Mycorrhizal Fungal Effects on Plant Growth, Osmolytes, and CsHsp70s and CsPIPs Expression in Leaves of Cucumber under a Short-Term Heat Stress
Abstract
:1. Introduction
2. Results
2.1. Changes in Root AM Fungal Colonization
2.2. Changes in Growth Behavior
2.3. Changes in Chlorophyll Index
2.4. Changes in Sugar Levels
2.5. Changes in Betaine and Proline Levels
2.6. Changes in Leaf CsPIPs Expression
2.7. Changes in Leaf CsHsp70s Expression
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Plant Growth and AM Fungal Inoculation
5.2. Experimental Design
5.3. Variable Measurements
5.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kazmi, R.; Hussain, Z.; Sarwar, G.; Rashid, E.; Khadija, F.; Iqbal, J.; Mustafa, G.; ul Rehman, A. Impact of heat stress on biochemical and physiological attributes of thermotolerant and thermosensitive cucumber (Cucumis sativus L.) genotype. GU J. Phytosci. 2022, 2, 171–180. [Google Scholar]
- Li, C.X.; Dong, S.Y.; Bo, K.L.; Miao, H.; Zhang, S.P.; Gu, X.F. Research progress in physiological and molecular mechanism of low temperature stress response in cucumber. China Veget. 2019, 363, 17–24. [Google Scholar]
- Chen, X.Q.; Han, J.; Ren, Z.H. Transcriptome analysis of cucumber in response to high temperature stress. Mol. Plant Breed. 2021, 19, 3905–3914. [Google Scholar]
- Cheng, Z.; Woody, O.Z.; McConkey, B.J.; Glick, B.R. Combined effects of the plant growth-promoting bacterium Pseudomonas putida UW4 and salinity stress on the Brassica napus proteome. Appl. Soil Ecol. 2012, 61, 255–263. [Google Scholar] [CrossRef]
- Sheteiwy, M.S.; Ali, D.F.I.; Xiong, Y.-C.; Brestic, M.; Skalicky, M.; Hamoud, Y.A.; Ulhassan, Z.; Shaghaleh, H.; AbdElgawad, H.; Farooq, M.; et al. Physiological and biochemical responses of soybean plants inoculated with arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC Plant Biol. 2021, 21, 195. [Google Scholar] [CrossRef]
- Ali, S.; Khan, N. Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiol. Res. 2021, 249, 126771. [Google Scholar] [CrossRef]
- Leontidou, K.; Genitsaris, S.; Papadopoulou, A.; Kamou, N.; Bosmali, I.; Matsi, T.; Madesis, P.; Vokou, D.; Karamanoli, K.; Mellidou, I. Plant growth promoting rhizobacteria isolated from halophytes and drought-tolerant plants: Genomic characterisation and exploration of phyto-beneficial traits. Sci. Rep. 2020, 10, 14857. [Google Scholar]
- Bennett, A.E.; Groten, K. The costs and benefits of plant–arbuscular mycorrhizal fungal interactions. Annu. Rev. Plant Biol. 2022, 73, 649–672. [Google Scholar] [CrossRef]
- Olsson, P.A.; Lekberg, Y. A critical review of the use of lipid signature molecules for the quantification of arbuscular mycorrhiza fungi. Soil Biol. Biochem. 2022, 166, 108574. [Google Scholar] [CrossRef]
- Yadav, A.; Yadav, A.N. Arbuscular mycorrhizal fungi in alleviation of abiotic stresses in plant. Microb. Ecol. 2022, 84, 55–96. [Google Scholar]
- Malhi, G.S.; Kaur, M.; Kaushik, P.; Alyemeni, M.N.; Alsahli, A.A.; Ahmad, P. Arbuscular mycorrhiza in combating abiotic stresses in vegetables: An eco-friendly approach. Saudi J. Biol. Sci. 2021, 28, 1465–1476. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zou, Y.N.; Shu, B.; Wu, Q.S. Deciphering molecular mechanisms regarding enhanced drought tolerance in plants by arbuscular mycorrhizal fungi. Sci. Hortic. 2023, 308, 111591. [Google Scholar] [CrossRef]
- Mathur, S.; Sharma, M.P.; Jajoo, A. Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. J. Photochem. Photobiol. B 2018, 180, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Reva, M.; Cano, C.; Herrera, M.-A.; Bago, A. Arbuscular mycorrhizal inoculation enhances endurance to severe heat stress in three horticultural crops. HortScience 2021, 56, 396–406. [Google Scholar] [CrossRef]
- Maya, M.A.; Matsubara, Y.I. Influence of arbuscular mycorrhiza on the growth and antioxidative activity in cyclamen under heat stress. Mycorrhiza 2013, 23, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Cabral, C.; Ravnskov, S.; Tringovska, I.; Wollenweber, B. Arbuscular mycorrhizal fungi modify nutrient allocation and composition in wheat (Triticum aestivum L.) subjected to heat-stress. Plant Soil 2016, 408, 385–399. [Google Scholar] [CrossRef]
- Duc, N.H.; Csintalan, Z.; Posta, K. Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Physiol. Biochem. 2018, 132, 297–307. [Google Scholar] [CrossRef]
- Ma, J.; Janoušková, M.; Li, Y.; Yu, X.; Yan, Y.; Zou, Z.; He, C. Impact of arbuscular mycorrhizal fungi (AMF) on cucumber growth and phosphorus uptake under cold stress. Funct. Plant Biol. 2015, 42, 1158–1167. [Google Scholar] [CrossRef]
- Hashem, A.; Alqarawi, A.A.; Radhakrishnan, R.; Al-Arjani, A.B.F.; Aldehaish, H.A.; Egamberdieva, D.; Abd-Allah, E.F. Arbuscular m ycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J. Biol. Sci. 2018, 25, 1102–1114. [Google Scholar] [CrossRef]
- Aljawasim, B.D.; Khaeim, H.M.; Manshood, M.A. Assessment of arbuscular mycorrhizal fungi (Glomus spp.) as potential biocontrol agents against damping-off disease Rhizoctonia solani on cucumber. J. Crop Prot. 2020, 9, 141–147. [Google Scholar]
- Zhu, X.C.; Song, F.B.; Xu, H.W. Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 2010, 20, 325–332. [Google Scholar] [CrossRef]
- Wu, Q.S.; Zou, Y.N. Beneficial roles of arbuscular mycorrhizas in citrus seedlings at temperature stress. Sci. Hortic. 2010, 125, 289–293. [Google Scholar] [CrossRef]
- Kilpeläinen, J.; Aphalo, P.J.; Lehto, T. Temperature affected the formation of arbuscular mycorrhizas and ectomycorrhizas in Populus angustifolia seedlings more than a mild drought. Soil Biol. Biochem. 2020, 146, 107798. [Google Scholar] [CrossRef]
- Bendavid-Val, R.; Rabinowitch, H.D.; Katan, J.; Kapulnik, Y. Viability of VA-mycorrhizal fungi following soil solarization and fumigation. Plant Soil 1997, 195, 185–193. [Google Scholar] [CrossRef]
- Baninasab, B.; Ghobadi, C. Influence of paclobutrazol and application methods on high-temperature stress injury in cucumber seedlings. J. Plant Growth Regul. 2011, 30, 213–219. [Google Scholar] [CrossRef]
- Kumar, S.; Kaur, R.; Kaur, N.; Bhandhari, K.; Kaushal, N.; Gupta, K.; Bains, T.S.; Nayyar, H. Heat-stress induced inhibition in growth and chlorosis in mungbean (Phaseolus aureus Roxb.) is partly mitigated by ascorbic acid application and is related to reduction in oxidative stress. Acta Physiol. Plant. 2011, 33, 2091–2101. [Google Scholar]
- Weiszmann, J.; Fürtauer, L.; Weckwerth, W.; Nägele, T. Vacuolar sucrose cleavage prevents limitation of cytosolic carbohydrate metabolism and stabilizes photosynthesis under abiotic stress. FEBS J. 2018, 285, 4082–4098. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; He, J.D.; Ni, Q.D.; Wu, Q.S.; Zou, Y.N. Enhancement of drought tolerance in trifoliate orange by mycorrhiza: Changes in root sucrose and proline metabolisms. Not. Bot. Horti Agrobo. 2018, 46, 270–276. [Google Scholar] [CrossRef] [Green Version]
- Zou, M.; Yuan, L.; Zhu, S.; Liu, S.; Ge, J.; Wang, C. Response of osmotic adjustment and ascorbate-glutathione cycle to heat stress in a heat-sensitive and a heat-tolerant genotype of wucai (Brassica campestris L.). Sci. Hortic. 2016, 211, 87–94. [Google Scholar] [CrossRef]
- Zivcak, M.; Brestic, M.; Sytar, O. Osmotic Adjustment and Plant Adaptation to Drought Stress. In Drought Stress Tolerance in Plants; Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, L.S., Eds.; Springer: Cham, Switzerland, 2016; Volume 1, pp. 105–143. [Google Scholar]
- Zheng, F.L.; Liang, S.M.; Chu, X.N.; Yang, Y.L.; Wu, Q.S. Mycorrhizal fungi enhance flooding tolerance of peach through inducing proline accumulation and improving root architecture. Plant Soil Environ. 2020, 66, 624–631. [Google Scholar] [CrossRef]
- Duke, E.R.; Johnson, C.R.; Koch, K.E. Accumulation of phosphorus, dry matter and betaine during NaCl stress of split-root citrus seedlings colonized with vesicular-arbuscular mycorrhizal fungi on zero, one or two halves. New Phytol. 1986, 104, 583–590. [Google Scholar]
- Ali, M.; Ayyub, C.M.; Amjad, M.; Ahmad, R. Evaluation of thermo-tolerance potential in cucumber genotypes under heat stress. Pak. J. Agric. Sci. 2019, 56, 53–61. [Google Scholar]
- Afzal, Z.; Howton, T.C.; Sun, Y.; Mukhtar, M.S. The roles of aquaporins in plant stress responses. J. Dev. Biol. 2016, 4, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.X.; Yang, L.; Liu, N.; Yang, J.; Zhou, X.K.; Xia, Y.C.; He, Y.; He, Y.Q.; Gong, H.J.; Ma, D.F.; et al. Genome-wide identification, structure characterization, and expression pattern profiling of aquaporin gene family in cucumber. BMC Plant Biol. 2019, 19, 345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.Y.; Li, Q.S.; Ding, W.Y.; Dong, L.W.; Deng, M.; Chen, J.H.; Tian, X.; Hashem, A.; Al-Arjani, A.-B.F.; Alenazi, M.M.; et al. Arbuscular mycorrhizal fungi inoculation impacts expression of aquaporins and salt overly sensitive genes and enhances tolerance of salt stress in tomato. Chem. Biol. Technol. Agric. 2023, 10, 5. [Google Scholar] [CrossRef]
- He, J.D.; Dong, T.; Wu, H.H.; Zou, Y.N.; Wu, Q.S.; Kuča, K. Mycorrhizas induce diverse responses of root TIP aquaporin gene expression to drought stress in trifoliate orange. Sci. Hortic. 2019, 243, 64–69. [Google Scholar]
- Liang, S.M.; Li, Q.S.; Liu, M.Y.; Hashem, A.; Al-Arjani, A.-B.F.; Alenazi, M.M.; Abd-Allah, E.F.; Muthuramalingam, P.; Wu, Q.S. Mycorrhizal effects on growth and expressions of stress-responsive genes (aquaporins and SOSs) of tomato under salt stress. J. Fungi 2022, 8, 1305. [Google Scholar] [CrossRef]
- Cheng, X.F.; Wu, H.H.; Zou, Y.N.; Wu, Q.S.; Kuča, K. Mycorrhizal response strategies of trifoliate orange under well-watered, salt stress, and waterlogging stress by regulating leaf aquaporin expression. Plant Physiol. Biochem. 2021, 162, 27–35. [Google Scholar] [CrossRef]
- Qian, Z.J.; Song, J.J.; Chaumont, F.; Ye, Q. Differential responses of plasma membrane aquaporins in mediating water transport of cucumber seedlings under osmotic and salt stresses. Plan Cell Environ. 2015, 38, 461–473. [Google Scholar] [CrossRef]
- Hasan, S.A.; Rabei, S.H.; Nada, R.M.; Abogadallah, G.M. Water use efficiency in the drought-stressed sorghum and maize in relation to expression of aquaporin genes. Biol. Plant 2017, 61, 127–137. [Google Scholar] [CrossRef]
- Tian, F.; Hu, X.L.; Yao, T.; Yang, X.; Chen, J.G.; Lu, M.Z.; Zhang, J. Recent advances in the roles of HSFs and HSPs in heat stress response in woody plants. Front. Plant Sci. 2021, 12, 704905. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Abazid, A.; Badendieck, S.; Mustea, A.; Stope, M.B. Impact of non-invasive physical plasma on heat shock protein functionality in eukaryotic cells. Biomedicines 2023, 11, 1471. [Google Scholar] [CrossRef]
- Fatima, B.; Batcho, A.A.; Sandhu, Z.Y.; Sarwar, M.B.; Hassan, S.; Rashid, B. Heat shock proteins (HSP70) gene: Plant transcriptomic oven in the hot desert. In Advances in Plant Defense Mechanisms; Kimatu, J.N., Ed.; IntechOpen: London, UK, 2022; pp. 1–19. [Google Scholar]
- Rivera-Becerril, F.; van Tuinen, D.; Martin-Laurent, F.; Metwally, A.; Dietz, K.J.; Gianinazzi, S.; Gianinazzi-Pearson, V. Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza 2005, 16, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Q.; Wang, Z.Y.; Tang, R.; Wang, L.N.; Chen, C.H.; Ren, Z.H. Genome-wide identification and expression analysis of Hsf and Hsp gene families in cucumber (Cucumis sativus L.). Plant Growth Regul. 2021, 95, 223–239. [Google Scholar] [CrossRef]
- Tian, X.; Liu, X.Q.; Liu, X.R.; Li, Q.S.; Abd-Allah, E.F.; Wu, Q.S. Mycorrhizal cucumber with Diversispora versiformis has active heat stress tolerance by up-regulating expression of both CsHsp70s and CsPIPs genes. Sci. Hortic. 2023, 319, 112494. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Br. Mycol. Soc. Trans. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Wu, Q.S.; Srivastava, A.K.; Li, Y. Effect of mycorrhizal symbiosis on growth behavior and carbohdyrate metabolism of trifoliate orange under different substrate P levels. J. Plant Growth Regul. 2015, 34, 495–508. [Google Scholar] [CrossRef]
- Wu, Q.S. Experimental Guidelines in Plant Physiology; China Agriculture Press: Beijing, China, 2018; pp. 53–57. [Google Scholar]
- NY/T 1746-2009; Determination of Betaine in Root of Sugarbeet Colorimetic Method. Agricultural Industry Standard of the People’s Republic of China: Beijing, China, 2009.
- Wan, H.; Zhao, Z.; Qian, C.; Sui, Y.; Malik, A.A.; Chen, J. Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal. Biochem. 2010, 399, 257–261. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Treatments | Root AM Fungal Colonization (%) | Plant Height (cm) | Stem Diameter (mm) | Biomass (g/Plant) |
---|---|---|---|---|
NH + Dv | 64.10 ± 4.67 a | 33.0 ± 5.1 a | 6.78 ± 0.48 a | 15.08 ± 1.27 a |
NH − Dv | 0 c | 12.3 ± 1.3 c | 4.18 ± 0.77 c | 4.93 ± 0.43 c |
H + Dv | 47.31 ± 9.12 b | 26.7 ± 3.7 b | 5.75 ± 0.56 b | 13.45 ± 1.92 b |
H − Dv | 0 c | 7.2 ± 0.4 d | 3.42 ± 0.22d | 2.73 ± 0.20 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.-R.; Rong, Z.-Y.; Tian, X.; Hashem, A.; Abd_Allah, E.F.; Zou, Y.-N.; Wu, Q.-S. Mycorrhizal Fungal Effects on Plant Growth, Osmolytes, and CsHsp70s and CsPIPs Expression in Leaves of Cucumber under a Short-Term Heat Stress. Plants 2023, 12, 2917. https://doi.org/10.3390/plants12162917
Liu X-R, Rong Z-Y, Tian X, Hashem A, Abd_Allah EF, Zou Y-N, Wu Q-S. Mycorrhizal Fungal Effects on Plant Growth, Osmolytes, and CsHsp70s and CsPIPs Expression in Leaves of Cucumber under a Short-Term Heat Stress. Plants. 2023; 12(16):2917. https://doi.org/10.3390/plants12162917
Chicago/Turabian StyleLiu, Xin-Ran, Zi-Yi Rong, Xiao Tian, Abeer Hashem, Elsayed Fathi Abd_Allah, Ying-Ning Zou, and Qiang-Sheng Wu. 2023. "Mycorrhizal Fungal Effects on Plant Growth, Osmolytes, and CsHsp70s and CsPIPs Expression in Leaves of Cucumber under a Short-Term Heat Stress" Plants 12, no. 16: 2917. https://doi.org/10.3390/plants12162917
APA StyleLiu, X. -R., Rong, Z. -Y., Tian, X., Hashem, A., Abd_Allah, E. F., Zou, Y. -N., & Wu, Q. -S. (2023). Mycorrhizal Fungal Effects on Plant Growth, Osmolytes, and CsHsp70s and CsPIPs Expression in Leaves of Cucumber under a Short-Term Heat Stress. Plants, 12(16), 2917. https://doi.org/10.3390/plants12162917