196 | 0.492 | 0.761 | 0.660 | 0.645 |
IND469 | 5 | 4.621 | 0.556 | 0.620 | 0.572 | 0.617 |
IND494 | 5 | 4.386 | 0.394 | 0.505 | 0.448 | 0.485 |
IND504 | 3 | 2.538 | 0.612 | 0.810 | 0.606 | 0.538 |
IND511 | 4 | 3.601 | 0.543 | 0.585 | 0.462 | 0.483 |
IND548 | 4 | 3.630 | 0.527 | 0.503 | 0.453 | 0.471 |
IND584 | 4 | 3.293 | 0.457 | 0.667 | 0.525 | 0.536 |
IND625 | 4 | 3.659 | 0.579 | 0.628 | 0.492 | 0.542 |
IND639 | 5 | 4.488 | 0.454 | 0.710 | 0.694 | 0.583 |
IND647 | 4 | 3.853 | 0.652 | 0.678 | 0.460 | 0.555 |
IND718 | 4 | 3.332 | 0.442 | 0.488 | 0.349 | 0.423 |
IND729 | 3 | 2.909 | 0.668 | 0.595 | 0.475 | 0.472 |
Mean | 4.115 | 3.612 | 0.541 | 0.625 | 0.499 | 0.517 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Zhou, Q.; Le, L.; Fu, F.; Wang, G.; Cao, F.; Yang, X. Molecular Characterization and Genetic Diversity of Ginkgo (Ginkgo biloba L.) Based on Insertions and Deletions (InDel) Markers. Plants 2023, 12, 2567. https://doi.org/10.3390/plants12132567
Wang D, Zhou Q, Le L, Fu F, Wang G, Cao F, Yang X. Molecular Characterization and Genetic Diversity of Ginkgo (Ginkgo biloba L.) Based on Insertions and Deletions (InDel) Markers. Plants. 2023; 12(13):2567. https://doi.org/10.3390/plants12132567
Chicago/Turabian StyleWang, Dan, Qi Zhou, Linlin Le, Fangfang Fu, Guibin Wang, Fuliang Cao, and Xiaoming Yang. 2023. "Molecular Characterization and Genetic Diversity of Ginkgo (Ginkgo biloba L.) Based on Insertions and Deletions (InDel) Markers" Plants 12, no. 13: 2567. https://doi.org/10.3390/plants12132567
APA StyleWang, D., Zhou, Q., Le, L., Fu, F., Wang, G., Cao, F., & Yang, X. (2023). Molecular Characterization and Genetic Diversity of Ginkgo (Ginkgo biloba L.) Based on Insertions and Deletions (InDel) Markers. Plants, 12(13), 2567. https://doi.org/10.3390/plants12132567