Effects of Wind–Water Erosion and Topographic Factor on Soil Properties in the Loess Hilly Region of China
Abstract
:1. Introduction
2. Results
2.1. Effects of Topographic Factor on Soil 137Cs Inventory and Erosion Rate
2.2. Effects of Topographic Factors on Soil Properties and Biomass
2.3. The Relationships among Topographic Factors, Soil Erosion, and Soil Properties
3. Discussion
3.1. Effect of Topographic Factor on Wind and Water Erosion
3.2. Effects of Topographic Factor and Wind–Water Erosion on Soil Properties
3.3. Implications for Vegetation Restoration
4. Materials and Methods
4.1. Study Area
4.2. Site Selection
4.3. Soil Sampling and Analysis
4.4. Soil Erosion Calculation
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, X.L.; Wei, Y.J.; Cai, C.F.; Yuan, Z.J.; Liao, Y.S.; Li, D.Q. Effects of erosion-induced land degradation on effective sediment size characteristics in sheet erosion. Catena 2020, 195, 104843. [Google Scholar] [CrossRef]
- Li, H.Q.; Zhu, H.S.; Wei, X.R.; Liu, B.Y.; Shao, M.A. Soil erosion leads to degradation of hydraulic properties in the agricultural region of Northeast China. Agric. Ecosyst. Environ. 2021, 314, 107388. [Google Scholar] [CrossRef]
- Molla, A.; Skoufogianni, E.; Lolas, A.; Skordas, K. The impact of different cultivation practices on surface runoff, soil and nutrient losses in a rotational system of legume–cereal and sunflower. Plants 2022, 11, 3513. [Google Scholar] [CrossRef]
- Tuo, D.F.; Xu, M.X.; Zhao, Y.G.; Gao, L.Q. Interactions between wind and water erosion change sediment yield and particle distribution under simulated conditions. J. Arid Land 2015, 7, 590–598. [Google Scholar] [CrossRef]
- Li, Z.W.; Lu, Y.M.; Nie, X.D.; Huang, B.; Ma, W.M.; Liu, C.; Xiao, H.B. Variability of beryllium-7 and its potential for documenting soil and soil organic carbon redistribution by erosion. Soil Sci. Soc. Am. J. 2016, 80, 693–703. [Google Scholar] [CrossRef]
- Holz, M.; Augustin, J. Erosion effects on soil carbon and nitrogen dynamics on cultivated slopes: A meta-analysis. Geoderma 2021, 397, 115045. [Google Scholar] [CrossRef]
- Okin, G.S.; Sala, O.E.; Vivoni, E.R.; Zhang, J.; Bhattachan, A. The interactive role of wind and water in functioning of drylands: What does the future hold? Bioscience 2018, 68, 670–677. [Google Scholar] [CrossRef] [Green Version]
- Jolivet, M.; Braucher, R.; Dovchintseren, D.; Hocquet, S.; Schmitt, J.M.; Team, A. Erosion around a large-scale topographic high in a semi-arid sedimentary basin: Interactions between fluvial erosion, aeolian erosion and aeolian transport. Gemorphology 2021, 386, 107747. [Google Scholar] [CrossRef]
- Tuo, D.F.; Xu, M.X.; Gao, L.Q.; Zhang, S.; Liu, S.H. Changed surface roughness by wind erosion accelerates water erosion. J. Soil Sediment 2016, 16, 105–114. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Dong, Y.F.; Su, Z.G.; Mudd, S.M.; Zheng, Q.H.; Hu, G.; Yan, D. Spatial distribution of water and wind erosion and their influence on the soil quality at the agropastoral ecotone of North China. Int. Soil Water Conse. 2020, 8, 253–265. [Google Scholar] [CrossRef]
- Beullens, J.; de Velde, D.V.; Nyssen, J. Impact of slope aspect on hydrological rainfall and on the magnitude of rill erosion in Belgium and northern France. Catena 2014, 114, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.K.; Guan, Q.Y.; Pan, N.H.; Zhao, R.; Yang, L.Q.; Xu, C.Q. Spatiotemporal Variations and Driving Factors of the Potential Wind Erosion Rate in the Hexi Region. Land Degrad. Dev. 2021, 32, 139–157. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Yang, M.Y.; Sun, X.J.; Zhang, F.B. Estimation of wind and water erosion based on slope aspects in the crisscross region of the Chinese Loess Plateau. J. Soil Sediment 2018, 18, 1620–1631. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.P.; Lu, J.K.; Chen, W.M.; Wei, G.H.; Lin, Y.B. Topography affects the soil conditions and bacterial communities along a restoration gradient on Loess-Plateau. Appl. Soil Ecol. 2020, 150, 103471. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Wang, Z.; Yao, Y.F.; Kong, W.B.; Zhao, Z.N.; Shao, M.A.; Wei, X.R. Effects of slope morphology and position on soil nutrients after deforestation in the hilly loess region of China. Agric. Ecosyst. Environ. 2021, 321, 107615. [Google Scholar] [CrossRef]
- Yu, H.Y.; Zha, T.G.; Zhang, X.X.; Nie, L.S.; Ma, L.M.; Pan, Y.W. Spatial distribution of soil organic carbon may be predominantly regulated by topography in a small revegetated watershed. Catena 2020, 188, 104459. [Google Scholar] [CrossRef]
- Wei, P.; Pan, X.B.; Xu, L.; Hu, Q.; Zhang, X.T.; Guo, Y.Y.; Shao, C.X.; Wang, C.C.; Li, Q.Y.; Yin, Z.W. The effects of topography on aboveground biomass and soil moisture at local scale in dryland grassland ecosystem, China. Ecol. Indic. 2019, 105, 107–115. [Google Scholar] [CrossRef]
- Wang, B.R.; An, S.S.; Liang, C.; Liu, Y.; Kuzyakov, Y. Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biol. Biochem. 2021, 162, 108422. [Google Scholar] [CrossRef]
- Malik, I.; Poręba, G.; Wistuba, M.; Woskowicz-Ślęzak, B. Combining 137Cs, 210Pb and dendrochronology for improved reconstruction of erosion–sedimentation events in a loess gully system (southern Poland). Land Degrad. Dev. 2021, 32, 2336–2350. [Google Scholar] [CrossRef]
- Su, Z.G.; Wang, L.J.; Liu, Y.H.; Fu, B.; Zhang, J.H.; Wu, Z.; Zhou, T.; Wang, J.J. 137Cs tracing of the spatial patterns in soil redistribution, organic carbon and total nitrogen in the southeastern Tibetan Plateau. Int. Soil Water Conserv. Res. 2023, 11, 86–96. [Google Scholar] [CrossRef]
- Van Pelt, R.S.; Hushmurodov, S.X.; Baumhardt, R.L.; Chappell, A.; Nearing, M.A.; Polyakov, V.O.; Strack, J.E. The reduction of partitioned wind and water erosion by conservation agriculture. Catena 2017, 148, 160–167. [Google Scholar] [CrossRef]
- Caballero, Y. Aplicación de la técnica nuclear de Cesio-137 para estimar la erosión de los suelos en la subcuenca del Río Ochomogo. Rev. Cien. Agua Conoc. 2018, 3, 38–52. [Google Scholar]
- Tuo, D.F.; Xu, M.X.; Gao, G.Y. Relative contributions of wind and water erosion to total soil loss and its effect on soil properties in sloping croplands of the Chinese Loess Plateau. Sci. Total Environ. 2018, 633, 1032–1040. [Google Scholar] [CrossRef]
- Meliho, M.; Nouira, A.; Benmansour, M.; Boulmane, M.; Khattabi, A.; Mhammdi, N.; Benkdad, A. Assessment of soil erosion rates in a Mediterranean cultivated and uncultivated soils using fallout 137Cs. J. Environ. Radioact. 2019, 208–209, 106021. [Google Scholar] [CrossRef] [PubMed]
- Bungau, S.; Behl, T.; Aleya, L.; Bourgeade, P.; Aloui-Sossé, B.; Purza, A.L.; Abid, A.; Samuel, A.D. Expatiating the impact of anthropogenic aspects and climatic factors on long-term soil monitoring and management. Environ. Sci. Pollut. Res. 2021, 28, 30528–30550. [Google Scholar] [CrossRef]
- Derakhshan-Babaei, F.; Nosrati, K.; Mirghaed, F.A.; Egli, M. The interrelation between landform, land-use, erosion and soil quality in the Kan catchment of the Tehran province, central Iran. Catena 2021, 204, 105412. [Google Scholar] [CrossRef]
- Samuel, A.D.; Bungau, S.; Tit, D.M.; Melinte, C.E.; Purza, L.; Badea, G.E. Effects of long term application of organic and mineral fertilizers on soil enzymes. Rev. Chim. 2018, 69, 2608–2612. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Wu, J.; An, Z.; Suo, L.; Ding, J.; Li, S.; Wei, D.; Jin, L. Effects of the rainfall intensity and slope gradient on soil erosion and nitrogen loss on the sloping fields of miyun reservoir. Plants 2023, 12, 423. [Google Scholar] [CrossRef]
- Vanden-Bygaart, A.J.; Geng, X.; He, J. Spatial decoupling of legacy phosphorus in cropland: Soil erosion and deposition as a mechanism for storage. Soil Till. Res. 2021, 211, 105050. [Google Scholar] [CrossRef]
- Yin, S.; Bai, J.H.; Wang, W.; Zhang, G.L.; Jia, J.; Cui, B.S.; Liu, X.H. Effects of soil moisture on carbon mineralization in floodplain wetlands with different flooding frequencies. J. Hydrol. 2019, 574, 1074–1084. [Google Scholar] [CrossRef]
- Yu, B.W.; Liu, G.H.; Liu, Q.S.; Wang, X.P.; Feng, J.L.; Huang, C. Soil moisture variations at different topographic domains and land use types in the semi-arid Loess Plateau, China. Catena 2018, 165, 125–132. [Google Scholar] [CrossRef]
- Fan, J.Q.; Xu, Y.; Ge, H.Y.; Yang, W. Vegetation growth variation in relation to topography in Horqin Sandy Land. Ecol. Indic. 2020, 113, 106215. [Google Scholar] [CrossRef]
- Xiao, H.B.; LI, Z.W.; Chang, X.F.; Huang, B.; Nie, X.D.; Liu, C.; Liu, L.; Wang, D.Y.; Jiang, J.Y. The mineralization and sequestration of organic carbon in relation to agricultural soil erosion. Geoderma 2018, 329, 73–81. [Google Scholar] [CrossRef]
- Rakhsh, F.; Golchin, A.; Agha, A.A.A.; Nelson, P.N. Mineralization of organic carbon and formation of microbial biomass in soil: Effects of clay content and composition and the mechanisms involved. Soil Biol. Biochem. 2020, 151, 108036. [Google Scholar] [CrossRef]
- Mohseni, N.; Hosseinzadeh, S.R. Soil erosion progression under rill and gully erosion processes and its effect on variations of mechanisms controlling C mineralization ratio. Ecohydrol. Hydrobiol. 2022, 22, 370–378. [Google Scholar] [CrossRef]
- Pires, C.V.; Schaefer, C.E.R.G.; Hashigushi, A.K.; Thomazini, A.; Filho, E.I.F.; Mendonça, E.S. Soil organic carbon and nitrogen pools drive soil C-CO2 emissions from selected soils in maritime Antarctica. Sci. Total Environ. 2017, 596–597, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.M.; Fu, B.J.; Piao, S.L.; Wang, S.; Ciais, P.; Zeng, Z.Z.; Lü, Y.H.; Zeng, Y.; Li, Y.; Jiang, X.H.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, H.Y.; Zhang, Z.D.; Wang, D.W. Model-based assessment soil loss by wind and water erosion in China’s Loess Plateau: Dynamic change, conservation effectiveness, and strategies for sustainable restoration. Global Planet. Change 2019, 172, 396–413. [Google Scholar] [CrossRef]
- Jia, G.M.; Cao, J.; Wang, C.Y.; Wang, G. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, northwest China. Forest Ecol. Manag. 2005, 217, 117–125. [Google Scholar] [CrossRef]
- An, J.; Zheng, F.L.; Wang, B. Using 137Cs technique to investigate the spatial distribution of erosion and deposition regimes for a small catchment in the black soil region, Northeast China. Catena 2014, 123, 243–251. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommer, L.E. Total Carbon, Organic Carbon, and Organic Matter; Methods of Soil, Analysis; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy and Soil Science Society of American: Madison, WI, USA, 1982; pp. 1–129. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Total Nitrogen. In Methods of Soil Analysis. Part 2. Agronomy Monograph No. 9, 2nd ed.; Page, A.L., Ed.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Walling, D.E.; He, Q. Improved models for estimating soil erosion rates from caesium-137 measurements. J. Environ. Qual. 1999, 28, 611–622. [Google Scholar] [CrossRef]
Variable | Max. | Min. | Mean | SD | CV (%) |
---|---|---|---|---|---|
137Cs (Bq/m2) | 1172.59 | 228.26 | 696.22 | 296.18 | 42.54 |
SOC (g/kg) | 10.12 | 6.00 | 7.85 | 1.39 | 17.71 |
TN (g/kg) | 0.52 | 0.37 | 0.45 | 0.05 | 11.11 |
Clay (%) | 11.37 | 8.66 | 9.95 | 0.83 | 8.34 |
Silt (%) | 20.22 | 15.13 | 16.93 | 1.51 | 8.92 |
Sand (%) | 76.21 | 68.42 | 73.12 | 2.26 | 3.09 |
SWC (%) | 13.14 | 8.72 | 10.60 | 1.65 | 15.57 |
BD (g/cm3) | 1.34 | 1.25 | 1.29 | 0.03 | 2.33 |
Biomass (g/m2) | 81.00 | 47.22 | 60.49 | 11.65 | 19.26 |
Topographical Factor | 137Cs | SOC | TN | Clay | Silt | Sand | SWC | BD | Biomass |
---|---|---|---|---|---|---|---|---|---|
Aspect | 0.020 | 0.002 | 0.196 | 0.002 | 0.003 | 0.003 | 0.004 | 0.512 | 0.013 |
Position | 0.002 | 0.489 | 0.060 | 0.567 | 0.525 | 0.529 | 0.737 | 0.641 | 0.504 |
Aspect | Position | Clay (%) | Silt (%) | Sand (%) | SWC (%) | BD (g/cm3) | Biomass (g/m2) |
---|---|---|---|---|---|---|---|
Northwest | Upper Mid Lower Mean | 8.66 8.94 9.31 8.97 | 15.13 15.83 16.56 15.84 | 76.21 75.24 74.13 75.19 | 8.98 11.14 8.85 9.66 | 1.32 1.26 1.26 1.28 | 50.95 49.10 52.73 50.93 |
Northeast | Upper Mid Lower Mean | 9.52 10.43 10.36 10.10 | 15.34 15.99 17.04 16.12 | 75.14 73.58 72.60 73.77 | 9.08 8.72 8.96 8.92 | 1.28 1.29 1.25 1.27 | 49.75 47.22 57.98 51.65 |
Southwest | Upper Mid Lower Mean | 10.91 10.67 11.37 10.98 | 19.06 18.07 20.22 19.12 | 70.03 71.26 68.42 69.90 | 10.67 11.14 12.16 11.32 | 1.31 1.28 1.32 1.30 | 70.42 60.20 63.58 64.73 |
Southeast | Upper Mid Lower Mean | 9.33 9.82 10.07 9.74 | 16.34 16.70 16.85 16.63 | 74.33 73.48 73.08 73.63 | 11.43 12.92 13.14 12.50 | 1.28 1.28 1.34 1.30 | 62.96 79.99 81.00 74.65 |
Environment Factor | Axis 1 | Axis 2 | Lambda−1 | Lambda−A | p Value |
---|---|---|---|---|---|
Aspect 137Cs inventory Position | 0.9618 * 0.7533 * 0.2639 | −0.2456 0.2846 0.9492 * | 56.1 30.9 8.4 | 56.1 8.4 2.5 | 0.002 0.016 0.508 |
137Cs | SOC | TN | Clay | Silt | Sand | SWC | BD | Biomass | |
---|---|---|---|---|---|---|---|---|---|
137Cs SOC TN Clay Silt Sand SWC BD Biomass | 1 0.658 * 0.619 * 0.324 0.205 −0.256 0.479 0.045 0.506 | 1 0.782 ** 0.258 0.368 −0.341 0.740 ** 0.333 0.863 ** | 1 0.480 0.699 * −0.643 * 0.593 * 0.076 0.635 * | 1 0.862 ** −0.941 ** 0.260 0.250 0.358 | 1 −0.983 ** 0.426 0.286 0.441 | 1 −0.378 −0.282 −0.425 | 1 0.418 0.820 ** | 1 0.441 | 1 |
Site | Slope Aspect | Slope Gradient (°) | Slope Length (m) | Altitude (m) |
---|---|---|---|---|
1 | Northwest Northeast Southwest Southeast | 17 19 18 20 | 70 70 70 70 | 1645 1645 1645 1645 |
2 | Northwest Northeast Southwest Southeast | 18 17 19 21 | 80 80 80 80 | 1590 1590 1590 1590 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuo, D.; Lu, Q.; Wu, B.; Li, Q.; Yao, B.; Cheng, L.; Zhu, J. Effects of Wind–Water Erosion and Topographic Factor on Soil Properties in the Loess Hilly Region of China. Plants 2023, 12, 2568. https://doi.org/10.3390/plants12132568
Tuo D, Lu Q, Wu B, Li Q, Yao B, Cheng L, Zhu J. Effects of Wind–Water Erosion and Topographic Factor on Soil Properties in the Loess Hilly Region of China. Plants. 2023; 12(13):2568. https://doi.org/10.3390/plants12132568
Chicago/Turabian StyleTuo, Dengfeng, Qi Lu, Bo Wu, Qiang Li, Bin Yao, Leilei Cheng, and Jinlei Zhu. 2023. "Effects of Wind–Water Erosion and Topographic Factor on Soil Properties in the Loess Hilly Region of China" Plants 12, no. 13: 2568. https://doi.org/10.3390/plants12132568
APA StyleTuo, D., Lu, Q., Wu, B., Li, Q., Yao, B., Cheng, L., & Zhu, J. (2023). Effects of Wind–Water Erosion and Topographic Factor on Soil Properties in the Loess Hilly Region of China. Plants, 12(13), 2568. https://doi.org/10.3390/plants12132568