Identification of Genetic Loci for Rice Seedling Mesocotyl Elongation in Both Natural and Artificial Segregating Populations
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Variation in Mesocotyl Elongation in RDP1 and HY73 RILs
2.2. Genome-Wide Association Study in RDP1
2.3. Linkage Mapping in HY73 RILs
2.4. Candidate Genes Predicted from Associated or Linked Genomic Regions
3. Discussion
3.1. Genetic Variations in Mesocotyl Elongation Have Been Investigated in Different Rice Germplasm Populations
3.2. Novel QTLs and Candidate Genes Were Identified through GWAS and Linkage Analysis
3.3. Varied Strategies Could Be Considered to Select Donor Parents for DDSR Breeding Programs Concerning More Environmental Issues
4. Materials and Methods
4.1. Phenotyping Mesocotyl Elongation in the Rice Diversity Panel 1 (RDP1) and HY73 Recombinant Inbred Line (RIL) Population
4.2. Genotypic Data of RDP1 and HY73 RIL Population
4.3. GWAS and Linkage Mapping
4.4. Candidate Gene Prediction
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Hussain, S.; Zheng, M.; Peng, S.; Huang, J.; Cui, K.; Nie, L. Dry Direct-Seeded Rice as an Alternative to Transplanted-Flooded Rice in Central China. Agron. Sustain. Dev. 2015, 35, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, B.S.; Opeña, J. Effect of Tillage Systems and Herbicides on Weed Emergence, Weed Growth, and Grain Yield in Dry-Seeded Rice Systems. Field Crop. Res. 2012, 137, 56–69. [Google Scholar] [CrossRef]
- Saleh, A.F.M.; Bhuiyan, S.I. Crop and Rain Water Management Strategies for Increasing Productivity of Rainfed Lowland Rice Systems. Agric. Syst. 1995, 49, 259–276. [Google Scholar] [CrossRef]
- Mazid, M.; Bhuiyan, S.I.; Mannan, M.; Wade, L. Dry-Seeded Rice for Enhancing Productivity of Rainfed Drought-Prone Lands: Lessons from Bangladesh and the Philippines. In Direct Seeding: Research Issues and Opportunities. Proceedings of the International Workshop on Direct Seeding in Asian Rice Systems: Strategic Research Issues and Opportunities, Bangkok, Thailand, 25–28 January 2000; Pandey, S., Ed.; IRRI: Los Banos, Philippines, 2002; pp. 185–200. [Google Scholar]
- Kumar, V.; Ladha, J.K. Direct Seeding of Rice. Recent Developments and Future Research Needs. Adv. Agron. 2011, 111, 297–413. [Google Scholar]
- Alibu, S. Relationship between Coleoptile and Mesocotyl Elongation of Upland Rice (Oryza Sativa L.) Seedlings under Submergence and Soil-Sand Culture. African J. Agric. Res. 2011, 6, 6463–6472. [Google Scholar]
- Mgonja, M.A.; Dilday, R.H.; Skinner, S.L.; Collins, F.C. Association of Mesocotyl Elongation with Seedling Vigor in Rice. Proceeding Ark. Acad. Sci. 1988, 42, 52–55. [Google Scholar]
- Chung, N.-J. Elongation Habit of Mesocotyls and Coleoptiles in Weedy Rice with High Emergence Ability in Direct-Seeding on Dry Paddy Fields. Crop Pasture Sci. 2010, 61, 911. [Google Scholar] [CrossRef]
- Redoña, E.D.; Mackill, D.J. Mapping Quantitative Trait Loci for Seedling Vigor in Rice Using RFLPs. Theor. Appl. Genet. 1996, 92, 395–402. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, G.; Lin, J.; Cheng, S. Screening for Rice Germplasms with Specially-Elongated Mesocotyl. Rice Sci. 2005, 12, 226–228. [Google Scholar]
- Luo, J.; Tang, S.Q.; Pei-Song, H.U.; Louis, A.; Jiao, G.A.; Jian, T. Analysis on Factors Affecting Seedling Establishment in Rice. Rice Sci. 2007, 14, 27–32. [Google Scholar] [CrossRef]
- Wu, J.; Feng, F.; Lian, X.; Teng, X.; Wei, H.; Yu, H.; Xie, W.; Yan, M.; Fan, P.; Li, Y. Genome-Wide Association Study (GWAS) of Mesocotyl Elongation Based on Re-Sequencing Approach in Rice. BMC Plant Biol. 2015, 15, 218. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Zhu, J.; Ren, L.; Zhao, S.; Yan, Q. Mapping QTLs and Epistasis for Seedling Vigor in Rice (Oryza sativa L.). Acta Agron. Sin. 2002, 28, 809–815. [Google Scholar]
- Cai, H.; Morishima, H. QTL Clusters Reflect Character Associations in Wild and Cultivated Rice. Theor. Appl. Genet. 2002, 104, 1217–1228. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Sasaki, K.; Higashitani, A.; Ahn, S.N.; Sato, T. Mapping and Characterization of Quantitative Trait Loci for Mesocotyl Elongation in Rice (Oryza sativa L.). Rice 2012, 5, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Zhan, J.; Li, J.; Lu, X.; Liu, J.; Wang, Y.; Zhao, Q.; Ye, G. Genome-Wide Association Study (GWAS) for Mesocotyl Elongation in Rice (Oryza sativa L.) under Multiple Culture Conditions. Genes 2020, 11, 49. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, J.; Meng, Y.; Liu, H.; Ye, G. Rapid Identification of QTL for Mesocotyl Length in Rice Through Combining QTL-Seq and Genome-Wide Association Analysis. Front. Genet. 2021, 12, 713446. [Google Scholar] [CrossRef] [PubMed]
- Gothe, R.M.; Bhatia, D.; Kamboj, A.; Sandhu, N.; Dhillon, B.S. Genetic Variation for Anaerobic Germination and Emergence from Deeper Soil Depth in Oryza nivara Accessions. Rice Sci. 2022, 29, 304–308. [Google Scholar] [CrossRef]
- Xiong, Q.; Ma, B.; Lu, X.; Huang, Y.; He, S.; Yang, C.; Yin, C.; Zhao, H.; Zhou, Y.; Zhang, W.; et al. Ethylene-Inhibited Jasmonic Acid Biosynthesis Promotes Mesocotyl/Coleoptile Elongation of Etiolated Rice Seedlings. Plant Cell 2017, 29, 1053–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.; Wang, T.; Wang, L.; Li, X.; Jia, Y.; Liu, C.; Huang, X.; Xie, W.; Wang, X. Natural Selection of a GSK3 Determines Rice Mesocotyl Domestication by Coordinating Strigolactone and Brassinosteroid Signaling. Nat. Commun. 2018, 9, 2523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, Y.; Shao, G.; Jiao, G.; Sheng, Z.; Xie, L.; Hu, S.; Tang, S.; Wei, X.; Hu, P. Targeted Mutagenesis of POLYAMINE OXIDASE 5 That Negatively Regulates Mesocotyl Elongation Enables the Generation of Direct-Seeding Rice with Improved Grain Yield. Mol. Plant 2021, 14, 344–351. [Google Scholar] [CrossRef]
- Zheng, J.; Hong, K.; Zeng, L.; Wang, L.; Kang, S.; Qu, M.; Dai, J.; Zou, L.; Zhu, L.; Tang, Z. Karrikin Signaling Acts Parallel to and Additively with Strigolactone Signaling to Regulate Rice Mesocotyl Elongation in Darkness. Plant Cell 2020, 32, 2780–2805. [Google Scholar] [CrossRef] [PubMed]
- Eizenga, G.C.; Ali, M.L.; Bryant, R.J.; Yeater, K.M.; Mcclung, A.M.; Mccouch, S.R. Registration of the Rice Diversity Panel 1 for Genomewide Association Studies. J. Plant Regist. 2014, 8, 109–116. [Google Scholar] [CrossRef]
- McCouch, S.R.; Wright, M.H.; Tung, C.W.; Maron, L.G.; Mcnally, K.L.; Fitzgerald, M.; Singh, N.; Declerck, G.; Agosto-Perez, F.; Korniliev, P. Open Access Resources for Genome-Wide Association Mapping in Rice. Nat. Commun. 2016, 7, 10532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norton, G.J.; Douglas, A.; Lahner, B.; Yakubova, E.; Guerinot, M.L.; Pinson, S.R.M.; Tarpley, L.; Eizenga, G.C.; McGrath, S.P.; Zhao, F.J.; et al. Genome Wide Association Mapping of Grain Arsenic, Copper, Molybdenum and Zinc in Rice (Oryza sativa L.) Grown at Four International Field Sites. PLoS ONE 2014, 9, e89685. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Tung, C.W.; Eizenga, G.C.; Wright, M.H.; Ali, M.L.; Price, A.H.; Norton, G.J.; Islam, M.R.; Reynolds, A.; Mezey, J.; et al. Genome-Wide Association Mapping Reveals a Rich Genetic Architecture of Complex Traits in Oryza Sativa. Nat. Commun. 2011, 2, 467. [Google Scholar] [CrossRef] [Green Version]
- Davidson, H.; Shrestha, R.; Cornulier, T.; Douglas, A.; Travis, T.; Johnson, D.; Price, A.H. Spatial Effects and GWA Mapping of Root Colonization Assessed in the Interaction Between the Rice Diversity Panel 1 and an Arbuscular Mycorrhizal Fungus. Front. Plant Sci. 2019, 10, 633. [Google Scholar] [CrossRef] [Green Version]
- Yamane, K.; Garcia, R.; Imayoshi, K.; Mabesa-Telosa, R.C.; Banayo, N.P.M.C.; Vergara, G.; Yamauchi, A.; Cruz, P.S.; Kato, Y. Seed Vigour Contributes to Yield Improvement in Dry Direct-Seeded Rainfed Lowland Rice. Ann. Appl. Biol. 2018, 172, 100–110. [Google Scholar] [CrossRef]
- Takahashi, N. Adaptive Importance of Mesocotyl and Coleoptile Growth in Rice Under Different Moisture Regimes. Funct. Plant Biol. 1978, 5, 511–517. [Google Scholar] [CrossRef]
- de Leon, J.C.; Abe, T.; Sasahara, T. Variations in Morpho-Physiological Traits Relating to Seedling Vigor and Heterosis in Reciprocal Crosses of Rice. Breed. Sci. 2001, 51, 57–61. [Google Scholar] [CrossRef]
- Luo, L.; Mei, H.; Yu, X.; Xia, H.; Chen, L.; Liu, H.; Zhang, A.; Xu, K.; Wei, H.; Liu, G.; et al. Water-Saving and Drought-Resistance Rice: From the Concept to Practice and Theory. Mol. Breed. 2019, 29, 145. [Google Scholar] [CrossRef]
- Luo, L.J. Breeding for Water-Saving and Drought-Resistance Rice (WDR) in China. J. Exp. Bot. 2010, 61, 3509–3517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, F.; Mei, H.; Fan, P.; Li, Y.; Xu, X.; Wei, H.; Yan, M.; Luo, L. Dynamic Transcriptome and Phytohormone Profiling along the Time of Light Exposure in the Mesocotyl of Rice Seedling. Sci. Rep. 2017, 7, 11961. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, D.; Wang, M.; Sun, J.; Qi, Y.; Li, J.; Wei, X.; Han, L.; Qiu, Z.; Tang, S. A Core Collection and Mini Core Collection of Oryza sativa L. in China. Theor. Appl. Genet. 2011, 122, 49–61. [Google Scholar] [CrossRef]
- Wang, W.; Mauleon, R.; Hu, Z.; Chebotarov, D.; Tai, S.; Wu, Z.; Li, M.; Zheng, T.; Fuentes, R.R.; Zhang, F.; et al. Genomic Variation in 3,010 Diverse Accessions of Asian Cultivated Rice. Nature 2018, 557, 43–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Zhao, W.; Jiang, C.; Wang, X.; Xiong, H.; Todorovska, E.G.; Yin, Z.; Chen, Y.; Wang, X.; Xie, J.; et al. Genetic Architecture and Candidate Genes for Deep-Sowing Tolerance in Rice Revealed by Non-Syn GWAS. Front. Plant Sci. 2018, 9, 332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Q.; Zhang, M.; Niu, X.; Wang, C.; Xu, Q.; Yue, F.; Shan, W.; Yuan, X.; Yu, H.; Wang, Y. Uncovering Novel Loci for Mesocotyl Elongation and Shoot Length in Indica Rice through Genome-Wide Association Mapping. Planta 2015, 243, 645–657. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Zhu, J.; Yan, Q.; Libin, H.E.; Wei, X.; Cheng, S. Mapping QTLs with Epistasis for Mesocotyl Length in a DH Population from Indica-Japonica Cross of Rice (Oryza sativa). Chin. J. Rice Sci. 2002, 16, 221–224. [Google Scholar]
- Mgonja, M.A.; Ladeinde, T.A.O.; Aken’Ova, M.E. Genetic Analysis of Mesocotyl Length and Its Relationship with Other Agronomic Characters in Rice (Oryza sativa L.). Euphytica 1993, 72, 189–195. [Google Scholar] [CrossRef]
- Cui, K.H.; Peng, S.B.; Xing, Y.Z.; Xu, C.G.; Yu, S.B.; Zhang, Q. Molecular Dissection of Seedling-Vigor and Associated Physiological Traits in Rice. Theor. Appl. Genet. 2002, 105, 745–753. [Google Scholar] [CrossRef]
- Guo, T.; Yang, J.; Li, D.; Sun, K.; Luo, L.; Xiao, W.; Wang, J.; Liu, Y.; Wang, S.; Wang, H.; et al. Integrating GWAS, QTL, Mapping and RNA-Seq to Identify Candidate Genes for Seed Vigor in Rice (Oryza sativa L.). Mol. Breed. 2019, 39, 1–16. [Google Scholar] [CrossRef]
- Dang, X.; Thi, T.G.T.; Dong, G.; Wang, H.; Edzesi, W.M.; Hong, D. Genetic Diversity and Association Mapping of Seed Vigor in Rice (Oryza Sativa L.). Planta 2014, 239, 1309–1319. [Google Scholar] [CrossRef] [PubMed]
- Anandan, A.; Anumalla, M.; Pradhan, S.K.; Ali, J. Population Structure, Diversity and Trait Association Analysis in Rice (Oryza sativa L.) Germplasm for Early Seedling Vigor (ESV) Using Trait Linked SSR Markers. PLoS ONE 2016, 11, e0152406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, H.; Yu, Y.; Ma, Y.; Gao, Q.; Cao, Y.; Chen, Z.; Ma, B.; Qi, M.; Li, Y.; Zhao, X.; et al. Sequencing and de novo Assembly of a near Complete Indica Rice Genome. Nat. Commun. 2017, 8, 15324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Feng, Q.; Qian, Q.; Zhao, Q.; Wang, L.; Wang, A.; Guan, J.; Fan, D.; Weng, Q.; Huang, T.; et al. High-Throughput Genotyping by Whole-Genome Resequencing. Genome Res. 2009, 19, 1068–1076. [Google Scholar] [CrossRef] [Green Version]
- Lipka, A.E.; Tian, F.; Wang, Q.; Peiffer, J.; Li, M.; Bradbury, P.J.; Gore, M.A.; Buckler, E.S.; Zhang, Z. GAPIT: Genome Association and Prediction Integrated Tool. Bioinformatics 2012, 28, 2397–2399. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Li, H.; Zhang, L.; Wang, J. QTL IciMapping: Integrated Software for Genetic Linkage Map Construction and Quantitative Trait Locus Mapping in Biparental Populations. Crop J. 2015, 3, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and Visualization of LD and Haplotype Maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Jiang, L.; Zheng, J.; Huang, R.; Wang, H.; Hong, Z.; Huang, Y. Identification of Differentially Expressed Proteins and Phosphorylated Proteins in Rice Seedlings in Response to Strigolactone Treatment. PLoS ONE 2014, 9, e93947. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Yamauchi, T.; Yang, J.; Jikumaru, Y.; Tsuchida-Mayama, T.; Ichikawa, H.; Takamure, I.; Nagamura, Y.; Tsutsumi, N.; Yamaguchi, S.; et al. Strigolactone and Cytokinin Act Antagonistically in Regulating Rice Mesocotyl Elongation in Darkness. Plant Cell Physiol. 2014, 55, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Tamiru, M.; Abe, A.; Utsushi, H.; Yoshida, K.; Takagi, H.; Fujisaki, K.; Undan, J.R.; Rakshit, S.; Takaichi, S.; Jikumaru, Y.; et al. The Tillering Phenotype of the Rice Plastid Terminal Oxidase (PTOX) Loss-of-function Mutant Is Associated with Strigolactone Deficiency. New Phytol. 2014, 202, 116–131. [Google Scholar] [CrossRef]
- Liang, Q.; Wang, C.; Ma, D.; Li, L.; Cui, Z.; Wang, X.; Qian, Q.; Cai, B.; Feng, Y.; Chen, W. Cortical Microtubule Disorganized Related to an Endogenous Gibberellin Increase Plays an Important Role in Rice Mesocotyl Elongation. Plant Biotechnol. 2016, 33, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Kameoka, H.; Kyozuka, J. Downregulation of Rice DWARF 14 LIKE Suppress Mesocotyl Elongation via a Strigolactone Independent Pathway in the Dark. J. Genet. Genom. 2015, 42, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Riemann, M.; Müller, A.; Korte, A.; Furuya, M.; Weiler, E.W.; Nick, P. Impaired Induction of the Jasmonate Pathway in the Rice Mutant Hebiba. Plant Physiol. 2003, 133, 1820–1830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Population | Source of Variation | SS (Type III) | df | MS | F Value | p Value |
---|---|---|---|---|---|---|
RDP1 | Accessions | 1,578,722.41 | 293 | 5369.80 | 335.02 | 0.000 |
Residual | 26,494.84 | 1653 | 16.03 | |||
HY73 RILs | Lines | 10,363.36 | 311 | 33.32 | 25.74 | 0.000 |
Trials | 442.50 | 2 | 221.25 | 170.92 | 0.000 | |
Lines × trials | 1913.13 | 555 | 3.45 | 2.66 | 0.000 | |
Residual | 7750.12 | 5987 | 1.29 |
Trait | Chr. | Left Marker | Right Marker | LOD | PVE (%) | Add (cm) |
---|---|---|---|---|---|---|
ML1 | 1 | Chr1_bin348 | Chr1_bin350 | 10.68 | 14.12 | 0.53 |
ML1 | 1 | Chr1_bin899 | Chr1_bin902 | 3.58 | 4.46 | 0.30 |
ML1 | 1 | Chr1_bin1342 | Chr1_bin1348 | 3.98 | 4.92 | 0.31 |
ML1 | 9 | Chr9_bin8476 | Chr9_bin8481 | 4.50 | 5.64 | −0.33 |
ML2 | 1 | Chr1_bin147 | Chr1_bin149 | 7.67 | 7.69 | 0.40 |
ML2 | 1 | Chr1_bin612 | Chr1_bin620 | 12.02 | 11.96 | 0.49 |
ML2 | 1 | Chr1_bin1322 | Chr1_bin1327 | 4.54 | 4.28 | 0.29 |
ML2 | 5 | Chr5_bin5536 | Chr5_bin5537 | 3.24 | 3.03 | 0.24 |
ML2 | 6 | Chr6_bin6431 | Chr6_bin6433 | 7.49 | 7.24 | −0.38 |
ML3 | 1 | Chr1_bin140 | Chr1_bin146 | 5.78 | 5.70 | 0.29 |
ML3 | 1 | Chr1_bin348 | Chr1_bin350 | 8.51 | 8.53 | 0.35 |
ML3 | 1 | Chr1_bin1396 | Chr1_bin1398 | 5.79 | 5.74 | 0.28 |
ML3 | 2 | Chr2_bin1887 | Chr2_bin1895 | 4.09 | 3.99 | −0.24 |
ML3 | 6 | Chr6_bin6431 | Chr6_bin6433 | 3.94 | 3.82 | −0.23 |
ML3 | 10 | Chr10_bin8945 | Chr10_bin8950 | 4.98 | 4.92 | 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, F.; Ma, X.; Yan, M.; Zhang, H.; Mei, D.; Fan, P.; Xu, X.; Wei, C.; Lou, Q.; Li, T.; et al. Identification of Genetic Loci for Rice Seedling Mesocotyl Elongation in Both Natural and Artificial Segregating Populations. Plants 2023, 12, 2743. https://doi.org/10.3390/plants12142743
Feng F, Ma X, Yan M, Zhang H, Mei D, Fan P, Xu X, Wei C, Lou Q, Li T, et al. Identification of Genetic Loci for Rice Seedling Mesocotyl Elongation in Both Natural and Artificial Segregating Populations. Plants. 2023; 12(14):2743. https://doi.org/10.3390/plants12142743
Chicago/Turabian StyleFeng, Fangjun, Xiaosong Ma, Ming Yan, Hong Zhang, Daoliang Mei, Peiqing Fan, Xiaoyan Xu, Chunlong Wei, Qiaojun Lou, Tianfei Li, and et al. 2023. "Identification of Genetic Loci for Rice Seedling Mesocotyl Elongation in Both Natural and Artificial Segregating Populations" Plants 12, no. 14: 2743. https://doi.org/10.3390/plants12142743
APA StyleFeng, F., Ma, X., Yan, M., Zhang, H., Mei, D., Fan, P., Xu, X., Wei, C., Lou, Q., Li, T., Liu, H., Luo, L., & Mei, H. (2023). Identification of Genetic Loci for Rice Seedling Mesocotyl Elongation in Both Natural and Artificial Segregating Populations. Plants, 12(14), 2743. https://doi.org/10.3390/plants12142743