Efficacy of Lemon Myrtle Essential Oil as a Bio-Fungicide in Inhibiting Citrus Green Mould
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oils (EO) and Chemicals
2.2. Culturing and Preparing Inoculum of P. digitatum
2.3. Agar Diffusion Assay
2.4. Vapour Assay
2.5. Laboratory Extraction of EO
2.6. Gas Chromatography–Mass Spectrometry (GCMS) Analysis
2.7. Plant Materials
2.8. P. digitatum Inoculation and Fruit Treatment
2.9. Quality Assessment of Fruits
2.9.1. Rind Injury Assessments
2.9.2. Weight Loss
2.10. Measurement of Fruit Firmness
2.11. Respiration Rate
2.12. Total Soluble Solids
2.13. Titratable Acidity
2.14. Ethanol
2.15. Ethylene
2.16. Sensory Evaluation
2.17. Statistical Analysis
3. Results
3.1. Composition of LM EO
3.2. Efficacy of LM EO and Citral in Agar Diffusion and Vapour Assay
3.3. Effect of LM EO and Citral on the Fungal Wounds and on the Rind of Oranges
3.4. Quality Assessment Study of LM EO-Treated Valencia Oranges
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Golding, J.; Archer, J. Advances in postharvest handling of citrus fruit. In Achieving Sustainable Cultivation of Tropical Fruits; Yahia, E.M., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 65–90. [Google Scholar]
- Palou, L.; Smilanick, J.L.; Droby, S. Alternatives to conventional fungicides for the control of citrus postharvest green and blue moulds. Stewart Postharvest Rev. 2008, 4, 1–16. [Google Scholar] [CrossRef]
- Ismail, M.; Zhang, J. Post-harvest citrus diseases and their control. Outlooks Pest Manag. 2004, 15, 29–35. [Google Scholar] [CrossRef]
- Talibi, I.; Boubaker, H.; Boudyach, E.; Ben Aoumar, A.A. Alternative methods for the control of postharvest citrus diseases. J. Appl. Microbiol. 2014, 117, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Eckert, J.W.; Sievert, J.R.; Ratnayake, M. Reduction of imazalil effective- ness against citrus green mold in California packinghouses by resistant biotypes of Penicillium digitatum. Plant Dis. 1994, 78, 971–973. [Google Scholar] [CrossRef]
- Torres-Alvarez, C.; Núñez González, A.; Rodríguez, J.; Castillo, S.; Leos-Rivas, C.; Báez-González, J.G. Chemical composition, antimicrobial, and antioxidant activities of orange essential oil and its concentrated oils. Perf. Químico Act. Antimicrob. Antioxidante Del Aceite Esenc. Naranja Sus Aceites Conc. 2017, 15, 129–135. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Utama, I.M.S.; Wills, R.B.; Ben-Yehoshua, S.; Kuek, C. In vitro efficacy of plant volatiles for inhibiting the growth of fruit and vegetable decay microorganisms. J. Agric. Food Chem. 2002, 50, 6371–6377. [Google Scholar] [CrossRef]
- Plaza, P.; Torres, R.; Usall, J.; Lamarca, N.; Viñas, I. Evaluation of the potential of commercial post-harvest application of essential oils to control citrus decay. J. Hortic. Sci. Biotechnol. 2004, 79, 935–940. [Google Scholar] [CrossRef]
- Holley, R.A.; Patel, D. Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol. 2005, 22, 273–292. [Google Scholar] [CrossRef]
- Angioni, A.; Cabras, P.; D’hallewin, G.; Pirisi, F.M.; Reniero, F.; Schirra, M. Synthesis and inhibitory activity of 7-geranoxycoumarin against Penicillium species in Citrus fruit. Phytochemistry 1998, 47, 1521–1525. [Google Scholar] [CrossRef]
- Jing, L.; Lei, Z.; Li, L.; Xie, R.; Xi, W.; Guan, Y.; Sumner, L.W.; Zhou, Z. Antifungal activity of citrus essential oils. J. Agric. Food Chem. 2014, 62, 3011–3033. [Google Scholar] [CrossRef] [PubMed]
- Weiss, E.A. Essential Oil Crops; CAB International: New York, NY, USA, 1997. [Google Scholar]
- Saifullah, M.D.; McCullum, R.; Vuong, Q.V. Phytochemicals and bioactivities of Australian native lemon myrtle (Backhousia citriodora) and lemon-scented tea tree (Leptospermum petersonii): A comprehensive review. Food Rev. Int. 2022, 39, 6934–6954. [Google Scholar] [CrossRef]
- Taylor, R. Lemon myrtle, the essential oil. Rural Res. 1996, 172, 18–19. [Google Scholar]
- Hood, J.R.; Burton, D.M.; Wilkinson, J.M.; Cavanagh, H.M.A. The effect of Leptospermum petersonii essential oil on Candida albicans and Aspergillus fumigatus. Med. Mycol. 2010, 48, 922–931. [Google Scholar] [CrossRef]
- Sultanbawa, Y. Chapter 59—Lemon myrtle (Backhousia citriodora) oils. In Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 517–521. [Google Scholar]
- Penfold, A.R.; Morrison, F.R.; Willis, J.L.; McKern, H.G.; Spies, M.C. The occurrence of a physiological form of Backhousia citriodora F Muell. and its essential oil. J. Proc. R. Soc. N. S. W. 1951, 85, 123–126. [Google Scholar]
- Brophy, J.J.; Goldsack, R.J.; Fookes, C.J.R.; Forster, P.I. Leaf oils of the genus Backhousia (Myrtaceae). J. Essent. Oil Res. 1995, 7, 237–254. [Google Scholar] [CrossRef]
- Rodov, V.; Ben-Yehoshua, S.; Fang, D.Q.; Kim, J.J.; Ashkenazi, R. Preformed antifungal compounds of lemon fruit: Citral and its relation to disease resistance. J. Agric. Food Chem. 1995, 43, 1057–1061. [Google Scholar] [CrossRef]
- Ben-Yehoshua, S.; Rodov, V. Developing a novel environmentally friendly microbiocidal formulation from peel of citrus fruit. Acta Hortic. 2006, 712, 275–284. [Google Scholar] [CrossRef]
- Wuryatmo, E. Application of Citral to Control Postharvest Diseases of Oranges. Ph.D. Thesis, The University of Adelaide, Adelaide, SA, Australia, 2011. [Google Scholar]
- Ben-Yehoshua, S.; Rodov, V.; Kim, J.J.; Carmeli, S. Preformed and induced antifungal materials of citrus fruits in relation to the enhancement of decay resistance by heat and ultraviolet treatments. J. Agric. Food Chem. 1992, 40, 1217–1221. [Google Scholar] [CrossRef]
- Knight, T.G. Investigation of the Physiological Basis of the Rind Disorder Oleocellosis in Washington Navel Oranges (Citrus sinensis [L] Osbeck). Ph.D. Thesis, University of Adelaide, Adelaide, SA, Australia, 2002. [Google Scholar]
- Southwell, I.A.; Russell, M.; Smith, R.L.; Archer, D.W. Backhousia citriodora F. Muell. (Myrtaceae), A superior source of citral. J. Essent. Oil Res. 2000, 12, 735–741. [Google Scholar] [CrossRef]
- Southwell, I. Backhousia citriodora F. Muell. (lemon myrtle), an unrivalled source of citral. Foods 2021, 10, 1596. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.M.; Hipwell, M.; Ryan, T.; Cavanagh, H.M.A. Bioactivity of Backhousia citriodora: Antibacterial and antifungal activity. J. Agric. Food Chem. 2003, 51, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Lazar-Baker, E.E.; Hetherington, S.D.; Ku, V.V.; Newman, S.M. Evaluation of commercial essential oil samples on the growth of postharvest pathogen Monilinia fructicola (G. Winter) Honey. Lett. Appl. Microbiol. 2011, 52, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Rodov, V.; Nafussi, B.; Ben-Yehoshua, S. Essential oil components as potential means to control Penicillium digitatum Pers.(Sacc.) and other postharvest pathogens of citrus fruit. Fresh Prod. 2011, 5, 43–50. [Google Scholar]
- Safaei-Ghomi, J.; Ahd, A.A. Antimicrobial and antifungal properties of the essential oil and methanol extracts of Eucalyptus largiflorens and Eucalyptus intertexta. Pharmacogn. Mag. 2010, 6, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests, 11th ed.; Approved Standard; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Regnier, T.; du Plooy, W.; Combrinck, S.; Botha, B. Fungitoxicity of Lippia scaberrima essential oil and selected terpenoid components on two mango postharvest spoilage pathogens. Postharvest Biol. Technol. 2008, 48, 254–258. [Google Scholar] [CrossRef]
- Rudback, J.; Ramzy, A.; Karlberg, A.-T.; Nilsson, U. Determination of allergenic hydroperoxides in essential oils using gas chromatography with electron ionization mass spectrometry. J. Sep. Sci. 2014, 37, 982–989. [Google Scholar] [CrossRef]
- Rojas-Argudo, C.; del Río, M.A.; Pérez-Gago, M.B. Development and optimization of locust bean gum (LBG)-based edible coatings for postharvest storage of ‘Fortune’ mandarins. Postharvest Biol. Technol. 2009, 52, 227–234. [Google Scholar] [CrossRef]
- Cháfer, M.; Sánchez-González, L.; González-Martínez, C.; Chiralt, A. Fungal decay and shelf life of oranges coated with chitosan and bergamot, thyme, and tea tree essential oils. J. Food Sci. 2012, 77, E182–E187. [Google Scholar] [CrossRef]
- Pristijono, P.; Bowyer, M.C.; Scarlett, C.J.; Vuong, Q.V.; Stathopoulos, C.E.; Golding, J.B. Combined postharvest UV-C and 1-methylcyclopropene (1-MCP) treatment, followed by storage continuously in low level of ethylene atmosphere improves the quality of Tahitian limes. J. Food Sci. Technol. 2018, 55, 2467–2475. [Google Scholar] [CrossRef]
- Sinkinson, C. Triangle test. In Discrimination Testing in Sensory Science: A Practical Handbook; Rogers, L., Ed.; Woodhead Publishing: Duxford, UK, 2017; p. 153. [Google Scholar]
- O’Mahony, M. Who told you the triangle test was simple? Food Qual. Prefer. 1995, 6, 227–238. [Google Scholar] [CrossRef]
- BS ISO, 4120; Sensory Analysis Methodology Triangle Test. Taylor & Francis: London, UK, 2004.
- Kurekci, C.; Padmanabha, J.; Bishop-Hurley, S.L.; Hassan, E.; Al Jassim, R.A.M.; McSweeney, C.S. Antimicrobial activity of essential oils and five terpenoid compounds against Campylobacter jejuni in pure and mixed culture experiments. Int. J. Food Microbiol. 2013, 166, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Buchbauer, G.; Jirovetz, L. Volatile constituents of the essential oil of the peels of Juglans nigra L. J. Essent. Oil Res. 1992, 4, 539–541. [Google Scholar] [CrossRef]
- Kurita, N.; Miyaji, M.; Kurane, R.; Takahara, Y. Antifungal activity of components of essential oils. Agric. Biol. Chem. 1981, 45, 945–952. [Google Scholar] [CrossRef]
- Kurita, N.; Miyaji, M.; Kurane, R.; Takahara, Y.; Ichimura, K. Antifungal activity and molecular orbital energies of aldehyde compounds from oils of higher plants. Agric. Biol. Chem. 1979, 43, 2365–2371. [Google Scholar] [CrossRef]
- Leite, M.C.A.; Bezerra, A.P.d.B.; Sousa, J.P.d.; Guerra, F.Q.S.; Lima, E.d.O. Evaluation of antifungal activity and mechanism of action of citral against Candida albicans. Evid.-Based Complement. Altern. Med. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wuryatmo, E.; Klieber, A.; Scott, E.S. Inhibition of citrus postharvest pathogens by vapor of citral and related compounds in culture. J. Agric. Food Chem. 2003, 51, 2637–2640. [Google Scholar] [CrossRef]
Retention Time (min) | Laboratory Extracted LM EO | Commercial LM EO | ||
---|---|---|---|---|
Percentage (%) a | Component | Percentage (%) a | Component | |
3.06 | 1.0 | Ethylbenzene | 0.18 | Ethylbenzene |
4.90 | 0.6 | 6-methyl-5-hepten-2-one | 0.31 | 6-methyl-5-hepten-2-one |
5.03 | 0.6 | β-Myrcene | 0.25 | β-Myrcene |
7.70 | 0.5 | Linalool | 0.35 | Linalool |
9.38 | 1.4 | Iso-neral | 1.75 | Iso-neral |
11.60 | 35.3 | Neral | 38.50 | Neral |
11.90 | 2.0 | Iso-geranial | 0.31 | Iso-geranial |
12.43 | 49.5 | Geranial | 51.60 | Geranial |
Treatments | Growth Inhibition (Arcsine %) | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 μL Per Disc | |
Control | 1 ± 2 × 10−16 | 1 ± 2 × 10−16 | 1 ± 2 × 10−16 | 1 ± 2 × 10−16 | 1 ± 2 × 10−16 |
LM EO | 27 ± 2 | 51 ± 2 | 67 ± 3 | 89 ± 3 × 10−14 * | 89 ± 3 × 10−14 * |
Citral | 34 ± 3 | 61 ± 3 | 69 ± 2 | 89 ± 3 × 10−16 * | 89 ± 3 × 10−16 * |
LSD | 1.4 | 1.8 | 1.9 | 1.3 × 10−10 | 1.3 × 10−10 |
Treatments | Growth Inhibition (Arcsine %) | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 μL Per Disc | |
Control | 1 ± 2 × 10−16 | 1 ± 2 × 10−16 | 1 ± 2 × 10−16 | 1 ± 2 × 10−16 | 1 ± 2 × 10−16 |
LM EO | 37 ± 2 | 60 ± 4 | 67 ± 3 | 89 ± 5 * | 893 × 10−14 * |
Citral | 45 ± 1 | 62 ± 2 | 78 ± 8 | 89 ± 3 * | 89 ± 3 × 10−14 * |
LSD | 1.0 | 1.6 | 3.2 | 4.0 × 10−2 | 3.0 × 10−6 |
Treatments | Wounds (Lesion Diameter, mm) | ||
---|---|---|---|
3 | 4 | 5 Days | |
Control | 14 ± 4 | 29 ± 16 | 44 ± 19 |
LM EO (μL L−1) | |||
2000 | 0 ± 0 | 4 ± 8 | 9 ± 14 |
4000 | 0 ± 0 | 2 ± 4 | 5 ± 9 |
6000 | 0 ± 0 | 1 ± 3 | 4 ± 7 |
8000 | 0 ± 0 | 1 ± 4 | 3 ± 9 |
Citral (μL L−1) | |||
1000 | 0 ± 0 | 4 ± 11 | 8 ± 19 |
LSD | 1.8 | 3.2 | 5.2 |
Treatments | Peel Injury Score | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 Days | |
Control | 1.0 ± 0.0 | 1.0 ± 0.0 | 1.0 ± 0.0 | 1.0 ± 0.0 | 1.0 ± 0.0 |
LM EO (μL L−1) | |||||
2000 | 1.9 ± 0.2 | 1.9 ± 0.2 | 2.1 ± 0.2 | 2.7 ± 0.1 | 2.7 ± 0.2 |
4000 | 2.2 ± 0.2 | 2.2 ± 0.2 | 2.4 ± 0.2 | 3.1 ± 0.1 | 3.1 ± 0.1 |
6000 | 2.5 ± 0.1 | 2.5 ± 0.1 | 2.7 ± 0.1 | 3.2 ± 0.2 | 3.2 ± 0.1 |
8000 | 2.8 ± 0.2 | 2.8 ± 0.2 | 3.0 ± 0.2 | 3.4 ± 0.1 | 3.4 ± 0.2 |
Citral (μL L−1) | |||||
1000 | 1.4 ± 0.2 | 1.4 ± 0.1 | 1.6 ± 0.2 | 1.7 ± 0.2 | 1.7 ± 0.1 |
LSD | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Treatments | Wounds (Lesion Diameter, mm) | ||
---|---|---|---|
3 | 4 | 5 Days | |
Control | 20 ± 14 | 37 ± 18 | 57 ± 24 |
LM EO (μL L−1) | |||
500 | 2 ± 6 | 14 ± 17 | 27 ± 27 |
1000 | 1 ± 5 | 5 ± 11 | 13 ± 25 |
1250 | 1 ± 5 | 5 ± 12 | 13 ± 19 |
1500 | 1 ± 4 | 3 ± 9 | 12 ± 18 |
2000 | 1 ± 3 | 4 ± 9 | 12 ± 16 |
Citral (μL L−1) | |||
500 | 3 ± 7 | 10 ± 14 | 26 ± 26 |
1000 | 2 ± 6 | 7 ± 12 | 19 ± 20 |
LSD | 1.9 | 3.5 | 5.4 |
Treatments | Peel Injury Score | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 Days | |
Control | 1.0 ± 0.0 | 1.0 ± 0.0 | 1.0 ± 0.0 | 1.0 ± 0.0 | 1.0 ± 0.0 |
LM EO (μL L−1) | |||||
500 | 1.3 ± 0.5 | 1.3 ± 0.5 | 1.3 ± 0.5 | 1.3 ± 0.5 | 1.4 ± 0.6 |
1000 | 3.2 ± 0.8 | 3.2 ± 0.8 | 3.2 ± 0.8 | 3.2 ± 0.8 | 3.3 ± 0.7 |
1250 | 3.2 ± 0.9 | 3.2 ± 0.9 | 3.2 ± 0.9 | 3.2 ± 0.9 | 3.4 ± 0.6 |
1500 | 3.2 ± 0.6 | 3.2 ± 0.6 | 3.2 ± 0.6 | 3.3 ± 0.6 | 3.5 ± 0.6 |
2000 | 3.3 ± 0.7 | 3.3 ± 0.8 | 3.3 ± 0.8 | 3.3 ± 0.8 | 3.6 ± 0.6 |
Citral (μL L−1) | |||||
500 | 1.3 ± 0.5 | 1.4 ± 0.6 | 1.4 ± 0.5 | 1.4 ± 0.6 | 1.5 ± 0.6 |
1000 | 3.4 ± 0.6 | 3.4 ± 0.6 | 3.5 ± 0.7 | 3.5 ± 0.7 | 3.6 ± 0.7 |
LSD | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Dip Time (s) | Peel Injury Score | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 Days | |
(Control 1) 30 | 1.0 ± 0.0 | 1.0 ± 0.0 | 1.0 ± 0.0 | 1.0 ± 0.0 | 1.0 ± 0.0 |
(Control 2) 30 | 1.0 ± 0.0 | 1.0 ± 0.0 | 1.0 ± 0.0 | 1.0 ± 0.0 | 1.0 ± 0.0 |
5 | 1.0 ± 0.0 | 1.0 ± 0.0 | 1.0 ± 0.0 | 1.0 ± 0.0 | 1.0 ± 0.0 |
10 | 1.0 ± 0.0 | 1.0 ± 0.0 | 1.0 ± 0.0 | 1.0 ± 0.0 | 1.0 ± 0.0 |
15 | 1.1 ± 0.4 | 1.2 ± 0.4 | 1.2 ± 0.4 | 1.2 ± 0.4 | 1.2 ± 0.4 |
30 | 1.2 ± 0.4 | 1.3 ± 0.4 | 1.3 ± 0.4 | 1.3 ± 0.5 | 1.3 ± 0.5 |
LSD | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Quality Parameters/Dipping Treatments (1000 μL L−1) | Weeks | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | Mean | |
Weight loss (%) | |||||
Time—0 | 0 | ||||
Control | 2.7 ± 11.6 | 3.9 ± 12.9 | 4.8 ± 13.5 | 5.4 ± 12.6 | 4.2 ± 12.7 |
LM EO | 2.4 ± 14.7 | 3.7 ± 12.9 | 4.8 ± 14.0 | 5.4 ± 14.0 | 4.1 ± 13.9 |
Citral | 2.4 ± 13.9 | 3.6 ± 12.5 | 4.8 ± 13.5 | 5.6 ± 14.4 | 4.1 ± 13.6 |
LSD | 2.1 | ||||
Firmness (N) | |||||
Time—0 | 33.5 | ||||
Control | 27.9 ± 3.3 | 24.5 ± 2.6 | 23.4 ± 3.7 | 22.8 ± 3.1 | 27.9 ± 3.9 |
LM EO | 26.2 ± 1.9 | 25.7 ± 3.7 | 23.9 ± 2.1 | 22.5 ± 1.9 | 26.2 ± 3.4 |
Citral | 25.9 ± 2.7 | 25.1 ± 2.9 | 23.4 ± 2.3 | 22.5 ± 2.7 | 25.9 ± 3.5 |
LSD | 0.5 | ||||
Respiration (mLCO2kg−1h−1) | |||||
Time—0 | 8.1 | ||||
Control | 8.6 ± 1.4 | 10.5 ± 2.0 | 11.3 ± 0.7 | 12.6 ± 1.5 | 10.8 ± 2.0 |
LM EO | 8.6 ± 1.1 | 10.3 ± 1.8 | 11.4 ± 0.5 | 12.5 ± 2.2 | 10.7 ± 2.1 |
Citral | 8.8 ± 0.8 | 10.5 ± 1.2 | 11.4 ± 1.8 | 12.5 ± 1.5 | 10.8 ± 1.8 |
LSD | 0.7 |
Quality Parameters/Dipping Treatments (1000 μL L−1) | Weeks | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | Mean | |
TSS (%) | |||||
Time—0 | 10.0 | ||||
Control | 10.1 ± 0.8 | 10.3 ± 0.7 | 10.6 ± 0.5 | 11.0 ± 0.6 | 10.5 ± 0.8 |
LM EO | 10.4 ± 1.0 | 10.5 ± 0.9 | 10.8 ± 0.9 | 11.0 ± 0.9 | 10.6 ± 0.9 |
Citral | 10.1 ± 0.9 | 10.6 ± 0.7 | 10.8 ± 0.6 | 11.3 ± 0.7 | 10.7 ± 0.8 |
LSD | 0.3 | ||||
TA (% citric acid) | |||||
Time—0 | 1.3 | ||||
Control | 1.2 ± 0.1 | 1.1 ± 0.2 | 1.1 ± 0.2 | 0.9 ± 0.2 | 1.1 ± 0.2 |
LM EO | 1.2 ± 0.1 | 1.2 ± 0.1 | 1.1 ± 0.1 | 1.0 ± 0.1 | 1.1 ± 0.1 |
Citral | 1.2 ± 0.1 | 1.1 ± 0.1 | 1.0 ± 0.2 | 0.9 ± 0.1 | 1.1 ± 0.2 |
LSD | 0.1 | ||||
Ethanol accumulation (μL L−1) | |||||
Time—0 | 1.1 | ||||
Control | 1.3 ± 0.6 | 1.4 ± 0.5 | 1.6 ± 1.3 | 1.7 ± 0.6 | 1.5 ± 0.8 |
LM EO | 1.2 ± 0.4 | 1.4 ± 0.6 | 1.6 ± 0.8 | 1.7 ± 0.7 | 1.5 ± 0.6 |
Citral | 1.3 ± 0.6 | 1.5 ± 0.7 | 1.7 ± 0.8 | 1.7 ± 0.7 | 1.5 ± 0.7 |
LSD | 0.3 | ||||
Ethylene production (μLC2H4 kg−1 h−1) | |||||
Time—0 | 1.1 × 10−5 | ||||
Control | 1.1 × 10−5 | 1.4 × 10−5 | 1.3 × 10−5 | 1.4 × 10−5 | 1.3 × 10−5 |
LM EO | 1.0 × 10−5 | 1.4 × 10−5 | 1.4 × 10−5 | 1.6 × 10−5 | 1.4 × 10−5 |
Citral | 1.1 × 10−5 | 1.4 × 10−5 | 1.4 × 10−5 | 1.6 × 10−5 | 1.4 × 10−5 |
LSD | 2.8 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Wills, R.B.H.; Bowyer, M.C.; Vuong, V.Q.; Golding, J.B.; Kirkman, T.; Pristijono, P. Efficacy of Lemon Myrtle Essential Oil as a Bio-Fungicide in Inhibiting Citrus Green Mould. Plants 2023, 12, 3742. https://doi.org/10.3390/plants12213742
Rahman MM, Wills RBH, Bowyer MC, Vuong VQ, Golding JB, Kirkman T, Pristijono P. Efficacy of Lemon Myrtle Essential Oil as a Bio-Fungicide in Inhibiting Citrus Green Mould. Plants. 2023; 12(21):3742. https://doi.org/10.3390/plants12213742
Chicago/Turabian StyleRahman, Mohammad M., Ronald B. H. Wills, Michael C. Bowyer, Van Q. Vuong, John B. Golding, Timothy Kirkman, and Penta Pristijono. 2023. "Efficacy of Lemon Myrtle Essential Oil as a Bio-Fungicide in Inhibiting Citrus Green Mould" Plants 12, no. 21: 3742. https://doi.org/10.3390/plants12213742
APA StyleRahman, M. M., Wills, R. B. H., Bowyer, M. C., Vuong, V. Q., Golding, J. B., Kirkman, T., & Pristijono, P. (2023). Efficacy of Lemon Myrtle Essential Oil as a Bio-Fungicide in Inhibiting Citrus Green Mould. Plants, 12(21), 3742. https://doi.org/10.3390/plants12213742