Impact Assessment of Lead-Tolerant Rhizobacteria to Improve Soil Health Using Indian Mustard (Brassica juncea) as an Indicator Plant
Abstract
:1. Introduction
2. Results
2.1. Agronomic Growth Parameters
2.2. Lead Pollution Has a Substantial Negative Impact on Root Characteristics
2.3. Chlorophyll a, b and Carotenoids Contents
2.4. Estimation of Antioxidant Activity
2.5. Lead Uptake in Vegetative and Reproductive Parts
3. Discussion
4. Materials and Methods
4.1. Seed Inoculation
4.2. Experiment-Setup
4.3. Determination of Chlorophyll a, b and Carotenoids
4.4. Determination of Antioxidant Activities and Malondialdehyde (MDA)
4.5. Determination of Lead in Vegetative and Reproductive Parts
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kelley, M.A.; Weber, D.J.; Gilligan, P.; Cohen, M.S. Breakthrough pneumococcal bacteremia in patients being treated with azithromycin and clarithromycin. Clin. Infect. Dis. 2000, 31, 1008–1011. [Google Scholar] [CrossRef] [PubMed]
- Adam, D. Global antibiotic resistance in Streptococcus pneumoniae. J. Antimicrob. Chemother. 2002, 50, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Lador, A.; Grozinsky-Glasberg, S.; Leibovici, L. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst. Rev. 2014, 1, 1–148. [Google Scholar] [CrossRef] [PubMed]
- Lis-Balchin, M. Geranium oil. Int. J. Aromather. 1996, 7, 18–20. [Google Scholar] [CrossRef]
- Taherpour, A.A.; Maroofı, H.; Kheradmand, K. Chemical composition of the essential oil of Pelargonium quercetorum Agnew of Iran. Nat. Prod. Res. 2007, 21, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Jazayeri, S.B.; Amanlou, A.; Ghanadian, N.; Pasalar, P.; Amanlou, M. A preliminary investigation of anticholinesterase activity of some Iranian medicinal plants commonly used in traditional medicine. DARU J. Pharm. Sci. 2014, 22, 17. [Google Scholar] [CrossRef] [PubMed]
- Lis-Balchin, M. Geranium and Pelargonium; Taylor & Franchis Group: London, UK, 2002; Volume 116, pp. 1–3. [Google Scholar]
- Abouelatta, A.M.; Keratum, A.Y.; Ahmed, S.I.; Hisham, M.E. Repellent, contact and fumigant activities of geranium (Pelargonium graveolens L.’Hér) essential oils against Tribolium castaneum (Herbst) and Rhyzopertha dominica (F.). Int. J. Trop. Insect Sci. 2020, 40, 1021–1030. [Google Scholar] [CrossRef]
- Verma Ram, S.; Verma Sajendra, K.; Tandon, S.; Padalia Rajendra, C.; Darokar Mahendra, P. Chemical composition and antimicrobial activity of Java citronella (Cymbopogon winterianus Jowitt ex Bor) essential oil extracted by different methods. J. Essent. Oil Res. 2020, 32, 449–455. [Google Scholar] [CrossRef]
- Lira, M.H.P.D.; Andrade Júnior, F.P.D.; Moraes, G.F.Q.; Macena, G.D.S.; Pereira, F.D.O.; Lima, I.O. Antimicrobial activity of geraniol: An integrative review. J. Essent. Oil Res. 2020, 32, 187–197. [Google Scholar] [CrossRef]
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Chang, C.M. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules 2022, 27, 1326. [Google Scholar] [CrossRef]
- Tepe, B.; Sokmen, M.; Akpulat, H.A.; Yumrutas, O.; Sokmen, A. Screening of antioxidative properties of the methanolic extracts of Pelargonium endlicherianum Fenzl., Verbascum wiedemannianum Fisch. & Mey., Sideritis libanotica Labill. subsp. linearis (Bentham) Borm. Centaurea mucronifera DC. and Hieracium cappadocicum Freyn. from Turkish flora. Food Chem. 2006, 98, 9–13. [Google Scholar]
- Şeker Karatoprak, G.; Göger, F.; Yerer, M.B.; Koşar, M. Chemical composition and biological investigation of Pelargonium endlicherianum root extracts. Pharm. Biol. 2017, 55, 1608–1618. [Google Scholar] [CrossRef] [PubMed]
- Boukhris, M.; Simmonds, M.S.; Sayadi, S.; Bouaziz, M. Chemical composition and biological activities of polar extracts and essential oil of rose-scented geranium, Pelargonium graveolens. Phytother. Res. 2013, 27, 1206–1213. [Google Scholar] [CrossRef]
- Luqman, S.; Dwivedi, G.R.; Darokar, M.P.; Kalra, A.; Khanuja, S.P. Potential of rosemary oil to be used in drug-resistant infections. Altern. Ther. Health Med. 2007, 13, 54–59. [Google Scholar] [PubMed]
- Su, J.Y.; Zhu, L.; Tian, Y.J. Chemical composition and antimicrobial activities of essential oil of Matricaria songarica. Int. J. Agric. Biol. 2012, 14, 107–110. [Google Scholar]
- Hemaiswarya, S.; Doble, M. Synergistic interaction of eugenol with antibiotics against Gram negative bacteria. Phytomedicine 2009, 16, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Lan, A.; Xu, W.; Zhang, H.; Hua, H.; Zheng, D.; Guo, R.; Shen, N.; Hu, F.; Feng, J.; Liu, D. Inhibition of ROS-activated p38MAPK pathway is involved in the protective effect of H2S against chemical hypoxia-induced inflammation in PC12 cells. Neurochem. Res. 2013, 38, 1454–1466. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, S.; Oluwatuyi, M.; Veitch, N.C.; Gray, A.I. Bacterial resistance modifying agents from Lycopus europaeus. Phytochemistry 2003, 62, 83–87. [Google Scholar] [CrossRef]
- Kim, J.; Jayaprakasha, G.K.; Uckoo, R.M.; Patil, B.S. Evaluation of chemopreventive and cytotoxic effects of lemon seed extracts on human breast cancer (MCF-7) cells. Food Chem. Toxicol. 2012, 50, 423–430. [Google Scholar] [CrossRef]
- Teale, C.J. Antimicrobial resistance and the food chain. J. Appl. Microbiol. 2002, 92, 85–89. [Google Scholar] [CrossRef]
- Choi, S.H.; Lim, S.; Shin, S.W. Combined effects of the essential oil from Pelargonium graveolens with antibiotics against Streptococcus pneumoniae. Nat. Prod. Res. 2007, 13, 342–346. [Google Scholar]
- McLafferty, F.W.; Stauffer, D.B. The Wiley/NBS Registry of Mass Spectral Data; J Wiley and Sons: New York, NY, USA, 1989. [Google Scholar]
- Hochmuth, D.H. MassFinder 4.0; Hochmuth Scientific Consulting: Hamburg, Germany, 2008. [Google Scholar]
- Gyamfi, M.A.; Yonamine, M.; Aniya, Y. Free-radical scavenging action of medicinal herbs from Ghana Thonningia Sanguinea on experimentally induced liver injuries. Gen. Pharmacol. 1999, 32, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Oomah, B.D.; Mazza, G. Flavonoids and antioxidative activities in buckwheat. J. Agric. Food Chem. 1996, 44, 1746–1750. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorisation assay. Free Radic. Bio Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Knecht, D.A.; Lynes, M.A. Metallothionein mediates leukocyte chemotaxis. BMC Immunol. 2005, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Köngül Şafak, E.; Şeker Karatoprak, G.; Dirmenci, T.; Duman, H.; Küçükboyacı, N. Cytotoxic effects of some Nepeta species against breast cancer cell lines and their associated phytochemical properties. Plants 2022, 11, 1427. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Krishnan, T.; Chan, K.G.; Lim, S.H.E. Antibacterial mode of action of Cinnamomum verum bark essential pil, alone and in combination with piperacillin, against a multi-drug-resistant Escherichia coli strain. J. Microbiol. Biotechnol. 2015, 25, 1299–1306. [Google Scholar] [CrossRef]
- CLSI. M100-Performance Standards of Antimicrobial Susceptibility Testing, 30th ed.; Wayne, 2020; p. 82. Available online: https://clsi.org/standards/products/microbiology/documents/m100/ (accessed on 4 July 2023).
- European Committee on Antimicrobial Susceptibility Testing (EUCAST), Breakpoint Tables for Interpretation of MICs and Zone Diameters, Vol. 8, EUCAST, Vaxjo, Sweden. 2018. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 4 July 2023).
- Dumlupinar, B.; Karatoprak, G.Ş.; Celik, D.D.; Gürer, Ü.S.; Demirci, B.; Gürbüz, B.; Rayaman, P.; Kurtulus, E.M. Synergic potential of Pelargonium endlicherianum Fenzl. essential oil and antibiotic combinations against Klebsiella pneumoniae. S. Afr. J. Bot. 2020, 135, 117–126. [Google Scholar] [CrossRef]
- Dumlupinar, B.; Celik, D.D.; Karatoprak, G.Ş.; Gürer, Ü.S. Synergy between Pelargonium endlicherianum essential oil and conventional antibiotics against Neisseria meningitidis and Haemophilus influenzae. S. Afr. J. Bot. 2022, 146, 243–253. [Google Scholar] [CrossRef]
- Lategan, K.; Fowler, J.; Bayati, M.; Fidalgo de Cortalezzi, M.; Pool, E. The effects of carbon dots on immune system biomarkers, using the murine macrophage cell line RAW 264.7 and human whole blood cell cultures. Nanomaterials 2018, 8, 388. [Google Scholar] [CrossRef]
- Pruul, H.; Mcdonald, P.J. Enhancement of leukocyte activity against Escherichia coli after brief exposure to chloramphenicol. Antimicrob. Agents Chemother. 1979, 16, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Novelli, A.; Fallani, S.; Cassetta, M.I.; Conti, S.; Mazzei, T. Postantibiotic leukocyte enhancement of meropenem against gram-positive and gram-negative strains. Antimicrob. Agents Chemother. 2000, 44, 3174–3176. [Google Scholar] [CrossRef] [PubMed]
- Ćavar, S.; Maksimović, M. Antioxidant activity of essential oil and aqueous extract of Pelargonium graveolens L’Her. Food Control 2012, 23, 263–267. [Google Scholar] [CrossRef]
- Braca, A.; Politi, M.; Sanogo, R.; Sanou, H.; Morelli, I.; Pizza, C.; De Tommasi, N. Chemical composition and antioxidant activity of phenolic compounds from wild and cultivated Sclerocarya birrea (Anacardiaceae) leaves. J. Agric. Food Chem. 2003, 51, 6689–6695. [Google Scholar] [CrossRef]
- Liyana-Pathirana, C.M.; Shahidi, F. Antioxidant properties of commercial soft and hard winter wheats (Triticum aestivum L.) and their milling fractions. J. Sci. Food Agric. 2006, 86, 477–485. [Google Scholar] [CrossRef]
- Gaamoune, S.; Harzallah, D.; Kada, S.; Dahamna, S. The comparison of two tannin extraction methods from Galium tunetanum Poiret. and their antioxidant capacities. Der Pharm. Lett. 2014, 6, 114–119. [Google Scholar]
- Petlevski, R.; Flajs, D.; Kalođera, Z.; Končić, M.Z. Composition and antioxidant activity of aqueous and ethanolic Pelargonium radula extracts. S. Afr. J. Bot. 2013, 85, 17–22. [Google Scholar] [CrossRef]
- Prior, R.L.; Cao, G. In vivo total antioxidant aapacity: Comparison of different analytical methods. Free Radic. Bio. Med. 1999, 27, 1173–1181. [Google Scholar] [CrossRef]
Treatment | SL (cm) | SFW (g) | SDW (g) | RL (cm) | RFW (g) | RDW (g) |
---|---|---|---|---|---|---|
Control | 100.37 ± 2.1 bc | 49.13 ± 1.6 b | 15.02 ± 1.9 b | 23.42 ± 0.5 b | 18.24 ± 0.7 b | 9.82 ± 1.2 b |
S2 | 108.32 ± 3.1 a | 53.37 ± 1.8 a | 17.29 ± 2.1 a | 26.36± 0.6 a | 20.84 ± 0.4 a | 11.55 ± 1.2 a |
S5 | 107.31 ± 3.5 a | 54.23 ± 2.4 a | 18.19 ± 1.8 a | 26.29 ± 1.6 a | 20.67 ± 1.5 a | 11.44 ± 0.9 a |
S10 | 105.32 ± 1.2 ab | 52.57 ± 2.9 a | 17.34 ± 1.1 a | 27.31± 1.8 a | 20.42 ± 1.1 a | 11.34 ± 0.8 a |
Pb300 | 86.67 ± 3.2 e | 43.43 ± 0.9 d | 14.43 ± 0.3 cd | 18.53 ± 1.8 d | 14.48 ± 1.2 d | 7.70 ± 0.8 de |
Pb300 + S2 | 93.89 ± 2.8 d | 47.57 ± 0.5 bc | 15.23 ± 0.6 b | 22.08 ± 1.7 bc | 17.13 ± 1.3 bc | 9.53 ± 0.7 b |
Pb300 + S5 | 95.30 ± 1.6 cd | 47.10 ± 1.9 bc | 15.41 ± 0.1 b | 22.56 ± 0.7 b | 17.64 ± 1.9 b | 9.80± 1.9 b |
Pb300 + S10 | 92.63 ± 3.6 d | 46.23 ± 1.5 c | 15.09 ± 0.9 bc | 22.12 ± 0.7 bc | 16.91 ± 0.6 bc | 9.45 ± 1.8 bc |
Pb600 | 72.01 ± 2.1 hi | 34.13 ± 2.9 h | 11.43 ± 0.9 h | 15.63 ± 0.8 f | 12.04 ± 1.8 f | 6.46 ± 1.2 f |
Pb600 + S2 | 79.61 ± 3.8 fg | 41.27 ± 1.4 de | 13.51 ± 1.5 de | 20.04 ± 0.7 cd | 14.11 ± 1.7 de | 7.81 ± 0.8 de |
Pb600 + S5 | 83.21 ± 3.5 ef | 38.37± 1.8 fg | 13.12± 1.1 ef | 19.52 ± 0.6 d | 15.37 ± 1.9 cd | 8.33 ± 0.7 d |
Pb600 + S10 | 77.15 ± 4.1 gh | 39.43± 1.2 ef | 12.32 ± 1.1 eg | 18.09± 1.9 d | 15.01 ± 1.2 d | 8.54 ± 0.4 cd |
Pb900 | 60.12 ± 4.9 j | 31.09 ± 3.7 i | 9.12 ± 1.4 i | 11.12 ± 1.8 g | 8.96 ± 0.8 g | 4.64 ± 0.4 g |
Pb900 + S2 | 70.12 ± 4.2 i | 35. 53 ± 1.6 gh | 11.78 ± 0.7 gh | 15.09 ± 0.5 f | 12.55 ± 1.8 ef | 6.40 ± 1.3 f |
Pb900 + S5 | 69.90 ± 3.1 i | 37.02 ± 1.6 fh | 11.89 ± 0.9 h | 16.30 ± 0.6 ef | 11.52 ± 1.2 f | 6.89 ± 0.6 ef |
Pb900 + S10 | 73.45 ± 2.2 hi | 35.10 ± 0.8 h | 12.12 ± 0.9 fh | 15.31 ± 0.7 f | 11.67± 1.4 f | 6.54 ± 0.8 f |
Treatments | No. of Pods | No. of Seeds | Yield (g) | Chlorophyll a | Chlorophyll b | Carotenoids |
---|---|---|---|---|---|---|
Per Plant | Per Plant | Per Plant | µg g−1 | µg g−1 | µg g−1 | |
Control | 344.37 ± 11.2 b | 14.34 ± 1.9 b | 18.24 ± 0.5 b | 15.54 ± 0.7 b | 7.11 ± 0.19 b | 9.23 ± 0.7 c |
S2 | 362.83 ± 6.5 ab | 15.11 ± 1.7 ab | 20.42 ± 0.8 a | 16.59 ± 0.4 a | 7.23 ± 0.16 a | 10.34 ± 0.3 ab |
S5 | 360.60 ± 3.4 ab | 15.02 ± 2.1 ab | 20.68 ± 0.7 a | 16.68 ± 1.2 a | 7.23 ± 0.14 a | 10.56 ± 0.2 b |
S10 | 368.49 ± 4.6 a | 15.35 ± 1.3 a | 20.85 ± 0.1 a | 17.14 ± 1.7 a | 7.18± 0.16 ab | 10.78 ± 0.4 a |
Pb300 | 292.87± 9.5 d | 12.20 ± 1.1 de | 14.48 ± 1.6 d | 13.67 ± 1.4 d | 6.09 ± 0.26 d | 8.56 ± 0.6 d |
Pb300 + S2 | 316.22 ± 10.63 c | 13.17 ± 0.9 cd | 16.92 ± 1.4 bc | 15.04 ± 1.2 c | 6.53 ± 0.12 c | 9.45 ± 0.4 c |
Pb300 + S5 | 317.31± 2.3 c | 13.22 ± 0.7 cd | 17.64 ± 1.1 b | 15.05 ± 0.7 c | 6.34 ± 0.08 c | 9.78 ± 0.4 c |
Pb300 + S10 | 322.72 ± 8.8 c | 13.44 ± 0.6 bc | 17.13 ± 1.5 bc | 15.54 ± 0.8 bc | 6.56 ± 0.27 c | 9.56 ± 0.2 c |
Pb600 | 257.90 ± 8.2 e | 10.74 ± 1.0 fg | 12.05 ± 2.6 f | 12.09 ± 0.7 e | 5.67 ± 0.16 e | 7.57 ± 0.3 ef |
Pb600 + S2 | 278.73 ± 8.7 d | 11.61 ± 1.5 ef | 15.00 ± 1.2 d | 13.41 ± 0.4 d | 5.76 ± 0.09 d | 8.18 ± 0.1 de |
Pb600 + S5 | 276.01 ± 14.6 de | 11.50 ± 1.3 ef | 15.38 ± 1.7 cd | 13.28 ± 0.9 d | 5.45 ± 0.21 de | 8.21 ± 0.4 de |
Pb600 + S10 | 279.98 ± 4.6 d | 11.66 ± 1.3 ef | 14.10 ± 0.8 de | 13.58 ± 0.8 d | 5.78 ± 0.10 d | 8.48 ± 0.6 d |
Pb900 | 205.03 ± 19.8 g | 8.54 ± 0.8 h | 8.97 ± 0.9 g | 10.98 ± 0.7 g | 4.49 ± 0.37 g | 6.47 ± 0.4 h |
Pb900 + S2 | 233.51± 8.9 f | 9.72 ± 0.7 g | 11.53 ± 1.5 f | 11.32 ± 0.2 ef | 5.10 ± 0.21 f | 7.11 ± 0.6 g |
Pb900 + S5 | 228.46 ± 4.6 f | 9.51 ± 1.0 gh | 12.56 ± 1.2 f | 11.39 ± 0.7 e | 4.89 ± 0.17 f | 6.56 ± 0.4 gh |
Pb900 + S10 | 235.81 ± 14.6 f | 9.82 ± 0.5 g | 11.79 ± 1.1 f | 12.12 ± 0.6 ef | 5.00 ± 0.18 f | 7.38 ± 0.3 fg |
Treatments | APX | Catalase | MDA | GR | SOD | Proline |
---|---|---|---|---|---|---|
µmol H2O2 mg−1 Protein min−1 | µmol H2O2 mg−1 Protein min−1 | nmol g−1 | nmol NADPH mg−1 Protein min−1 | mg−1 Protein | umol g−1 FW | |
Control | 17.34 ± 1.9 j | 348.18 ± 32.5 j | 14.09± 3.5 k | 154.34 ± 16.7 l | 248.69 ± 30.4 j | 1.21 ± 0.10 n |
S2 | 19.31 ± 0.6 ij | 394.40± 25.2 ij | 12. 28 ± 2.4 jk | 174.78 ± 12.2 kl | 277.69 ± 26.5 ij | 1.34 ± 0.06 lm |
S5 | 21.28 ± 0.5 hi | 442.23 ± 27.2 hi | 11.03 ± 2.1 jk | 195.79 ± 19.2 ik | 311.09 ± 36.5 hi | 1.56 ± 0.16 km |
S10 | 20.26 ± 1.6 ij | 415.56 ± 20.1 i | 9.70 ± 2.6 k | 184.20 ± 16.1 jk | 302.87 ± 25.6 hi | 1.64 ± 0.13 lm |
Pb300 | 21.32 ± 0.7 hi | 430.21 ± 15.6 hi | 23.39 ± 3.9 eg | 210.31± 22.5 hj | 309.23 ± 24.6 hi | 1.39 ± 0.16 jl |
Pb300 + S2 | 25.11 ± 0.9 fg | 531.45 ± 20.1 fg | 16.10 ± 2.1 hj | 241.48± 14.7 fg | 374.11 ± 30.9 fg | 2.11 ± 0.14 hi |
Pb300 + S5 | 25.34 ± 0.7 fg | 526.24 ± 12.5 g | 18.39 ± 2.4 gi | 233.09± 15.2 f-h | 370.42 ± 28.8 fg | 2.30± 0.14 hj |
Pb300 + S10 | 24.01 ± 0.6 gh | 494.67 ± 11.36 gh | 15.22 ± 2.5 ij | 219.09 ± 14.4 g-i | 348.21 ± 24.1 gh | 2.10 ± 0.08 ik |
Pb600 | 28.21 ± 0.7 ef | 597.34± 16.6 ef | 33.23 ± 2.4 bc | 257.10 ± 14.5 f | 415.12 ± 15.9 ef | 2.39 ± 0.19 gh |
Pb600 + S2 | 30.47 ± 0.6 de | 626.24 ± 15.6 de | 28.38 ± 2.7 ce | 290.21 ± 12.6 e | 440.69 ± 25.4 de | 2.78 ± 0.15 fg |
Pb600 + S5 | 33.78 ± 1.2 c | 694.65 ± 27.9 c | 24.78 ± 2.0 df | 307.34 ± 12.7 de | 488.67 ± 20.3 cd | 3.19 ± 0.21 de |
Pb600 + S10 | 32.47 ± 1.7 cd | 668.37 ± 29.25 cd | 21.47 ± 2.7 f-h | 296.10 ± 13.5 e | 470.27 ± 15.5 cd | 3.10 ± 0.23 ef |
Pb900 | 34.39 ± 1.6 c | 728.12 ± 26.5 c | 47. 29 ± 3.8 a | 333.32 ± 19.7 cd | 500.27 ± 21.6 c | 3.39 ± 0.31 cd |
Pb900 + S2 | 42.12 ± 1.9 ab | 889.21 ± 20.1 a | 38.11 ± 4.9 b | 382.65 ± 13.2 ab | 625.54 ± 26.9 a | 4.20 ± 0.18 ab |
Pb900 + S5 | 43.21 ± 2.6 a | 863.21 ± 22.3 ab | 29.09 ± 2.8 cd | 356.78 ± 12.5 bc | 607.37 ± 27.3 ab | 4.28 ± 0.29 a |
Pb900 + S10 | 39.19 ± 3.7 b | 805.12 ± 31.2 b | 32.18 ± 4.7 c | 393.19 ± 16.9 a | 566.28 ± 27.9 b | 3.79 ± 0.21 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mushtaq, Z.; Akhter, A.; Khan, H.A.A.; Anwar, W.; Hashem, A.; Avila-Quezada, G.D.; Abd_Allah, E.F. Impact Assessment of Lead-Tolerant Rhizobacteria to Improve Soil Health Using Indian Mustard (Brassica juncea) as an Indicator Plant. Plants 2023, 12, 3005. https://doi.org/10.3390/plants12163005
Mushtaq Z, Akhter A, Khan HAA, Anwar W, Hashem A, Avila-Quezada GD, Abd_Allah EF. Impact Assessment of Lead-Tolerant Rhizobacteria to Improve Soil Health Using Indian Mustard (Brassica juncea) as an Indicator Plant. Plants. 2023; 12(16):3005. https://doi.org/10.3390/plants12163005
Chicago/Turabian StyleMushtaq, Zain, Adnan Akhter, Hafiz Azhar Ali Khan, Waheed Anwar, Abeer Hashem, Graciela Dolores Avila-Quezada, and Elsayed Fathi Abd_Allah. 2023. "Impact Assessment of Lead-Tolerant Rhizobacteria to Improve Soil Health Using Indian Mustard (Brassica juncea) as an Indicator Plant" Plants 12, no. 16: 3005. https://doi.org/10.3390/plants12163005
APA StyleMushtaq, Z., Akhter, A., Khan, H. A. A., Anwar, W., Hashem, A., Avila-Quezada, G. D., & Abd_Allah, E. F. (2023). Impact Assessment of Lead-Tolerant Rhizobacteria to Improve Soil Health Using Indian Mustard (Brassica juncea) as an Indicator Plant. Plants, 12(16), 3005. https://doi.org/10.3390/plants12163005