Biostimulants in Corn Cultivation as a Means to Alleviate the Impacts of Irregular Water Regimes Induced by Climate Change
Abstract
:1. Introduction
2. Results
2.1. Complete Analysis of Variance and Gas Exchange of Corn as a Function of Foliar Application of Biostimulant
2.2. Corn Gas Exchange as a Function of Biostimulant Application Doses via Seed in Different Periods
2.3. Corn Gas Exchange as a Function of Biostimulant Application Doses via Seed Combined with Foliar Application
3. Material and Methods
3.1. Experimental Area, Soil and Weather Conditions
3.2. Experimental Design and Treatments
3.3. Experimental Conduction and Evaluations
3.4. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Synthesis Report of the IPCC Sixth Assessment Report (AR6); IPCC: Geneva, Switzerland, 2023; Available online: https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_LongerReport.pdf (accessed on 8 June 2023).
- Mutolib, A.; Nuraini, C. Adaptation Capacity of Corn Farmer’s to Climate Change: A Case Study in Pringsewu District, Lampung Province. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Online, 2–3 August 2022; Institute of Physics: Bristol, UK, 2023; Volume 1133. [Google Scholar]
- Zaro, G.C.; Caramori, P.H.; Da, W.; Ricce, S.; Nitsche, P.R.; Werner, S.S.; Rosisca, J.R.; De Aquino, G.S.; Da Costa, A.B.F. Inter-Annual Analysis of Soybean and Corn Yield in Relation to Water Deficit in a Transitional Zone between Subtropical and Tropical Climate. AJCS 2018, 12, 1835–2707. [Google Scholar] [CrossRef]
- Claudio, A.; Almeida, S.; Bonifácio, J.; Pusch, M.; Correia De Oliveira, F.; Oliveira Geseinhoff, L.; Biscaro, G.A. Produtividade e eficiência de uso da água em milho cultivado com diferentes estratégias de manejo hídrico. Rev. Bras. Agric. Irrig.—RBAI 2017, 11, 1448–1457. [Google Scholar] [CrossRef] [Green Version]
- Ali, Q.; Ashraf, M. Induction of Drought Tolerance in Maize (Zea Mays L.) Due to Exogenous Application of Trehalose: Growth, Photosynthesis, Water Relations and Oxidative Defence Mechanism. J. Agron. Crop Sci. 2011, 197, 258–271. [Google Scholar] [CrossRef]
- Mahalingam, R. Consideration of Combined Stress: A Crucial Paradigm for Improving Multiple Stress Tolerance in Plants. In Combined Stresses in Plants: Physiological, Molecular, and Biochemical Aspects; Springer International Publishing: Cham, Switzerlamd, 2015; pp. 1–26. [Google Scholar]
- Noein, B.; Soleymani, A. Corn (Zea Mays L.) Physiology and Yield Affected by Plant Growth Regulators Under Drought Stress. J. Plant Growth Regul. 2022, 41, 672–681. [Google Scholar] [CrossRef]
- Mohammadi, M.; Asadi-Gharneh, H.A. How the Morphological Properties of Mentha Longifolia.(L.) Huds. May Be Affected by Geographical Differences. J. Photochem. Photobiol. B 2018, 178, 237–242. [Google Scholar] [CrossRef]
- Sami, F.; Yusuf, M.; Faizan, M.; Faraz, A.; Hayat, S. Role of Sugars under Abiotic Stress. Plant Physiol. Biochem. 2016, 109, 54–61. [Google Scholar] [CrossRef]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant Hormone-Mediated Regulation of Stress Responses. BMC Plant Biol. 2016, 16, 86. [Google Scholar] [CrossRef] [Green Version]
- Baum, M.E.; Licht, M.A.; Huber, I.; Archontoulis, S.V. Impacts of Climate Change on the Optimum Planting Date of Different Maize Cultivars in the Central US Corn Belt. Eur. J. Agron. 2020, 119, 126101. [Google Scholar] [CrossRef]
- Malik, A.; Mor, V.S.; Tokas, J.; Punia, H.; Malik, S.; Malik, K.; Sangwan, S.; Tomar, S.; Singh, P.; Singh, N.; et al. Biostimulant-Treated Seedlings under Sustainable Agriculture: A Global Perspective Facing Climate Change. Agronomy 2020, 11, 14. [Google Scholar] [CrossRef]
- Barbosa da Silva, J.H.; da Silva, A.V.; da Silva, C.M.; Veloso Ribeiro Gomes, T.R.; dos Santos Araújo, V.F.; Sousa Nóbrega, J.; Carneiro da Silva, J.L.; Correia de Melo Ferreira Dantas, V.; Silva, J.A.; Oliveira Guedes Soares, A.; et al. Uso de bioestimulantes na cultura do milho (Zea mays L.): Uma revisão. Sci. Electron. Arch. 2023, 16, 7–14. [Google Scholar] [CrossRef]
- Megeed, A. Effect of some plant growth regulators and biostimulants on the productivity of Sakha108 rice plant (Oryza sativa L.) under different water stress conditions. Appl. Ecol. Environ. Res. 2021, 19, 2859–2878. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Casadesús, A.; Brockman, H.; Munné-Bosch, S. An Overview of Plant-Based Natural Biostimulants for Sustainable Horticulture with a Particular Focus on Moringa Leaf Extracts. Plant Sci. 2020, 295, 110194. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Moller, I.; Murphy, A. Fisiologia e Desenvolvimento Vegetal, 6th ed.; Artmed: Porto Alegre, Brazil, 2017; pp. 245–267. [Google Scholar]
- Cunha, F.F.d.; Magalhães, F.F.; Castro, M.A. Métodos para estimativa da evapotranspiração de referência para chapadão do sul-ms. Rev. Eng. Agric.—REVENG 2013, 21, 159–172. [Google Scholar] [CrossRef]
- FAO. Evapotranspiración del Cultivo Guías para la Determinación de los Requerimientos de Agua de los Cultivos. In ESTUDIO FAO RIEGO Y DRENAJE 56; FAO: Rome, Italy, 2006. [Google Scholar]
- Santos, H.G.; Jacomine, P.T.; Dos Anjos, L.H.C.; de Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Brazilian Soil Classification System. Portal Embrapa 2018, 5, 350. [Google Scholar]
- Cerrado: Correção Do Solo e Adubação.—Portal Embrapa. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/555355/cerrado-correcao-do-solo-e-adubacao (accessed on 8 June 2023).
- Cruz, J.C.; Filho, I.A.P.; Alvarenga, R.C.; Neto, M.M.G.; Viana, J.H.M.; de Oliveira, M.F.; Matrangolo, W.J.R.; de Albuquerque Filho, M.R. Embrapa Milho e Sorgo, Sistemas de Produção, 2, ISSN 1679-012X Versão Eletrônica—6 ª edição, Set./2010. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/27037/1/Plantio.pdf (accessed on 8 June 2023).
- Lana, R.M.Q.; Lana, A.M.Q.; Gozuen, C.F.; Bonotto, I.; Trevisan, R.L. Aplicação de Reguladores de Crescimento Na Cultura Do Feijoeiro. Biosci. J. 2009, 25, 13–20. [Google Scholar]
- Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M. Microalgae and Wastewater Treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef] [Green Version]
- Bielach, A.; Hrtyan, M.; Tognetti, V.B. Plants under Stress: Involvement of Auxin and Cytokinin. Int. J. Mol. Sci. 2017, 18, 1427. [Google Scholar] [CrossRef] [Green Version]
- Baldo, R.; Scalon, S.d.P.Q.; Rosa, Y.B.C.J.; Mussury, R.M.; Betoni, R.; dos Santos Barreto, W. Comportamento Do Algodoeiro Cultivar Delta Opal Sob Estresse Hídrico Com e Sem Aplicação de Bioestimulante. Ciênc. Agrotec. 2009, 33, 1804–1812. [Google Scholar] [CrossRef]
- Rizzatti Ávila, M.; de Lucca e Braccini, A.; Alberto Scapim, C.; Paiola Albrecht, L.; Antônio Tonin, T.; Stülp, M. Bioregulator Application, Agronomic Efficiency, and Quality of Soybean Seeds. Sci. Agric. 2008, 65, 604–612. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, O.F.; De Lima, S.F.; De Paiva Neto, V.B.; Piati, G.L.; De, C.R.W.; Osório, S.; De Souza, H.M. Defoliation of Sweet Corn Plants under Irrigation Depths and Its Impact on Gas Exchange. Rev. Bras. Eng. Agríc. Ambient. 2017, 21, 822–827. [Google Scholar] [CrossRef] [Green Version]
- Caracterização Ecofisiológica de Linhagens de Milho Submetidas a Baixa Disponibilidade Hídrica Durante o Florescimento.—Portal Embrapa. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/657059/caracterizacao-ecofisiologica-de-linhagens-de-milho-submetidas-a-baixa-disponibilidade-hidrica-durante-o-florescimento (accessed on 8 June 2023).
- Al-Shaheen, M.R.; Soh Mamat, A.; Soh, A. The Effect of Water Deficit and Gibberellic Acid on Growth, Productivity of Corn (Zea Mays L.). J. Adv. Res. Agric. Sci. Technol. 2018, 1, 52–56. [Google Scholar]
- Lulai, E.C.; Suttle, J.C.; Olson, L.L.; Neubauer, J.D.; Campbell, L.G.; Campbell, M.A. Wounding Induces Changes in Cytokinin and Auxin Content in Potato Tuber, but Does Not Induce Formation of Gibberellins. J. Plant Physiol. 2016, 191, 22–28. [Google Scholar] [CrossRef] [PubMed]
- De Assis De Oliveira, F.; Francismar De Medeiros, J.; Cristina Da Cunha, R.; Williane De Lima Souza, M.; Luan, E.; Lima, A. Uso de Bioestimulante Como Agente Amenizador Do Estresse Salino Na Cultura Do Milho Pipoca. Rev. Ciência Agronômica 2016, 47, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Monneveux, P.; Belhassen, E. The Diversity of Drought Adaptation in the Wide. Plant Growth Regul. 1996, 20, 85–92. [Google Scholar] [CrossRef]
- Xu, Z.Z.; Zhou, G.S.; Wang, Y.L.; Han, G.X.; Li, Y.J. Changes in Chlorophyll Fluorescence in Maize Plants with Imposed Rapid Dehydration at Different Leaf Ages. J. Plant Growth Regul. 2008, 27, 83–92. [Google Scholar] [CrossRef]
- Moghadam, H.T.; Zahedi, H.; Ashkiani, A. Effect of Zinc Foliar Application on Auxin and Gibberellin Hormones and Catalase and Superoxide Dismutase Enzyme Activity of Corn (Zea Mays L.) under Water Stress. Maydica 2013, 58, 218–223. [Google Scholar]
- de Oliveira, D.B.; de Melo, M.R.M.; Cardoso, E.J.A.; Lambert, R.A.E.; Biosfera, E.; Científico Conhecer-Goiânia, C. AVALIA-ÇÃO FISIOLÓGICA DO MILHO (Zea Mays) SOB DIFERENTES LÂMINAS DE IRRIGAÇÃO, NO MUNICÍPIO DE ITUM-BIARA-GO PHYSIOLOGICAL EVALUATION OF CORN (Zea Mays) UNDER DIFFERENT IRRIGATION LEVELS IN THE MUNICIPALITY OF ITUMBIARA-GO. 2014. Available online: https://www.conhecer.org.br/enciclop/2014a/AGRARIAS/avaliacao%20fisiologica.pdf (accessed on 8 June 2023).
- Guimarães, P.d.S.; Rocha, D.S.; Paterniani, M.E.A.G.Z. Conteúdo de Carboidrato Foliar Em Híbridos de Milho Submetidos à Restrição Hídrica. Evidência 2019, 19, 93–112. [Google Scholar] [CrossRef]
- da Silva, F.G.; Dutra, W.F.; Dutra, A.F.; de Oliveira, I.M.; Filgueiras, L.M.B.; de Melo, A.S. Gas Exchange and Chlorophyll Fluorescence of Eggplant Grown under Different Irrigation Depths. Rev. Bras. Eng. Agric. Ambient. 2015, 19, 946–952. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, L.P.; De Lucca, E.; Braccini, A.; Ávila, M.R.; Barbosa, M.C.; Ricci, T.T.; Albrecht, A.P. Application of Bioregulator and Production of the Cotton Plant and Quality of Fiber. Sci. Agrar. 2009, 10, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, L.P.; de Lucca e Braccini, A.; Scapim, C.A.; Ávila, M.R.; Albrecht, A.J.P.; Ricci, T.T. Manejo de Biorregulador Nos Componentes de Produção e Desempenho Das Plantas de Soja. Biosci. J. 2011, 27, 865–876. [Google Scholar]
- Lima, S.F.; Jesus, A.A.; Vendruscolo, E.P.; Oliveira, T.R.; Andrade, M.G.O.; Simon, C.A. Desenvolvimento e Produção Do Milho Doce Tratado Com Bioestimulante. Hortic. Bras. 2020, 38, 94–100. [Google Scholar] [CrossRef]
- Piati, G.L.; Barzotto, G.R.; Feliciano, O.; Santos, D. Can Biostimulant Work as a Water Stress Attenuator in Corn Crop? Eur. Acad. Res. 2020, 24, 238–243. [Google Scholar] [CrossRef]
- Alsherif, E.A.; Almaghrabi, O.; Elazzazy, A.M.; Abdel-Mawgoud, M.; Beemster, G.T.S.; Sobrinho, R.L.; AbdElgawad, H. How Carbon Nanoparticles, Arbuscular Mycorrhiza, and Compost Mitigate Drought Stress in Maize Plant: A Growth and Biochemical Study. Plants 2022, 11, 3324. [Google Scholar] [CrossRef]
- Silva, S.; Sousa, A.C.D.P.; DA SILVA, C.S.; Araújo, E.R.; Soares, M.A.D.S.; Teodoro, I. Productive Parameters of Maize under Water Deficit in Different Phenological Phases in the Brazilian Semi-Arid. IRRIGA 2021, 1, 30–41. [Google Scholar] [CrossRef]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in Plant Science: A Global Perspective. Front. Plant Sci. 2017, 7, 238366. [Google Scholar] [CrossRef] [Green Version]
- Trocas Gasosas Em Folhas de Sol e Sombreadas de Cajueiro Anão Em Diferentes Regimes Hídricos.—Portal Embrapa. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/877908/trocas-gasosas-em-folhas-de-sol-e-sombreadas-de-cajueiro-anao-em-diferentes-regimes-hidricos (accessed on 8 June 2023).
- Neumann, É.R.; Resende, J.T.V.; Camargo, L.K.P.; Chagas, R.R.; Lima Filho, R.B. Produção de Mudas de Batata Doce Em Ambiente Protegido Com Aplicação de Extrato de Ascophyllum Nodosum. Hortic. Bras. 2017, 35, 490–498. [Google Scholar] [CrossRef] [Green Version]
FV | LD | Mean Square | ||||||
---|---|---|---|---|---|---|---|---|
A | E | gs | Ci | IWUE | EIC | LA | ||
Block | 3 | 0.3 | 0.46 | 0.00006 | 71.33 | 0.17 | 0.00007 | 16,719.81 |
T | 3 | 1565.78 ** | 367 ** | 0.003 | 33,927.14 ** | 33.39 ** | 0.004 ** | 13,817,860.87 ** |
F | 1 | 42.96 ** | 1.65 * | 0.004 | 197.1 ** | 0.04 | 0.0004 ** | 11,311,699.77 ** |
S | 4 | 91.37 ** | 15.02 ** | 0.08 ** | 489.45 ** | 0.79 ** | 0.0008 ** | 980,519.65 ** |
T × F | 3 | 72.31 ** | 0.8 | 0.01 ** | 99.24 ** | 1.59 ** | 0.002 ** | 1,411,731.74 ** |
T × S | 12 | 50.51 ** | 4.91 ** | 0.02 ** | 602.65 ** | 0.60 ** | 0.002 ** | 228,291.09 ** |
F × S | 4 | 5.91 ** | 1.10 * | 0.01 ** | 18.11 | 0.18 | 0.0001 * | 118,470.20 ** |
Error | 129 | 1.37 | 0.39 | 0.002 | 20.81 | 0.12 | 0.00005 | 24,425.23 |
CV (%) | 3.36 | 7.28 | 8.1 | 2.22 | 7.96 | 4.02 | 3.67 | |
Average | 34.82 | 8.62 | 0.49 | 205.65 | 4.3 | 0.17 | 4253.26 |
Variable | Biostimulant | Sowing Time | |||
---|---|---|---|---|---|
2016/1 | 2016/2 | 2017/1 | 2017/2 | ||
A | With foliar | 43.59 a A | 32.74 a C | 36.02 a B | 29.01 b D |
Without foliar | 42.89 a A | 27.94 b D | 35.82 a B | 30.56 a C | |
gs | With foliar | 0.51 a A | 0.50 a A | 0.52 a A | 0.46 b B |
Without foliar | 0.49 b A | 0.47 a A | 0.48 b A | 0.51 a A | |
Ci | With foliar | 239.11 a A | 192.25 a C | 222.96 a B | 172.73 a D |
Without foliar | 237.75 a A | 191.93 a C | 216.08 b B | 172.42 a D | |
IWUE | With foliar | 3.77 a B | 4.87 a A | 3.40 a C | 5.09 b A |
Without foliar | 3.72 a C | 4.52 b B | 3.34 a D | 5.68 a A | |
EIC | With foliar | 0.18 a A | 0.17 a B | 0.16 b C | 0.17 b B |
Without foliar | 0.18 a A | 0.15 b C | 0.17 a B | 0.18 a A | |
LA | With foliar | 4952.99 a A | 4594.69 a B | 4897.36 a A | 3631.56 a C |
Without foliar | 4593.98 b A | 3514.09 b C | 4449.28 b B | 3392.11 b C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luiz Piati, G.; Ferreira de Lima, S.; Lustosa Sobrinho, R.; dos Santos, O.F.; Vendruscolo, E.P.; Jacinto de Oliveira, J.; do Nascimento de Araújo, T.A.; Mubarak Alwutayd, K.; Finatto, T.; AbdElgawad, H. Biostimulants in Corn Cultivation as a Means to Alleviate the Impacts of Irregular Water Regimes Induced by Climate Change. Plants 2023, 12, 2569. https://doi.org/10.3390/plants12132569
Luiz Piati G, Ferreira de Lima S, Lustosa Sobrinho R, dos Santos OF, Vendruscolo EP, Jacinto de Oliveira J, do Nascimento de Araújo TA, Mubarak Alwutayd K, Finatto T, AbdElgawad H. Biostimulants in Corn Cultivation as a Means to Alleviate the Impacts of Irregular Water Regimes Induced by Climate Change. Plants. 2023; 12(13):2569. https://doi.org/10.3390/plants12132569
Chicago/Turabian StyleLuiz Piati, Gabriel, Sebastião Ferreira de Lima, Renato Lustosa Sobrinho, Osvaldir Feliciano dos Santos, Eduardo Pradi Vendruscolo, Janaina Jacinto de Oliveira, Tassila Aparecida do Nascimento de Araújo, Khairiah Mubarak Alwutayd, Taciane Finatto, and Hamada AbdElgawad. 2023. "Biostimulants in Corn Cultivation as a Means to Alleviate the Impacts of Irregular Water Regimes Induced by Climate Change" Plants 12, no. 13: 2569. https://doi.org/10.3390/plants12132569
APA StyleLuiz Piati, G., Ferreira de Lima, S., Lustosa Sobrinho, R., dos Santos, O. F., Vendruscolo, E. P., Jacinto de Oliveira, J., do Nascimento de Araújo, T. A., Mubarak Alwutayd, K., Finatto, T., & AbdElgawad, H. (2023). Biostimulants in Corn Cultivation as a Means to Alleviate the Impacts of Irregular Water Regimes Induced by Climate Change. Plants, 12(13), 2569. https://doi.org/10.3390/plants12132569