Sedum Growth Patterns under Different Pedoclimatic Conditions
Abstract
:1. Introduction
2. Results
2.1. Root Growth Rate
2.1.1. Green Roof Substrate (G.R.)
2.1.2. Commercial Mixture of Topsoil with Traces of Dolomite and Perlite (C.M.)
2.1.3. River Sand (R.S.)
2.2. Stem Growth Rate
2.2.1. Green Roof Substrate (G.R.)
2.2.2. Commercial Mixture of Topsoil with Traces of Dolomite and Perlite (C.M.)
2.2.3. River Sand (R.S.)
2.3. Morphological Analysis
3. Discussion
3.1. Root Growth Rate
3.2. Stem Growth Rate
3.3. Morphological Analysis
4. Materials and Methods
4.1. Experimental Site and Pedoclimatic Conditions
- specific substrate for green roofs, typical for use as a growing medium for semi-intensive green roofs (G.R.);
- a commercial mix of topsoil with traces of dolomite and perlite (C.M.);
- river sand.
- pH: method used—potentiometric;
- nitrogen (N): method used—Kjedahl;
- phosphorus (P): method used—colorimetric;
- potassium (K): method used—flamphotometric;
- particle size analysis: method used—Kacinscki;
- hygroscopicity coefficient: method used—Mittscherlich;
- carbonates: method used—Scheibler;
- electrical conductivity: method used—conductometric.
4.2. Plant Material and Design
- 482 pots, respectively, 2892 cuttings of S. spurium ‘Purpur Winter’;
- 983 pots, respectively, 5898 cuttings of S. spathulifolium ‘Cape Blanco’;
- 581 pots, respectively, 3486 cuttings of S. spathulifolium ‘Purpureum’.
4.3. Analytical Methodology and Data Processing
- stem weight;
- stem length and diameter;
- number of leaves;
- leaf weight;
- leaf surface area.
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Francis, L.; Jensen, M. Benefits of green roofs: A systematic review of the evidence for three ecosystem services. Urban For. Urban Green. 2017, 28, 167–176. [Google Scholar] [CrossRef]
- Getter, K.; Rowe, D. Selecting Plants for Extensive Green Roofs in the United States; Bulletin E-3047; Michigan State University Extension: East Lansing, MI, USA, 2008. [Google Scholar]
- Toma, F.; Sorina, P. Floricultură și Compoziții Floricole; Total Publishing: Bucharest, Romania, 2020; pp. 288–289. [Google Scholar]
- Toma, F. Floricultură și Artă Florală, Specii Utilizate Pentru Decorul Parcurilor și Grădinilor; INVEL Multimedia: Bucharest, Romania, 2009; Volume 4, pp. 252–254. [Google Scholar]
- Draghia, L.; Chelariu, E.L. Germplasm sources from spontaneous flora of Constanţa county. Lucr. Ştiinţifice USAMV Iaşi Ser. Hortic. 2011, 54, 263–268. [Google Scholar]
- Durhman, A.; Rowe, D.; Rugh, C. Effect of Watering Regimen on Chlorophyll Fluorescence and Growth of Selected Green Roof Plant Taxa. Hort Sci. 2006, 41, 1623–1628. [Google Scholar] [CrossRef] [Green Version]
- Wolf, D.; Lundholm, J. Water uptake in green roof microcosms: Effects of plant species and water availability. Ecol. Eng. 2008, 33, 179–186. [Google Scholar] [CrossRef]
- Lu, J.; Yuan, J.; Yang, J.; Yang, Z. Responses of morphology and drought tolerance of Sedum lineare to watering regime in green roof system: A root perspective. Urban For. Urban Green. 2014, 13, 682–688. [Google Scholar] [CrossRef]
- Zaharia, A.; Jucan, D.A.; Buta, E. Reaction of Sedum spurium „Purpurteppich” Exposed to Thermal and Hydric Stress. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 2016, 73, 279. [Google Scholar] [CrossRef]
- Koźmińska, A.; Al Hassan, M.; Wiszniewska, A.; Hanus-Fajerska, E.; Boscaiu, M.; Vicente, O. Response of succulents to drought: Comparative analysis of four Sedum (Crassulaceae) species. Sci. Hortic. 2018, 243, 235–242. [Google Scholar] [CrossRef]
- Shetty, N.; Elliott, R.; Wang, M.; Palmer, M.; Culligan, P. Comparing the hydrological performance of an irrigated native vegetation green roof with a conventional Sedum spp. green roof in New York City. PLoS ONE 2022, 17, e0266593. [Google Scholar] [CrossRef]
- Durhman, A.; Rowe, D.; Rugh, C. Effect of Substrate Depth on Initial Growth, Coverage, and Survival of 25 Succulent Green Roof Plant Taxa. Hort Sci. 2007, 42, 588–595. [Google Scholar] [CrossRef] [Green Version]
- Emilsson, T. Vegetation development on extensive vegetated green roofs: Influence of substrate composition, establishment method and species mix. Ecol. Eng. 2008, 33, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Yuan, J.; Yang, J.; Chen, A.; Yang, Z. Effect of substrate depth on initial growth and drought tolerance of Sedum lineare in extensive green roof system. Ecol. Eng. 2014, 74, 408–414. [Google Scholar] [CrossRef]
- Nektarios, P.; Kokkinou, I.; Ntoulas, N. The effects of substrate depth and irrigation regime, on seeded Sedum species grown on urban extensive green roof systems under semi-arid Μediterranean climatic conditions. J. Environ. Manag. 2020, 279, 111607. [Google Scholar] [CrossRef]
- Marouli, C.; Savvidou, P.; Koutsokali, M.; Papadopoulou, P.; Misseyanni, A.; Tsiliki, G.; Georgas, D. Plant Growth on a Mediterranean Green Roof: A Pilot Study on Influence of Substrate Depth, Substrate Composition, and Type of Green Roof. Front. Sustain. Cities 2022, 3, 796441. [Google Scholar] [CrossRef]
- Köhler, M. Long-Term Vegetation Research on Two Extensive Green Roofs in Berlin. Urban Habitats 2006, 4, 3–26. [Google Scholar]
- Monterusso, M.; Rowe, D.; Rugh, C. Establishment and Persistence of Sedum spp. and Native Taxa for Green Roof Applications. Hort Sci. 2005, 40, 391–396. [Google Scholar] [CrossRef]
- Rowe, D.B.; Rugh, C.L.; Durhman, A.K. Assessment of substrate depth and composition on green roof plant performance. In Proceedings of the 4th North American Green Roof Conference: Greening Rooftops for Sustainable Communities, Boston, MA, USA, 10–12 May 2006; The Cardinal Group: Toronto, ON, Canada, 2006. [Google Scholar]
- Thuring, C.; Dunnett, N. Persistence, Loss and Gain: Characterizing mature green roof vegetation by functional composition. Landsc. Urban Plan. 2019, 185, 228–236. [Google Scholar] [CrossRef]
- Kluge, M. Is Sedum acre a CAM plant. Oecologia 1977, 29, 77–83. [Google Scholar] [CrossRef]
- Terri, J.; Turner, M.; Gurevitch, J. The Response of Leaf Water Potential and Crassulacean Acid Metabolism to Prolonged Drought in Sedum rubrotinctum. Plant Physiol. 1986, 81, 678–680. [Google Scholar] [CrossRef] [Green Version]
- Wai, C.; Weise, S.; Ozersky, P.; Mockler, T.; Michael, T.; Vanburen, R. Time of day and network reprogramming during drought induced CAM photosynthesis in Sedum album. PLoS Genet. 2019, 15, e1008209. [Google Scholar] [CrossRef] [Green Version]
- Gilman, I.; Edwards, E. Crassulacean acid metabolism. Curr. Biol. 2020, 30, R57–R62. [Google Scholar] [CrossRef] [Green Version]
- Rayner, J.; Farrell, C.; Raynor, K.; Murphy, S.; Williams, N. Plant establishment on a green roof under extreme hot and dry conditions: The importance of leaf succulence in plant selection. Urban For. Urban Green. 2015, 15, 6–14. [Google Scholar] [CrossRef]
- Eksi, M.; Rowe, D. Effect of substrate depth and type on plant growth for extensive green roofs in a Mediterranean climate. J. Green Build. 2019, 14, 29–44. [Google Scholar] [CrossRef]
- Cooper, A.J. Root Temperature and Plant Growth; Commonwealth Agricultural Bureaux: Slough, UK, 1973. [Google Scholar]
- Al-Ani, M.; Hay, R. The Influence of Growing Temperature on the Growth and Morphology of Cereal Seedling Root Systems. J. Exp. Bot. 1983, 34, 1720–1730. [Google Scholar] [CrossRef]
- Bland, W. Cotton and Soybean Root System Growth in Three Soil Temperature Regimes. Agron. J. 1993, 85, 906–911. [Google Scholar] [CrossRef]
- Karlova, R.; Boer, D.; Hayes, S.; Testerink, C. Root plasticity under abiotic stress. Plant Physiol. 2021, 187, 1057–1070. [Google Scholar] [CrossRef]
- McMichael, B.L.; Burke, J. Temperature Effects on Root Growth. Plant Roots: The Hidden Half; CRC Press: Boca Raton, FL, USA, 2002; pp. 383–396. [Google Scholar] [CrossRef]
- Yamori, N.; Levine, C.; Mattson, N.; Yamori, W. Optimum root zone temperature of photosynthesis and plant growth depends on air temperature in lettuce plants. Plant Mol. Biol. 2022, 110, 385–395. [Google Scholar] [CrossRef]
- Bevington, K.; Castle, W. Annual Root Growth Pattern of Young Citrus Trees in Relation to Shoot Growth, Soil Temperature, and Soil Water Content. J. Am. Soc. Hortic. Sci. 1985, 110, 840–845. [Google Scholar] [CrossRef]
- Stephenson, R. Sedum: Cultivated Stonecrops; Timber Press Inc.: Portland, OR, USA, 1994; pp. 27–210. [Google Scholar]
- Du, P.; Arndt, S.; Farrell, C. Is plant survival on green roofs related to their drought response, water use or climate of origin? Sci. Total Environ. 2019, 667, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Kirschstein, C. Die Dürreresistenz Einiger Sedum-Arten: Abgeleitet aus der Bedeutung der Wurzelsaugspannung; Teil 1; Stadt und Grün: Berlin, Germany, 1997; Volume 46, pp. 252–256. [Google Scholar]
- Blum, A. Plant Breeding for Water Limited Environments; Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Arora, A.; Sairam, R.K.; Srivastava, G.C. Oxidative stress and antioxidative system in plants. Curr. Sci. 2002, 82, 1227–1238. [Google Scholar]
- Taiz, L.; Zeiger, E. Plant Physiology, 3rd ed.; Sinauer Associates Inc.: Boston, MA, USA, 2002. [Google Scholar]
- Seghatoleslami, M.J.; Kafi, M.; Majidi, E. Effect of drought stress at different growth stages on yield and water use efficiency of five proso millet (Panicum miliaceum L.) genotypes. Pak. J. Bot. 2008, 40, 1427–1432. [Google Scholar]
- Kirschstein, C. Die Dürreresistenz Eingier Sedum-Arten: Abgeeleitet aus der Bedeutung der Wurzelsaugspannung; Teil 2; Stadt und Grün: Berlin, Germany, 1997; Volume 46, pp. 434–439. [Google Scholar]
- Dunnett, N.; Nolan, A. The effect of substrate depth and supplementary watering on the growth of nine herbaceous perennials in a semi-extensive green roof. Int. Conf. Urban Hortic 2004, 643, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Getter, K.; Rowe, D. Substrate Depth Influences Sedum Plant Community on a Green Roof. Hort. Sci. 2009, 44, 401. [Google Scholar] [CrossRef] [Green Version]
- VanWoert, N.; Rowe, D.; Andresen, J.; Rugh, C.; Xiao, L. Watering Regime and Green Roof Substrate Design Affect Sedum Plant Growth. Hort. Sci. 2005, 40, 659–664. [Google Scholar] [CrossRef] [Green Version]
- Thuring, C.; Berghage, R.; Beattie, D. Green Roof Plant Responses to Different Substrate Types and Depths under Various Drought Conditions. Hort. Technol. 2010, 20, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Liesecke, H.J. Das Retentionsvermögen von Dachbegrünungen; Stadt und Grün: Berlin, Germany, 1998; pp. 46–53. [Google Scholar]
- Boivin, M.A.; Lamy, M.P.; Gosselin, A.; Dansereau, B. Effect of Artificial Substrate Depth on Freezing Injury of Six Herbaceous Perennials Grown in a Green Roof System. Hort. Technol. 2001, 11, 409–412. [Google Scholar] [CrossRef] [Green Version]
- Lassalle, F. Wirkung von Trockenstreß auf Xerophile Pflanzen; Stadt und Grün: Berlin, Germany, 1998; Volume 6, pp. 437–443. [Google Scholar]
- Getter, K.; Rowe, D. Effect of Substrate Depth and Plantin Season on Sedum Plug Survival on Green Roofs. J. Environ. Hortic. 2007, 25, 95–99. [Google Scholar] [CrossRef]
- Perez, G.; Chocarro, C.; Juárez-Escario, A.; Coma, J. Evaluation of the development of five Sedum species on extensive green roofs in a continental Mediterranean climate. Urban For. Urban Green. 2019, 48, 126566. [Google Scholar] [CrossRef]
- Cabahug, R.A.; Soh, S.; Nam, S.Y. Effects of Shading on the Growth, Development, and Anthocyanin Content of Echeveria agavoides and E. marcus. Flower Res. J. 2017, 25, 270–277. [Google Scholar] [CrossRef]
- Farrell, C.; Mitchell, R.E.; Szota, C.; Rayner, J.; Williams, N. Green roofs for hot and dry climates: Interacting effects of plant water use, succulence and substrate. Ecol. Eng. 2012, 49, 270–276. [Google Scholar] [CrossRef]
- Lee, J.H.; Lim, Y.; Nam, S.Y. Optimization of Shading Levels, Potting Media, and Fertilization Rates on the Vegetative Growth of Sedum zokuriense Nakai. Flower Res. J. 2021, 29, 239–246. [Google Scholar] [CrossRef]
- Shooshtarian, S.; Tehranifar, A.; Ghani, A.; Kiani, M. Effects of irrigation frequency regimes on morphological and physiological characteristics of six Sedum species. Afr. J. Agric. Res. 2011, 6, 5694–5700. [Google Scholar] [CrossRef]
- Baerenfaller, K.; Massonnet, C.; Walsh, S.; Baginsky, S.; Bühlmann, P.; Hennig, L.; Hirsch-Hoffmann, M.; Howell, K.; Kahlau, S.; Radziejwoski, A.; et al. Systems-based analysis of Arabidopsis leaf growth reveals adaptation to water deficit. Mol. Syst. Biol. 2012, 8, 606. [Google Scholar] [CrossRef] [PubMed]
- TuTiempo. Available online: https://www.tutiempo.net/clima/ws-151200.html (accessed on 22 July 2023).
- Alkayssi, A.; Alkaraghouli, A.; Hasson, A.; Beker, S.A. Influence of Soil Moisture Content on Soil Temperature and Heat Storage under Greenhouse Conditions. J. Agric. Eng. Res. 1990, 45, 241–252. [Google Scholar] [CrossRef]
- Waring, R.H.; Running, W.S. Spatial Scaling Methods for Landscape and Regional Ecosystem Analysis. In Forest Ecosystems: Analysis at Multiple Scales, 3rd ed.; Academic Press Inc.: Cambridge, MA, USA; Elsevier Science Publishing Co., Inc.: San Diego, CA, USA, 2007. [Google Scholar] [CrossRef]
- Cabahug, R.A.; Nam, S.Y. Review Paper—Propagation Techniques for Ornamental Succulents. Flower Res. J. 2018, 26, 90–101. [Google Scholar] [CrossRef]
Specification | Length, cm | Substrate Humidity % | Substrate Temperature °C | |||
---|---|---|---|---|---|---|
S.S.’PW’ | S.S.’CB’ | S.S.’P’ | ||||
2020 | 1st year total | 7.60 ± 0.38 | 8.26 ± 0.41 | 6.68 ± 0.33 | 35.41 | 17.59 |
monthly average | 1.09 ± 0.05 | 1.18 ± 0.06 | 0.95 ± 0.05 | |||
2021 | 2nd year total | 7.17 ± 0.36 | 7.96 ± 0.40 | 8.63 ± 0.43 | 26.83 | 12.35 |
monthly average | 0.80 ± 0.04 | 0.88 ± 0.04 | 0.96 ± 0.05 | |||
20-month average | 0.92 ± 0.05 d | 1.01 ± 0.05 b | 0.96 ± 0.05 c | 30.26 | 14.45 | |
TOTAL | 14.77 ± 0.74 | 16.22 ± 0.81 | 15.31 ± 0.77 |
Specification | Length, cm | Substrate Humidity % | Substrate Temperature °C | |||
---|---|---|---|---|---|---|
S.S.’PW’ | S.S.’CB’ | S.S.’P’ | ||||
2020 | 1st year total | 8.97 ± 0.45 | 6.92 ± 0.35 | 5.11 ± 0.26 | 38.91 | 16.63 |
monthly average | 1.28 ± 0.06 | 0.99 ± 0.05 | 0.73 ± 0.04 | |||
2021 | 2nd year total | 7.71 ± 0.39 | 7.06 ± 0.35 | 6.76 ± 0.34 | 31.29 | 12.63 |
monthly average | 0.86 ± 0.04 | 0.78 ± 0.04 | 0.75 ± 0.04 | |||
20-month average | 1.04 ± 0.05 a | 0.87 ± 0.04 e | 0.74 ± 0.04 g | 34.34 | 14.23 | |
TOTAL | 16.68 ± 0.83 | 13.98 ± 0.70 | 11.87 ± 0.59 |
Specification | Length, cm | Substrate Humidity % | Substrate Temperature °C | |||
---|---|---|---|---|---|---|
S.S.’PW’ | S.S.’CB’ | S.S.’P’ | ||||
2020 | 1st year total | 6.14 ± 0.31 | 7.09 ± 0.35 | 6.14 ± 0.31 | 16.07 | 18.52 |
monthly average | 0.88 ± 0.04 | 1.01 ± 0.05 | 0.88 ± 0.04 | |||
2021 | 2nd year total | 2.57 ± 0.13 | 7.12 ± 0.36 | 6.06 ± 0.30 | 11.00 | 13.56 |
monthly average | 0.29 ± 0.01 | 0.79 ± 0.04 | 0.67 ± 0.03 | |||
20-month average | 0.54 ± 0.03 h | 0.89 ± 0.04 e | 0.76 ± 0.04 f | 13.03 | 15.55 | |
TOTAL | 8.71 ± 0.44 | 14.21 ± 0.71 | 12.20 ± 0.61 |
Specification | Length, cm | Substrate Humidity % | Substrate Temperature °C | |||
---|---|---|---|---|---|---|
S.S.’PW’ | S.S.’CB’ | S.S.’P’ | ||||
2020 | 1st year total | 4.30 ± 0.22 | 1.65 ± 0.08 | 1.25 ± 0.06 | 35.41 | 17.59 |
monthly average | 0.61 ± 0.03 | 0.24 ± 0.01 | 0.18 ± 0.01 | |||
2021 | 2nd year total | 1.52 ± 0.08 | 1.27 ± 0.06 | 1.21 ± 0.06 | 26.83 | 12.35 |
monthly average | 0.19 ± 0.01 | 0.16 ± 0.01 | 0.15 ± 0.01 | |||
20-month average | 0.39 ± 0.02 c | 0.19 ± 0.01 ef | 0.16 ± 0.01 f | 30.26 | 14.45 | |
TOTAL | 5.82 ± 0.29 | 2.92 ± 0.15 | 2.46 ± 0.12 |
Specification | Length, cm | Substrate Humidity % | Substrate Temperature °C | |||
---|---|---|---|---|---|---|
S.S.’PW’ | S.S.’CB’ | S.S.’P’ | ||||
2020 | 1st year total | 6.10 ± 0.31 | 2.63 ± 0.13 | 2.74 ± 0.14 | 38.91 | 16.63 |
monthly average | 0.87 ± 0.04 | 0.38 ± 0.02 | 0.39 ± 0.02 | |||
2021 | 2nd year total | 6.90 ± 0.35 | 3.33 ± 0.17 | 2.50 ± 0.13 | 31.29 | 12.63 |
monthly average | 0.86 ± 0.04 | 0.42 ± 0.02 | 0.31 ± 0.02 | |||
20-month average | 0.87 ± 0.04 a | 0.40 ± 0.02 c | 0.35 ± 0.02 d | 34.34 | 14.23 | |
TOTAL | 13.00 ± 0.65 | 5.96 ± 0.30 | 5.24 ± 0.26 |
Specification | Length, cm | Substrate Humidity % | Substrate Temperature °C | |||
---|---|---|---|---|---|---|
S.S.’PW’ | S.S.’CB’ | S.S.’P’ | ||||
2020 | 1st year total | 4.64 ± 0.23 | 1.52 ± 0.08 | 1.54 ± 0.08 | 16.07 | 18.52 |
monthly average | 0.66 ± 0.03 | 0.22 ± 0.01 | 0.22 ± 0.01 | |||
2021 | 2nd year total | 2.70 ± 0.14 | 1.41 ± 0.07 | 1.38 ± 0.07 | 11.00 | 13.56 |
monthly average | 0.34 ± 0.02 | 0.18 ± 0.01 | 0.17 ± 0.01 | |||
20-month average | 0.49 ± 0.02 b | 0.20 ± 0.01 ef | 0.19 ± 0.01 ef | 13.03 | 15.55 | |
TOTAL | 7.34 ± 0.37 | 2.93 ± 0.15 | 2.92 ± 0.15 |
Control | Green Roof Substrate | Commercial Mixture | River Sand | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SS’PW’ | SS’CB’ | SS’P’ | SS’PW’ | SS’CB’ | SS’P’ | SS’PW’ | SS’CB’ | SS’P’ | SS’PW’ | SS’CB’ | SS’P’ | ||||||||||
Σ leaves | 1800 | 1584 | 1760 | 905 | 1602 | 1515 | 1051 | 1528 | 511 | 511 | 706 | 584 | |||||||||
Σ stems | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |||||||||
stem weight g | 0.337 ± 0.017 A | 0.169 ± 0.008 D | 0.183 ± 0.009 C | 0.100 ± 0.005 F | 0.068 ± 0.003 I | 0.071 ± 0.004 I | 0.192 ± 0.010 B | 0.083 ± 0.004 H | 0.092 ± 0.005 G | 0.106 ± 0.005 E | 0.054 ± 0.003 J | 0.048 ± 0.002 J | |||||||||
100% | 100% | 100% | 70% | ↓ | 60% | ↓ | 61% | ↓ | 43% | ↓ | 51% | ↓ | 50% | ↓ | 68% | ↓ | 68% | ↓ | 74% | ↓ | |
leaf weight g | 0.030 ± 0.002 B | 0.062 ± 0.003 A | 0.064 ± 0.003 A | 0.021 ± 0.001 C | 0.032 ± 0.002 B | 0.032 ± 0.002 B | 0.017 ± 0.001 C | 0.024 ± 0.001 C | 0.025 ± 0.001 C | 0.017 ± 0.001 C | 0.024 ± 0.001 C | 0.024 ±0.001 C | |||||||||
100% | 100% | 100% | 32% | ↓ | 49% | ↓ | 50% | ↓ | 45% | ↓ | 61% | ↓ | 61% | ↓ | 45% | ↓ | 61% | ↓ | 62% | ↓ | |
stem length cm | 15.032 ± 0.752 A | 5.260 ± 0.263 C | 5.852 ± 0.293 B | 4.100 ± 0.205 D | 1.595 ± 0.080 F | 1.376 ± 0.069 F | 5.954 ± 0.298 B | 2.077 ± 0.104 E | 2.005 ± 0.100 E | 5.050 ± 0.253 C | 2.003 ± 0.100 E | 1.980 ± 0.099 E | |||||||||
100% | 100% | 100% | 73% | ↓ | 70% | ↓ | 76% | ↓ | 60% | ↓ | 61% | ↓ | 66% | ↓ | 66% | ↓ | 62% | ↓ | 66% | ↓ | |
stem diam. cm | 0.236 ± 0.012 C | 0.239 ± 0.012 B | 0.240 ± 0.012 B | 0.190 ± 0.010 G | 0.237 ± 0.012 B | 0.186 ± 0.009 G | 0.223 ± 0.011 E | 0.227 ± 0.011 D | 0.192 ± 0.010 G | 0.216 ± 0.011 E | 0.265 ± 0.013 A | 0.211 ± 0.011 F | |||||||||
100% | 100% | 100% | 19% | ↓ | 1% | ↓ | 22% | ↓ | 5% | ↓ | 5% | ↓ | 20% | ↓ | 8% | ↓ | 11% | ↑ | 12% | ↓ | |
leaf surface cm2 | 1.436 ± 0.072 A | 0.790 ± 0.040 C | 0.843 ± 0.042 B | 0.345 ± 0.017 F | 0.442 ± 0.022 E | 0.505 ± 0.025 D | 0.361 ± 0.018 F | 0.375 ± 0.019 F | 0.302 ± 0.015 G | 0.211 ± 0.011 H | 0.209 ± 0.010 H | 0.178 ± 0.009 H | |||||||||
100% | 100% | 100% | 76% | ↓ | 44% | ↓ | 40% | ↓ | 75% | ↓ | 52% | ↓ | 64% | ↓ | 85% | ↓ | 74% | ↓ | 79% | ↓ |
Specification | Weight, Grams | % | Difference | Significance | |
---|---|---|---|---|---|
SS’PW’ | control | 0.34 A | 100 | 0 | |
G.R. | 0.10 F | 29.50 | −0.24 | 000 | |
C.M. | 0.19 B | 56.80 | −0.15 | 000 | |
R.S. | 0.11 E | 31.50 | −0.23 | 000 | |
SS’CB’ | control | 0.17 D | 100 | 0 | |
G.R. | 0.07 I | 40.10 | −0.10 | 000 | |
C.M. | 0.08 H | 49.10 | −0.09 | 000 | |
R.S. | 0.05 J | 31.90 | −0.12 | 000 | |
SS’P’ | control | 0.18 C | 100 | 0 | |
G.R. | 0.07 I | 39.00 | −0.11 | 000 | |
C.M. | 0.09 G | 50.30 | −0.09 | 000 | |
R.S. | 0.05 J | 26.10 | −0.14 | 000 |
Specification | Weight, Grams | % | Difference | Significance | |
---|---|---|---|---|---|
SS’PW’ | control | 0.03 B | 100 | 0 | |
G.R. | 0.02 C | 68.20 | −0.01 | 000 | |
C.M. | 0.02 C | 54.60 | −0.01 | 000 | |
R.S. | 0.02 C | 54.60 | −0.01 | 000 | |
SS’CB’ | control | 0.06 A | 100 | 0 | |
G.R. | 0.03 B | 50.07 | −0.03 | 000 | |
C.M. | 0.02 C | 39.10 | −0.04 | 000 | |
R.S. | 0.02 C | 38.60 | −0.04 | 000 | |
SS’P’ | control | 0.06 A | 100 | 0 | |
G.R. | 0.03 B | 49.70 | −0.03 | 000 | |
C.M. | 0.02 C | 38.70 | −0.04 | 000 | |
R.S. | 0.02 C | 38.20 | −0.04 | 000 |
Specification | Length, cm | % | Difference | Significance | |
---|---|---|---|---|---|
SS’PW’ | control | 15.03 A | 100 | 0 | |
G.R. | 4.10 D | 27.30 | −10.93 | 000 | |
C.M. | 5.95 B | 39.60 | −0.15 | 000 | |
R.S. | 5.12 C | 34.00 | −0.23 | 000 | |
SS’CB’ | control | 5.26 C | 100 | 0 | |
G.R. | 1.59 F | 30.30 | −0.10 | 000 | |
C.M. | 2.08 E | 39.50 | −0.09 | 000 | |
R.S. | 2.00 E | 38.10 | −0.12 | 000 | |
SS’P’ | control | 5.85 B | 100 | 0 | |
G.R. | 1.38 F | 23.50 | −0.11 | 000 | |
C.M. | 2.01 E | 34.30 | −0.09 | 000 | |
R.S. | 1.98 E | 33.80 | −0.14 | 000 |
Specification | Diameter, cm | % | Difference | Significance | |
---|---|---|---|---|---|
SS’PW’ | control | 0.24 C | 100 | 0 | |
G.R. | 0.19 G | 80.60 | −0.24 | 000 | |
C.M. | 0.22 E | 94.50 | −0.15 | 000 | |
R.S. | 0.22 E | 91.70 | −0.23 | 000 | |
SS’CB’ | control | 0.24 B | 100 | 0 | |
G.R. | 0.24 B | 99.00 | −0.10 | 0 | |
C.M. | 0.23 D | 94.80 | −0.09 | 000 | |
R.S. | 0.27 A | 110.90 | −0.12 | *** | |
SS’P’ | control | 0.24 B | 100 | 0 | |
G.R. | 0.19 G | 77.60 | −0.11 | 000 | |
C.M. | 0.19 G | 79.90 | −0.09 | 000 | |
R.S. | 0.21 F | 87.90 | −0.14 | 000 |
Specification | Surface, cm2 | % | Difference | Significance | |
---|---|---|---|---|---|
SS’PW’ | control | 1.44 A | 100 | 0 | |
G.R. | 0.35 F | 24.00 | −0.24 | 000 | |
C.M. | 0.36 F | 25.20 | −0.15 | 000 | |
R.S. | 0.21 H | 14.70 | −0.23 | 000 | |
SS’CB’ | control | 0.79 C | 100 | 0 | |
G.R. | 0.44 E | 55.90 | −0.10 | 000 | |
C.M. | 0.38 F | 47.50 | −0.09 | 000 | |
R.S. | 0.21 H | 26.50 | −0.12 | 000 | |
SS’P’ | control | 0.84 B | 100 | 0 | |
G.R. | 0.51 D | 60.00 | −0.11 | 000 | |
C.M. | 0.30 G | 35.80 | −0.09 | 000 | |
R.S. | 0.18 H | 21.10 | −0.14 | 000 |
Growth Media Analysis | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Crt. No. | Substrate | pH | N | P | K | Hy | CaCO₃ | El. Cond. | Particle Size Analysis | ||||
% | ppm | ppm | % | mS | Coarse Sand | Fine Sand | Dust I | Dust II | Clay | ||||
1 | G.R. | 8.01 | 0.038 | 69 | 810 | 3.22 | 1.7 | 2.27 | 8.67 | 64.5 | 5.18 | 8.89 | 12.76 |
2 | C.M. | 4.92 | 1.31 | 3800 | 4740 | 1.75 | - | 3.76 | 1.25 | 58.1 | 3.3 | 10.85 | 26.5 |
3 | R.S. | 8.82 | 0 | 7 | 254 | 0.41 | 4.1 | 0.31 | 8.86 | 83.96 | 1.3 | 0.57 | 5.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cotoz, A.-P.; Dan, V.-S.; Gocan, T.-M.; Andreica, I.; Rózsa, S.; Cantor, M. Sedum Growth Patterns under Different Pedoclimatic Conditions. Plants 2023, 12, 2739. https://doi.org/10.3390/plants12142739
Cotoz A-P, Dan V-S, Gocan T-M, Andreica I, Rózsa S, Cantor M. Sedum Growth Patterns under Different Pedoclimatic Conditions. Plants. 2023; 12(14):2739. https://doi.org/10.3390/plants12142739
Chicago/Turabian StyleCotoz, Alex-Péter, Valentin-Sebastian Dan, Tincuța-Marta Gocan, Ileana Andreica, Sándor Rózsa, and Maria Cantor. 2023. "Sedum Growth Patterns under Different Pedoclimatic Conditions" Plants 12, no. 14: 2739. https://doi.org/10.3390/plants12142739
APA StyleCotoz, A. -P., Dan, V. -S., Gocan, T. -M., Andreica, I., Rózsa, S., & Cantor, M. (2023). Sedum Growth Patterns under Different Pedoclimatic Conditions. Plants, 12(14), 2739. https://doi.org/10.3390/plants12142739