Effect of Different Soil Treatments on Production and Chemical Composition of Essential Oils Extracted from Foeniculum vulgare Mill., Origanum vulgare L. and Thymus vulgaris L.
Abstract
:1. Introduction
2. Results
2.1. EO Extraction
2.1.1. EOs from Fennel
2.1.2. EOs from Oregano
2.1.3. EOs from Thyme
2.2. EO Chemical Analysis
2.2.1. EOs from Fennel
2.2.2. EOs from Oregano
2.2.3. EOs from Thyme
2.3. EO Antimicrobial Activity Evaluation
3. Discussion
4. Materials and Methods
4.1. Plant Material and Soil Treatment
4.2. EO Steam Distillation
4.3. EO Chemical Analysis
4.4. Bacterial Strains and Culture Conditions
4.5. Determination of Minimal Inhibitory Concentration (MIC)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Melo, A.L.F.; Rossato, L.; Dos Santos Barbosa, M.; Calloi Palozi, R.A.; Monteiro Alfredo, T.; Antunes, K.A.; Eduvirgem, J.; Ribeiro, S.M.; Simionatto, S. From the environment to the hospital: How plants can help to fight bacteria biofilm. Microbiol. Res. 2022, 261, 127074. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Buckley, S.A.; Evershed, R.P. Organic chemistry of embalming agents in Pharaonic and Graeco-Roman mummies. Nature 2001, 413, 837–841. [Google Scholar] [CrossRef] [PubMed]
- Aboukhalid, K.; Al Faiz, C.; Douaik, A.; Bakha, M.; Kursa, K.; Agacka-Mołdoch, M.; Machon, N.; Tomi, F.; Lamiri, A. Influence of environmental factors on essential oil variability in Origanum compactum Benth. growing wild in Morocco. Chem. Biodivers 2017, 14, e1700158. [Google Scholar] [CrossRef] [PubMed]
- Rathore, S.; Mukhia, S.; Kapoor, S.; Bhatt, V.; Kumar, R.; Kumar, R. Seasonal variability in essential oil composition and biological activity of Rosmarinus officinalis L. accessions in the western Himalaya. Sci. Rep. 2022, 12, 3305. [Google Scholar] [CrossRef] [PubMed]
- Barra, A. Factors affecting chemical variability of essential oils: A review of recent developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Božović, M.; Garzoli, S.; Baldisserotto, A.; Andreotti, E.; Cesa, S.; Pepi, F.; Vetuani, S.; Manfredini, S.; Ragno, R. Variation in essential oil content and composition of Ridolfia segetum Moris based on 30-hour prolonged fractionated extraction procedure. Nat. Prod. Res. 2020, 34, 13. [Google Scholar] [CrossRef] [Green Version]
- Božović, M.; Navarra, A.; Garzoli, S.; Pepi, F.; Ragno, R. Essential oils extraction: A 24-hour steam distillation systematic methodology. Nat. Prod. Res. 2017, 31, 204. [Google Scholar] [CrossRef]
- Garzoli, S.; Božović, M.; Baldisserotto, A.; Sabatino, M.; Cesa, S.; Pepi, F.; Vicentini, C.B.; Manfredini, S.; Ragno, R. Essential oil extraction, chemical analysis and anti-Candida activity of Foeniculum vulgare Miller—New approaches. Nat. Prod. Res. 2018, 32, 1254–1259. [Google Scholar] [CrossRef]
- Božović, M.; Garzoli, S.; Sabatino, M.; Pepi, F.; Baldisserotto, A.; Andreotti, E.; Romagnoli, C.; Mai, A.; Manfredini, S.; Ragno, R. Essential oil extraction, chemical analysis and anti-Candida activity of Calamintha nepeta (L.) Savi subsp. glandulosa (Req.) Ball—New approaches. Molecules 2017, 22, 203. [Google Scholar] [CrossRef] [Green Version]
- Garzoli, S.; Pirolli, A.; Vavala, E.; Di Sotto, A.; Sartorelli, G.; Božović, M.; Angiolella, L.; Mazzanti, G.; Pepi, F.; Ragno, R. Multidisciplinary approach to determine the optimal time and period for extracting the essential oil from Mentha suaveolens Ehrh. Molecules 2015, 20, 9640–9655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliva, A.; Garzoli, S.; Sabatino, M.; Tadić, V.; Costantini, S.; Ragno, R.; Božović, M. Chemical composition and antimicrobial activity of essential oil of Helichrysum italicum (Roth) G. Don fil. (Asteraceae) from Montenegro. Nat. Prod. Res. 2020, 34, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Kaloni, D.; Sehgal, K.; Pan, S.; Sarethy, I.P. Essential oils: An update on their biosynthesis and genetic strategies to overcome the production challenges. In Plant-Derived Bioactives: Production, Properties and Therapeutic Applications; Swamy, M.K., Ed.; Springer: Singapore, 2020; pp. 33–60. [Google Scholar]
- Posadzki, P.; Alotaibi, A.; Ernst, E. Adverse effects of aromatherapy: A systematic review of case reports and case series. Int. J. Risk Saf. Med. 2012, 24, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Bunse, M.; Daniels, R.; Gründemann, C.; Heilmann, J.; Kammerer, D.R.; Keusgen, M.; Lindequist, U.; Melzig, M.F.; Morlock, G.E.; Schulz, H.; et al. Essential oils as multicomponent mixtures and their potential for human health and well-being. Front. Pharmacol. 2022, 13, 956541. [Google Scholar] [CrossRef]
- Baerheim-Svendsen, A.; Scheffer, J.J.C. Essential oils and aromatic plants. In Proceedings of the 15th International Symposium on Essential Oils, Noordwijkerhout, The Netherlands, 19–21 July 1984. [Google Scholar]
- Rǎileanu, M.; Todan, L.; Voicescu, M.; Ciuculescu, C.; Maganu, M. A way for improving the stability of the essential oils in an environmental friendly formulation. Mater. Sci. Eng. C 2013, 33, 3281–3288. [Google Scholar] [CrossRef]
- Machado, C.A.; Oliveira, F.O.; De Andrade, M.A.; Hodel, K.V.S.; Lepikson, H.; Machado, B.A.S. Steam distillation for essential oil extraction: An evaluation of technological advances based on an analysis of patent documents. Sustainability 2022, 14, 7119. [Google Scholar] [CrossRef]
- Rinaldi, F.; Oliva, A.; Sabatino, M.; Imbriano, A.; Hanieh, P.N.; Garzoli, S.; Mastroianni, C.M.; De Angelis, M.; Miele, M.C.; Arnaut, M.; et al. Antimicrobial essential oil formulation: Chitosan coated nanoemulsions for nose to brain delivery. Pharmaceutics 2020, 12, 678. [Google Scholar] [CrossRef]
- Swain, S.S.; Paidesetty, S.K.; Padhy, R.N.; Hussain, T. Nano-technology platforms to increase the antibacterial drug suitability of essential oils: A drug prospective assessment. OpenNano 2023, 9, 100115. [Google Scholar] [CrossRef]
- Artini, M.; Papa, R.; Sapienza, F.; Božović, M.; Vrenna, G.; Guarna Assanti, V.T.; Sabatino, M.; Garzoli, S.; Fiscarelli, E.V.; Ragno, R.; et al. Essential oils biofilm modulation activity and machine learning analysis on Pseudomonas aeruginosa isolates from cystic fibrosis patients. Microorganisms 2022, 10, 887. [Google Scholar] [CrossRef]
- Artini, M.; Patsilinakos, A.; Papa, R.; Božović, M.; Sabatino, M.; Garzoli, S.; Vrenna, G.; Tilotta, M.; Pepi, F.; Ragno, R.; et al. Antimicrobial and antibiofilm activity and machine learning classification analysis of essential oils from different Mediterranean plants against Pseudomonas aeruginosa. Molecules 2018, 23, 482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papa, R.; Garzoli, S.; Vrenna, G.; Sabatino, M.; Sapienza, F.; Relucenti, M.; Donfrancesco, O.; Fiscarelli, E.V.; Artini, M.; Selan, L.; et al. Essential oils biofilm modulation activity, chemical and machine learning analysis—Application on Staphylococcus aureus isolates from cystic fibrosis patients. Int. J. Mol. Sci. 2020, 21, 9258. [Google Scholar] [CrossRef] [PubMed]
- Ragno, R.; Papa, R.; Patsilinakos, A.; Vrenna, G.; Garzoli, S.; Tuccio, V.; Fiscarelli, E.V.; Selan, L.; Artini, M. Essential oils against bacterial isolates from cystic fibrosis patients by means of antimicrobial and unsupervised machine learning approaches. Sci. Rep. 2020, 10, 26538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patsilinakos, A.; Artini, M.; Papa, R.; Sabatino, M.; Božović, M.; Garzoli, S.; Vrenna, G.; Buzzi, R.; Manfredini, S.; Selan, L.; et al. Machine learning analyses on data including essential oil chemical composition and in vitro experimental antibiofilm activities against Staphylococcus species. Molecules 2019, 24, 890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatino, M.; Fabiani, M.; Božović, M.; Garzoli, S.; Antonini, L.; Marcocci, M.E.; Palamara, A.T.; De Chiara, G.; Ragno, R. Experimental data based machine learning classification models with predictive ability to select in vitro active antiviral and non-toxic essential oils. Molecules 2020, 25, 2452. [Google Scholar] [CrossRef]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef] [Green Version]
- Deans, S.G.; Ritchie, G. Antibacterial properties of plant essential oils. Int. J. Food Microbiol. 1987, 5, 165–180. [Google Scholar] [CrossRef]
- Di Martile, M.; Garzoli, S.; Sabatino, M.; Valentini, E.; D’Aguanno, S.; Ragno, R.; Del Bufalo, D. Antitumor effect of Melaleuca alternifolia essential oil and its main component terpinen-4-ol in combination with target therapy in melanoma models. Cell Death Discov. 2021, 7, 127. [Google Scholar] [CrossRef]
- Thalappil, M.A.; Butturini, E.; Carcereri de Prati, A.; Bettin, I.; Antonini, L.; Sapienza, F.U.; Garzoli, S.; Ragno, R.; Mariotto, S. Pinus mugo essential oil impairs STAT3 activation through oxidative stress and induces apoptosis in prostate cancer cells. Molecules 2022, 27, 483434. [Google Scholar] [CrossRef]
- Solórzano-Santos, F.; Miranda-Novales, M.G. Essential oils from aromatic herbs as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 136–141. [Google Scholar] [CrossRef]
- Sadgrove, N.; Jones, G. A contemporary introduction to essential oils: Chemistry, bioactivity and prospects for Australian agriculture. Agriculture 2015, 5, 48–102. [Google Scholar] [CrossRef] [Green Version]
- Rather, M.A.; Dar, B.A.; Sofi, S.N.; Bhat, B.A.; Qurishi, M.A. Foeniculum vulgare: A comprehensive review of its traditional use, phytochemistry, pharmacology, and safety. Arab. J. Chem. 2016, 9, S1574–S1583. [Google Scholar] [CrossRef] [Green Version]
- Borugă, O.; Jianu, C.; Mișcă, C.; Goleț, I.; Gruia, A.; Horhat, F.G. Thymus vulgaris essential oil: Chemical composition and antimicrobial activity. J. Med. Life 2014, 7, 56–60. [Google Scholar] [PubMed]
- Zinno, P.; Guantario, B.; Lombardi, G.; Ranaldi, G.; Finamore, A.; Allegra, S.; Mammano, M.M.; Fascella, G.; Raffo, A.; Roselli, M. Chemical Composition and Biological Activities of Essential Oils from Origanum vulgare Genotypes Belonging to the Carvacrol and Thymol Chemotypes. Plants 2023, 12, 1344. [Google Scholar] [CrossRef]
- Božović, M.; Garzoli, S.; Vujović, S.; Sapienza, F.; Ragno, R. Foeniculum vulgare Miller, a new chemotype from Montenegro. Plants 2022, 11, 42. [Google Scholar] [CrossRef] [PubMed]
- Garzoli, S.; Božović, M.; Baldisserotto, A.; Andreotti, E.; Pepi, F.; Tadić, V.; Manfredini, S.; Ragno, R. Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood, a new chemotype from Montenegro. Nat. Prod. Res. 2018, 32, 1056–1061. [Google Scholar] [CrossRef] [PubMed]
- Božović, M.; Garzoli, S.; Baldisserotto, A.; Romagnoli, C.; Pepi, F.; Cesa, S.; Vertuani, S.; Manfredini, S.; Ragno, R. Melissa officinalis L. subsp. altissima (Sibth. & Sm.) Arcang. essential oil: Chemical composition and preliminary antimicrobial investigation of samples obtained at different harvesting periods and by fractionated extractions. Ind. Crops Prod. 2018, 117, 317–321. [Google Scholar]
- Rao, V.P.S.; Pandey, D. Extraction of Essential Oil and Its Applications. A Project Report; Department of Chemical Engineering, National Institute of Technology: Rourkela, India, 2007. [Google Scholar]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 2011, 40, 4. [Google Scholar] [CrossRef] [Green Version]
- Cachet, T.; Brevard, H.; Chaintreau, A.; Demyttenaere, J.; French, L.; Gassenmeier, K.; Joulain, D.; Koenig, T.; Leijs, H.; Liddle, P.; et al. IOFI recommended practice for the use of predicted relative-response factors for the rapid quantification of volatile flavouring compounds by GC-FID. Flavour Fragr. J. 2016, 31, 191–194. [Google Scholar] [CrossRef] [Green Version]
- Mikkelsen, H.; McMullan, R.; Filloux, A. The Pseudomonas aeruginosa reference strain PA14 displays increased virulence due to a mutation in ladS. PLoS ONE 2011, 6, 12. [Google Scholar] [CrossRef] [Green Version]
EO Name | Soil Treatment | Distillation Method | Yield (%) |
---|---|---|---|
FV01 | control | CD 1 | 0.13 |
FV02 | control | CD | 0.10 |
FV03 | control | RD 2 | 0.19 |
FV04 | mineral | CD | 0.18 |
FV05 | mineral | CD | 0.16 |
FV06 | mineral | RD | 0.21 |
FV07 | organic | CD | 0.18 |
FV08 | organic | RD | 0.21 |
FV09 | organic | RD | 0.23 |
FV10 | organic–mineral | CD | 0.16 |
FV11 | organic–mineral | RD | 0.50 |
FV12 | organic–mineral | RD | 0.30 |
FV13 | organic–mineral | RD | 0.25 |
OV01 | control | CD | 0.10 |
OV02 | control | RD | 0.15 |
OV03 | mineral | CD | 0.19 |
OV04 | mineral | RD | 0.64 |
OV05 | mineral | RD | 0.45 |
OV06 | organic | CD | 0.21 |
OV07 | organic | CD | 0.23 |
OV08 | organic | RD | 0.26 |
OV09 | organic–mineral | CD | 0.16 |
OV10 | organic–mineral | RD | 0.18 |
OV11 | organic–mineral | RD | 0.20 |
TV01 | control | RD | 0.15 |
TV02 | control | CD | 0.19 |
TV03 | mineral | CD | 0.25 |
TV04 | mineral | CD | 0.25 |
TV05 | mineral | RD | 0.27 |
TV06 | organic | CD | 0.18 |
TV07 | organic | CD | 0.23 |
TV08 | organic | RD | 0.28 |
TV09 | organic | RD | 0.25 |
TV10 | organic–mineral | CD | 0.21 |
TM11 | organic–mineral | RD | 0.57 |
EO Component | RI 1 | FV01 | FV02 | FV03 | FV04 | FV05 | FV06 | FV07 |
---|---|---|---|---|---|---|---|---|
α-pinene | 933 | 0.73 | 2.39 | 2.60 | 1.57 | 4.49 | 3.57 | 1.66 |
sabinene | 968 | 0.07 | 0.08 | 0.11 | 0.08 | 0.11 | 0.23 | 0.09 |
β-pinene | 974 | 0.29 | 0.22 | 0.25 | 0.12 | 0.47 | 0.29 | 0.15 |
β-myrcene | 982 | 0.32 | 0.57 | 0.67 | 0.37 | 0.76 | 0.69 | 0.47 |
α-phellandrene | 1000 | 0.11 | 4.17 | 2.11 | 0.18 | 0.21 | 3.12 | 0.36 |
3-carene | 1008 | 1.52 | ||||||
p-cymene | 1014 | 6.11 | 2.73 | 3.57 | 3.18 | 2.29 | 4.89 | 0.87 |
limonene | 1023 | 8.95 | 15.74 | 9.04 | 16.83 | 11.43 | 15.58 | |
γ-terpinene | 1050 | 0.22 | 0.26 | 0.06 | ||||
fenchone | 1071 | 6.31 | 2.01 | 1.66 | 6.36 | 2.20 | 4.33 | 4.33 |
linalool | 1084 | 0.11 | ||||||
fenchylalcohol | 1105 | 0.13 | 0.20 | 0.16 | ||||
cis-p-menth-2,8-dienol | 1118 | 0.08 | ||||||
camphor | 1124 | 0.11 | 0.06 | 0.11 | 0.06 | |||
4-terpineol | 1165 | 0.05 | 0.15 | 0.06 | ||||
estragole | 1180 | 32.86 | 36.16 | 15.56 | 37.75 | 35.77 | 52.21 | 13.44 |
verbenone | 1185 | 0.06 | 0.19 | 0.23 | 0.08 | 0.13 | 0.28 | |
fenchylacetate, endo | 1209 | 0.35 | 0.34 | 0.62 | 0.33 | 0.63 | 0.66 | 0.34 |
p-anisaldehyde | 1215 | 2.70 | 0.15 | 1.05 | 2.98 | 1.88 | 0.70 | 0.91 |
fenchylacetate, exo | 1224 | 1.84 | 2.41 | 4.31 | 1.27 | 3.12 | 1.97 | 1.34 |
anethole | 1264 | 45.34 | 36.36 | 49.88 | 35.23 | 29.87 | 13.92 | 59.51 |
isobornyl acetate | 1272 | 0.08 | 0.07 | 0.13 | 0.08 | 0.10 | 0.08 | |
carvacrol | 1282 | 0.22 | 1.43 | 0.24 | 0.12 | 0.24 | 0.33 | |
2,3-dimethylhydroquinone | 1333 | 0.12 | 0.32 | 0.10 | 0.30 | |||
anisyl methyl ketone | 1343 | 0.07 | 0.13 | |||||
β-caryophyllene | 1423 | 0.06 | 0.40 | 0.23 | 0.08 | |||
4-methoxycinnamaldehyde | 1520 | 0.11 | 0.16 | 0.14 | 0.06 | |||
caryophyllene oxide | 1576 | 0.07 | 0.12 | |||||
Total | 99.43 | 99.69 | 99.28 | 99.06 | 99.62 | 98.71 | 99.96 |
EO Component | RI 1 | FV08 | FV09 | FV10 | FV11 | FV12 | FV13 |
---|---|---|---|---|---|---|---|
α-pinene | 933 | 5.52 | 3.20 | 3.74 | 0.20 | 2.79 | 5.56 |
sabinene | 968 | 0.18 | 0.10 | 0.12 | 0.14 | 0.17 | |
β-pinene | 974 | 0.50 | 0.24 | 0.41 | 0.23 | 0.49 | |
β-myrcene | 982 | 0.87 | 0.42 | 0.69 | 0.12 | 0.44 | 0.83 |
α-phellandrene | 1000 | 5.42 | 0.46 | 0.14 | 0.34 | 1.51 | |
3-carene | 1008 | ||||||
p-cymene | 1014 | 5.63 | 3.39 | 3.73 | 1.99 | 4.43 | 6.83 |
limonene | 1023 | 10.75 | 16.58 | 15.87 | 2.67 | 11.27 | 13.92 |
γ-terpinene | 1050 | 0.13 | 0.06 | ||||
fenchone | 1071 | 1.76 | 5.50 | 1.73 | 4.92 | 4.28 | 2.06 |
linalool | 1084 | ||||||
fenchylalcohol | 1105 | 0.14 | 0.15 | 0.09 | |||
cis-p-menth-2,8-dienol | 1118 | 0.12 | 0.09 | ||||
camphor | 1124 | 0.09 | 0.07 | ||||
4-terpineol | 1165 | 0.06 | 0.06 | ||||
estragole | 1180 | 48.34 | 30.62 | 25.86 | 37.04 | 49.04 | 38.84 |
verbenone | 1185 | 0.28 | 0.23 | 0.12 | 0.13 | 0.20 | |
fenchylacetate, endo | 1209 | 0.86 | 0.77 | 0.69 | 0.68 | 0.43 | 0.32 |
p-anisaldehyde | 1215 | 0.56 | 7.09 | 2.11 | 3.20 | 1.59 | 1.83 |
fenchylacetate, exo | 1224 | 3.74 | 2.59 | 2.92 | 3.18 | 2.83 | 1.88 |
anethole | 1264 | 14.38 | 26.92 | 39.10 | 42.31 | 20.32 | 24.08 |
isobornyl acetate | 1272 | 0.11 | 0.09 | 0.11 | 0.14 | 0.10 | |
carvacrol | 1282 | 0.30 | 0.65 | 0.10 | |||
2,3-dimethylhydroquinone | 1333 | 0.14 | 0.14 | 0.07 | |||
anisyl methyl ketone | 1343 | 0.43 | 0.08 | 0.21 | 0.16 | ||
β-caryophyllene | 1423 | 0.07 | 0.09 | ||||
4-methoxycinnamaldehyde | 1520 | 0.28 | 0.13 | 0.23 | 0.19 | 0.11 | |
caryophyllene oxide | 1576 | 0.07 | |||||
Total | 99.24 | 98.48 | 98.81 | 98.15 | 98.78 | 98.82 |
EO Component | RI 1 | OV02 | OV03 | OV04 | OV05 | OV06 |
---|---|---|---|---|---|---|
α-thujene | 925 | 0.07 | 0.20 | 0.71 | ||
α-pinene | 933 | 0.08 | 0.14 | 0.48 | ||
β-thujene | 937 | |||||
camphene | 947 | 0.04 | 0.06 | 0.28 | ||
1-octen-3-ol | 961 | 0.74 | 0.91 | 0.89 | 0.63 | 0.37 |
3-octanone | 964 | 0.17 | 0.20 | 0.22 | 0.05 | 0.08 |
sabinene | 968 | |||||
β-pinene | 974 | 0.04 | 0.07 | 0.15 | ||
3-octanol | 978 | 0.04 | 0.07 | 0.05 | ||
β-myrcene | 982 | 0.14 | 0.30 | 0.97 | ||
α-terpinene | 1011 | 0.17 | 0.34 | 0.68 | ||
p-cymene | 1014 | 1.65 | 9.33 | 15.61 | 23.33 | 1.54 |
limonene + 1,8 cineole | 1023 | 0.31 | 0.57 | 0.93 | 1.43 | 1.38 |
cis-β-ocimene | 1026 | 0.04 | 0.07 | |||
γ-terpinene | 1050 | 0.08 | 0.80 | 1.50 | 6.23 | |
cis-sabinene hydrate | 1055 | 0.28 | 0.32 | 0.34 | 0.33 | |
terpinolene | 1081 | 0.06 | 0.08 | |||
linalool | 1084 | 0.46 | 0.83 | 0.56 | 1.89 | 0.50 |
camphor | 1124 | 0.09 | 0.07 | 0.60 | ||
borneol | 1152 | 1.51 | 1.31 | 0.75 | 1.21 | 0.88 |
4-terpineol | 1165 | 2.21 | 1.88 | 1.39 | 1.65 | 1.24 |
α-terpineol | 1174 | 0.23 | 0.20 | 0.43 | 0.34 | 0.39 |
estragole | 1176 | 0.32 | ||||
dihydrocarvone | 1180 | 0.04 | 0.10 | |||
thymol methyl ether | 1215 | 0.27 | 0.14 | 4.33 | 0.17 | |
carvacrol methyl ether | 1226 | 0.64 | 1.14 | 1.12 | 1.98 | 0.38 |
cis-geraniol | 1236 | 0.10 | 0.48 | |||
anethole | 1261 | |||||
thymol | 1267 | 4.42 | 7.60 | 10.11 | 40.87 | 3.06 |
carvacrol | 1282 | 81.44 | 68.63 | 60.15 | 2.99 | 76.86 |
thymolacetate | 1326 | 0.10 | ||||
α-bourbonene | 1388 | 0.06 | 0.12 | 0.11 | 0.06 | |
β-caryophyllene | 1423 | 0.99 | 1.62 | 1.73 | 3.12 | 0.89 |
α-humulene | 1456 | 0.10 | 0.17 | 0.16 | 0.10 | 0.08 |
γ-muurolene | 1474 | 0.07 | 0.08 | 0.08 | 0.15 | 0.08 |
germacrene D | 1481 | 0.07 | 0.07 | |||
bicyclogermacrene | 1496 | 0.06 | 0.08 | |||
β-bisabolene | 1503 | 0.41 | 0.60 | 0.68 | 0.07 | 0.24 |
γ-cadinene | 1511 | 0.06 | 0.07 | 0.07 | 0.40 | 0.09 |
calamenene | 1514 | 0.10 | 0.18 | 0.12 | 0.14 | 0.18 |
δ-cadinene | 1518 | 0.12 | 0.13 | 0.14 | 0.33 | 0.16 |
spathulenol | 1569 | 0.14 | 0.09 | 0.11 | 0.22 | |
caryophyllene oxide | 1576 | 1.23 | 0.81 | 0.82 | 1.43 | 1.86 |
Total | 97.73 | 98.82 | 99.34 | 97.14 | 91.55 |
EO Component | RI 1 | OV07 | OV08 | OV09 | OV10 | OV11 |
---|---|---|---|---|---|---|
α-thujene | 925 | 0.24 | 0.96 | 1.60 | ||
α-pinene | 933 | 0.20 | 0.58 | 0.09 | 0.05 | 0.91 |
β-thujene | 937 | 0.06 | 0.11 | |||
camphene | 947 | 0.07 | 0.26 | 0.36 | ||
1-octen-3-ol | 961 | 0.76 | 0.59 | 0.93 | 0.45 | 0.68 |
3-octanone | 964 | 0.16 | 0.19 | 0.22 | 0.17 | 0.20 |
sabinene | 968 | 0.08 | 0.27 | 0.08 | ||
β-pinene | 974 | 0.19 | 0.26 | |||
3-octanol | 978 | 0.05 | ||||
β-myrcene | 982 | 0.29 | 0.64 | 0.06 | 0.98 | |
α-terpinene | 1011 | 0.36 | 0.97 | 0.09 | 0.06 | 0.90 |
p-cymene | 1014 | 11.37 | 21.86 | 4.42 | 4.18 | 36.53 |
limonene + 1,8 cineole | 1023 | 0.46 | 0.72 | 0.44 | 0.53 | 0.99 |
cis-β-ocimene | 1026 | 0.05 | 0.12 | 0.18 | ||
γ-terpinene | 1050 | 1.32 | 2.74 | 0.26 | 0.10 | 2.53 |
cis-sabinene hydrate | 1055 | 0.76 | 0.45 | 0.33 | 0.73 | 0.13 |
terpinolene | 1081 | 0.07 | 0.15 | 0.13 | ||
linalool | 1084 | 0.65 | 0.52 | 0.58 | 1.01 | 0.25 |
camphor | 1124 | 0.16 | 0.14 | 0.09 | 0.19 | |
borneol | 1152 | 0.77 | 0.92 | 1.03 | 1.30 | 0.57 |
4-terpineol | 1165 | 2.75 | 1.99 | 2.38 | 3.46 | 1.40 |
α-terpineol | 1174 | 0.49 | 0.38 | 0.23 | 0.36 | 0.15 |
estragole | 1176 | 0.29 | 0.71 | |||
dihydrocarvone | 1180 | 0.12 | 0.23 | |||
thymol methyl ether | 1215 | 0.40 | 0.13 | 0.19 | 0.41 | 0.10 |
carvacrol methyl ether | 1226 | 1.14 | 1.11 | 0.90 | 1.24 | 1.25 |
cis-geraniol | 1236 | |||||
anethole | 1261 | 0.29 | ||||
thymol | 1267 | 11.60 | 3.99 | 4.29 | 10.60 | 1.86 |
carvacrol | 1282 | 58.76 | 54.91 | 78.33 | 65.58 | 44.72 |
thymolacetate | 1326 | |||||
α-bourbonene | 1388 | 0.07 | 0.07 | 0.05 | 0.07 | 0.06 |
β-caryophyllene | 1423 | 2.24 | 2.24 | 0.95 | 1.18 | 1.20 |
α-humulene | 1456 | 0.20 | 0.18 | 0.11 | 0.11 | 0.11 |
γ-muurolene | 1474 | 0.10 | 0.07 | 0.06 | 0.08 | |
germacrene D | 1481 | 0.17 | ||||
bicyclogermacrene | 1496 | 0.14 | ||||
β-bisabolene | 1503 | 0.54 | 0.53 | 0.38 | 0.48 | 0.39 |
γ-cadinene | 1511 | 0.12 | 0.10 | 0.07 | 0.15 | |
calamenene | 1514 | 0.12 | 0.27 | 0.10 | 0.31 | |
δ-cadinene | 1518 | 0.21 | 0.16 | 0.12 | 0.21 | 0.08 |
spathulenol | 1569 | 0.34 | 0.10 | 0.13 | 0.17 | |
caryophyllene oxide | 1576 | 1.42 | 0.58 | 1.19 | 2.81 | 0.60 |
Total | 98.39 | 99.28 | 98.46 | 97.20 | 99.28 |
EO Component | RI 1 | TV03 | TV04 | TV05 | TV06 | TV07 |
---|---|---|---|---|---|---|
methyl-2-methyl butanoate | 757 | 0.13 | 0.04 | 0.14 | ||
α-thujene | 925 | 0.94 | 0.85 | |||
α-pinene | 933 | 0.11 | 0.61 | 0.06 | 0.69 | |
camphene | 947 | 0.10 | 0.37 | 0.05 | 0.35 | |
1,4-pentenylpropionate | 956 | 0.05 | 0.12 | 0.08 | ||
1-octen-3-ol | 961 | 1.00 | 0.93 | 0.94 | 1.23 | 0.59 |
3-octanone | 964 | 0.12 | 0.08 | 0.09 | 0.08 | 0.06 |
β-pinene | 974 | 0.06 | 0.17 | 0.22 | ||
3-octanol | 978 | 0.13 | 0.10 | 0.11 | 0.15 | 0.06 |
β-myrcene | 982 | 0.22 | 1.30 | 0.11 | 1.11 | |
α-phellandrene | 1000 | 0.18 | ||||
3-carene | 1008 | 0.15 | 0.10 | |||
α-terpinene | 1011 | 0.18 | 0.69 | 0.13 | 0.44 | |
p-cymene | 1014 | 9.61 | 3.94 | 25.44 | 4.63 | 32.24 |
1.8-cineole | 1023 | 1.45 | 0.84 | 1.90 | 1.13 | 1.67 |
γ-terpinene | 1050 | 2.72 | 7.63 | 2.02 | 1.61 | |
cis-sabinene-hydrate | 1055 | 0.12 | ||||
fenchone | 1071 | 0.34 | ||||
linalool | 1084 | 4.05 | 3.62 | 2.90 | 3.90 | 1.57 |
camphor | 1124 | 0.80 | 0.76 | 0.87 | 0.50 | |
borneol | 1152 | 2.28 | 1.77 | 1.34 | 1.87 | 0.76 |
4-terpineol | 1165 | 2.47 | 2.36 | 1.97 | 2.36 | 1.40 |
α-terpineol | 1174 | 0.59 | 0.31 | 0.35 | ||
estragole | 1176 | 0.56 | 0.45 | 0.48 | ||
thymol methyl ether | 1215 | 1.76 | 1.03 | 1.50 | 1.10 | 1.58 |
carvacrol methyl ether | 1225 | 0.90 | 0.50 | 0.86 | 0.58 | 0.86 |
cis-geraniol | 1238 | 0.11 | 0.13 | 0.07 | 0.13 | 0.09 |
geranial | 1246 | 0.20 | 0.13 | 0.10 | 0.10 | |
anethole | 1262 | 0.17 | ||||
thymol | 1267 | 55.20 | 64.73 | 38.40 | 61.18 | 35.66 |
carvacrol | 1282 | 5.30 | 9.59 | 2.98 | 5.17 | 9.24 |
thymolacetate | 1327 | 0.09 | 0.12 | |||
α-copaene | 1380 | 0.08 | ||||
β-bourbonene | 1388 | 0.10 | 0.09 | 0.08 | 0.11 | |
β-caryophyllene | 1423 | 1.99 | 0.94 | 2.43 | 2.44 | 1.95 |
β-farnesene | 1448 | 0.07 | ||||
α-humulene | 1456 | 0.07 | 0.08 | 0.08 | 0.08 | |
γ-muurolene | 1474 | 0.14 | 0.14 | 0.13 | 0.14 | 0.25 |
bicyclogermacrene | 1496 | 0.07 | 0.09 | 0.07 | 0.08 | 0.13 |
β-bisabolene | 1503 | 0.10 | 0.15 | 0.06 | 0.11 | |
γ-cadinene | 1511 | 0.32 | 0.27 | 0.36 | 0.29 | 0.34 |
calamenene | 1514 | 0.13 | 0.27 | 0.11 | 0.12 | 0.21 |
δ-cadinene | 1518 | 0.31 | 0.35 | 0.27 | 0.34 | 0.51 |
caryophyllene oxide | 1576 | 2.88 | 2.40 | 1.68 | 1.77 | 1.67 |
Total | 95.52 | 95.53 | 98.49 | 92.79 | 97.08 |
EO Component | RI 1 | TV08 | TV09 | TV10 | TV11 |
---|---|---|---|---|---|
methyl-2-methyl butanoate | 757 | 0.06 | 0.07 | 0.05 | |
α-thujene | 925 | 0.04 | 0.25 | 0.10 | |
α-pinene | 933 | 0.12 | 0.49 | 0.04 | 0.20 |
camphene | 947 | 0.09 | 0.14 | 0.14 | |
1,4-pentenylpropionate | 956 | 0.05 | 0.06 | ||
1-octen-3-ol | 961 | 1.47 | 0.82 | 0.77 | 0.70 |
3-octanone | 964 | 0.12 | 0.09 | 0.06 | 0.08 |
β-pinene | 974 | 0.05 | 0.09 | 0.07 | |
3-octanol | 978 | 0.21 | 0.08 | 0.13 | 0.10 |
β-myrcene | 982 | 0.10 | 0.61 | 0.42 | |
α-phellandrene | 1000 | 0.06 | |||
3-carene | 1008 | ||||
α-terpinene | 1011 | 0.08 | 0.31 | 0.35 | |
p-cymene | 1014 | 5.25 | 19.05 | 1.77 | 19.30 |
1.8-cineole | 1023 | 1.92 | 1.89 | 0.81 | 1.09 |
γ-terpinene | 1050 | 0.89 | 0.48 | 0.28 | 0.84 |
cis-sabinene-hydrate | 1055 | 0.25 | |||
fenchone | 1071 | 0.21 | |||
linalool | 1084 | 3.36 | 3.02 | 3.40 | 2.65 |
camphor | 1124 | 1.14 | 0.77 | 0.92 | 0.63 |
borneol | 1152 | 1.60 | 1.08 | 1.91 | 1.34 |
4-terpineol | 1165 | 2.58 | 2.22 | 1.94 | 1.70 |
α-terpineol | 1174 | 0.25 | 0.19 | ||
estragole | 1176 | 0.57 | 1.23 | 0.91 | 0.72 |
thymol methyl ether | 1215 | 0.23 | 2.40 | 1.07 | 1.54 |
carvacrol methyl ether | 1225 | 0.28 | 0.95 | 0.79 | 0.96 |
cis-geraniol | 1238 | 0.22 | 0.09 | 0.19 | 0.14 |
geranial | 1246 | 0.07 | |||
anethole | 1262 | 0.78 | 1.48 | 0.28 | |
thymol | 1267 | 59.97 | 45.01 | 64.30 | 50.62 |
carvacrol | 1282 | 7.68 | 6.63 | 5.02 | |
thymolacetate | 1327 | 0.06 | 0.10 | 0.06 | |
α-copaene | 1380 | 0.05 | 0.12 | 0.09 | |
β-bourbonene | 1388 | 0.11 | 0.15 | 0.06 | 0.11 |
β-caryophyllene | 1423 | 3.04 | 3.91 | 1.62 | 3.01 |
β-farnesene | 1448 | 0.17 | |||
α-humulene | 1456 | 0.11 | 0.14 | 0.07 | 0.12 |
γ-muurolene | 1474 | 0.26 | 0.39 | 0.18 | 0.28 |
bicyclogermacrene | 1496 | 0.11 | 0.18 | 0.10 | 0.17 |
β-bisabolene | 1503 | 0.06 | 0.26 | 0.06 | 0.14 |
γ-cadinene | 1511 | 0.29 | 0.62 | 0.27 | 0.36 |
calamenene | 1514 | 0.19 | 0.37 | 0.20 | 0.28 |
δ-cadinene | 1518 | 0.48 | 0.68 | 0.44 | 0.61 |
caryophyllene oxide | 1576 | 3.10 | 1.58 | 2.14 | 1.21 |
Total | 88.43 | 98.38 | 93.29 | 95.54 |
EOs | 6538P | 25923 | PA01 | PA14 |
---|---|---|---|---|
FV01 | >5 | >5 | >5 | >5 |
FV02 | >5 | >5 | >5 | >5 |
FV03 | >5 | >5 | >5 | >5 |
FV04 | >5 | >5 | >5 | >5 |
FV05 | >5 | >5 | >5 | >5 |
FV06 | >5 | >5 | >5 | >5 |
FV07 | >5 | >5 | >5 | >5 |
FV08 | >5 | >5 | >5 | >5 |
FV09 | >5 | >5 | >5 | >5 |
FV10 | >5 | >5 | >5 | >5 |
FV11 | 2.5 | 2.5 | >5 | >5 |
FV12 | >5 | >5 | >5 | >5 |
FV13 | >5 | >5 | >5 | >5 |
EO Name | 6538P | 25923 | PA01 | PA14 |
---|---|---|---|---|
OV01 | NT | NT | NT | NT |
OV02 | NT | NT | NT | NT |
OV03 | 0.31 | 0.31 | >5 | >5 |
OV04 | 0.16 | 1.25 | >5 | >5 |
OV05 | 2.5 | >5 | >5 | >5 |
OV06 | NT | NT | NT | NT |
OV07 | 0.16 | 0.31 | >5 | >5 |
OV08 | 0.16 | 1.25 | >5 | >5 |
OV09 | 1.25 | 0.62 | >5 | >5 |
OV10 | NT | NT | NT | NT |
OV11 | 2.5 | 2.5 | >5 | >5 |
EO Name | 6538P | 25923 | PA01 | PA14 |
---|---|---|---|---|
TV01 | NT | NT | NT | NT |
TV02 | NT | NT | NT | NT |
TV03 | NT | NT | NT | NT |
TV04 | NT | NT | NT | NT |
TV05 | NT | NT | NT | NT |
TV06 | 0.16 | 0.31 | >5 | >5 |
TV07 | 0.31 | 0.31 | >5 | >5 |
TV08 | 0.31 | 0.31 | >5 | >5 |
TV09 | NT | NT | NT | NT |
TV10 | NT | NT | NT | NT |
TV11 | 0.31 | 0.16 | >5 | >5 |
Treatment | Description |
---|---|
Control | Absence of fertilization; the plant growth does not depend on the nitrogen supplied but rather the amount of phosphorus and potassium found in the untreated soil. |
Mineral | Addition of a chemical fertilizer which releases to the soil 11 kg/hectare of nitrogen, 12 kg/hectare of phosphorus and 16 kg/hectare of potassium. |
Organic–Mineral | Treatment with Berfoss Bio 3-11, a fertilizer with high agronomic yield, with hydrolyzed organic substance at acid pH for the maintenance and enrichment of the available phosphorus endowment; this supplies the soil with 3 kg/hectare of nitrogen and 11 kg/hectare of phosphorus. |
Organic | Bioilsa Basic; natural-origin organic and organo-mineral fertilizers with a high content of organic nitrogen of protein origin with modulated release that release to the soil 2 kg/hectare of nitrogen. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raffo, A.; Sapienza, F.U.; Astolfi, R.; Lombardi, G.; Fraschetti, C.; Božović, M.; Artini, M.; Papa, R.; Trecca, M.; Fiorentino, S.; et al. Effect of Different Soil Treatments on Production and Chemical Composition of Essential Oils Extracted from Foeniculum vulgare Mill., Origanum vulgare L. and Thymus vulgaris L. Plants 2023, 12, 2835. https://doi.org/10.3390/plants12152835
Raffo A, Sapienza FU, Astolfi R, Lombardi G, Fraschetti C, Božović M, Artini M, Papa R, Trecca M, Fiorentino S, et al. Effect of Different Soil Treatments on Production and Chemical Composition of Essential Oils Extracted from Foeniculum vulgare Mill., Origanum vulgare L. and Thymus vulgaris L. Plants. 2023; 12(15):2835. https://doi.org/10.3390/plants12152835
Chicago/Turabian StyleRaffo, Antonio, Filippo Umberto Sapienza, Roberta Astolfi, Gabriele Lombardi, Caterina Fraschetti, Mijat Božović, Marco Artini, Rosanna Papa, Marika Trecca, Simona Fiorentino, and et al. 2023. "Effect of Different Soil Treatments on Production and Chemical Composition of Essential Oils Extracted from Foeniculum vulgare Mill., Origanum vulgare L. and Thymus vulgaris L." Plants 12, no. 15: 2835. https://doi.org/10.3390/plants12152835
APA StyleRaffo, A., Sapienza, F. U., Astolfi, R., Lombardi, G., Fraschetti, C., Božović, M., Artini, M., Papa, R., Trecca, M., Fiorentino, S., Vecchiarelli, V., Papalini, C., Selan, L., & Ragno, R. (2023). Effect of Different Soil Treatments on Production and Chemical Composition of Essential Oils Extracted from Foeniculum vulgare Mill., Origanum vulgare L. and Thymus vulgaris L. Plants, 12(15), 2835. https://doi.org/10.3390/plants12152835