Assessing the RP-LC-MS-Based Metabolic Profile of Hass Avocados Marketed in Europe from Different Geographical Origins (Peru, Chile, and Spain) over the Whole Season
Abstract
:1. Introduction
2. Results and Discussion
2.1. Qualitative Characterization of the Metabolic Profile of Avocado cv. Hass by LC-MS
2.2. Analytical Parameters of the Method
2.3. Quantitative LC-MS Results
2.4. Preliminary Results to Select Potential Markers Linked to the Geographical Origin of Avocado cv. Hass
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Samples
3.3. Extraction Procedure
3.4. LC-MS and Statistical Analyses
3.5. Analytical Parameters of the Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pliego-Alfaro, F.; Palomo-Ríos, E.; Mercado, J.A.; Pliego, C.; Barceló-Muñoz, A.; López-Gómez, R.; Hormaza, J.I.; Litz, R.E. 12.1 Persea Americana Avocado. In Biotechnology of Fruit and Nut Crops; Litz, R.E., Pliego-Alfaro, F., Hormaza, J.I., Eds.; CABI: Wallingford, UK, 2020; pp. 258–281. [Google Scholar]
- Schaffer, B.; Wolstenholme, B.N.; Whiley, A.W. 1. Introduction. In The Avocado: Botany, Production and Uses; Schaffe, B., Wolstenholme, B.N., Whiley, A.W., Eds.; CABI: Wallingford, UK, 2013; pp. 1–8. ISBN 9781845937010. [Google Scholar]
- Hurtado-Fernández, E.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A. Avocado Fruit—Persea americana. In Exotic Fruits; Academic Press: Cambridge, MA, USA, 2018; pp. 37–48. [Google Scholar] [CrossRef]
- Cowan, A.K.; Wolstenholme, B.N. Avocado. Encycl. Food Health 2015, 294–300. [Google Scholar] [CrossRef]
- Crane, J.H.; Douhan, G.; Faber, B.A.; Arpaia, M.L.; Bender, G.S.; Balerdi, C.F.; Barrientos-Priego, A.F. Cultivars and Rootstocks. In the Avocado: Botany, Production and Uses; CABI: Wallingford, UK, 2013; pp. 200–233. [Google Scholar]
- Marín-Obispo, L.M.; Villarreal-Lara, R.; Rodríguez-Sánchez, D.G.; Del Follo-Martínez, A.; Barquera, M.d.l.C.E.; Jaramillo-De la Garza, J.S.; de la Garza, R.I.D.; Hernández-Brenes, C. Insights into Drivers of Liking for Avocado Pulp (Persea americana): Integration of Descriptive Variables and Predictive Modeling. Foods 2021, 10, 99. [Google Scholar] [CrossRef] [PubMed]
- FAO. FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 5 August 2023).
- Farré, J.M.; Pliego, F. Avocado in Spain. S. Afr. Avocado Grow. Assoc. Yearb. 1987, 10, 27–28. [Google Scholar]
- Talavera, A.; Gonzalez-Fernandez, J.J.; Carrasco-Pancorbo, A.; Olmo-García, L.; Hormaza, J. Avocado: Agricultural Importance and Nutraceutical Properties. In Compendium of Crop Genome Designing for Nutraceuticals; Kole, C., Ed.; Springer: Singapore, 2023. [Google Scholar]
- Jimenez, P.; Garcia, P.; Quitral, V.; Vasquez, K.; Parra-Ruiz, C.; Reyes-Farias, M.; Garcia-Diaz, D.F.; Robert, P.; Encina, C.; Soto-Covasich, J. Pulp, Leaf, Peel and Seed of Avocado Fruit: A Review of Bioactive Compounds and Healthy Benefits. Food Rev. Int. 2021, 37, 619–655. [Google Scholar] [CrossRef]
- Bhuyan, D.J.; Alsherbiny, M.A.; Perera, S.; Low, M.; Basu, A.; Devi, O.A.; Barooah, M.S.; Li, C.G.; Papoutsis, K. The Odyssey of Bioactive Compounds in Avocado (Persea americana) and Their Health Benefits. Antioxidants 2019, 8, 426. [Google Scholar] [CrossRef]
- Mpai, S.; Sivakumar, D. Influence of Growing Seasons on Metabolic Composition, and Fruit Quality of Avocado cultivars at ‘Ready-to-Eat Stage’. Sci. Hortic. 2020, 265, 109159. [Google Scholar] [CrossRef]
- Landahl, S.; Meyer, M.D.; Terry, L.A. Spatial and Temporal Analysis of Textural and Biochemical Changes of Imported Avocado Cv. Hass during Fruit Ripening. J. Agric. Food Chem. 2009, 57, 7039–7047. [Google Scholar] [CrossRef]
- Donetti, M.; Terry, L.A. Biochemical Markers Defining Growing Area and Ripening Stage of Imported Avocado Fruit Cv. Hass. J. Food Compos. Anal. 2014, 34, 90–98. [Google Scholar] [CrossRef]
- Tan, C.X.; Tan, S.S.; Tan, S.T. Influence of Geographical Origins on the Physicochemical Properties of Hass Avocado Oil. JAOCS J. Am. Oil Chem. Soc. 2017, 94, 1431–1437. [Google Scholar] [CrossRef]
- Carvalho, C.P.; Velásquez, M.A. Fatty Acid Content of Avocados (Persea americana Mill. Cv. Hass) in Relation to Orchard Altitude and Fruit Maturity Stage. Agron. Colomb. 2015, 33, 220–227. [Google Scholar] [CrossRef]
- Henao-Rojas, J.C.; Lopez, J.H.; Osorio, N.W.; Ramírez-Gil, J.G. Fruit Quality in Hass Avocado and Its Relationships with Different Growing Areas under Tropical Zones. Rev. Ceres 2019, 66, 341–350. [Google Scholar] [CrossRef]
- Martín-Torres, S.; Jiménez-Carvelo, A.M.; González-Casado, A.; Cuadros-Rodríguez, L. Authentication of the Geographical Origin and the Botanical Variety of Avocados Using Liquid Chromatography Fingerprinting and Deep Learning Methods. Chemom. Intell. Lab. Syst. 2020, 199, 103960. [Google Scholar] [CrossRef]
- Jiménez-Carvelo, A.M.; Martín-Torres, S.; Ortega-Gavilán, F.; Camacho, J. PLS-DA vs Sparse PLS-DA in Food Traceability. A Case Study: Authentication of Avocado Samples. Talanta 2021, 224, 121904. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Redondo, J.M.; Bertoldi, D.; Tonon, A.; Ziller, L.; Camin, F.; Moreno-Rojas, J.M. Multi-Element and Stable Isotopes Characterization of Commercial Avocado Fruit (Persea americana Mill) with Origin Authentication Purposes. Food Control 2022, 137, 108975. [Google Scholar] [CrossRef]
- Hurtado-Fernández, E.; Carrasco-Pancorbo, A.; Fernández-Gutiérrez, A. Profiling LC-DAD-ESI-TOF MS Method for the Determination of Phenolic Metabolites from Avocado (Persea americana). J. Agric. Food Chem. 2011, 59, 2255–2267. [Google Scholar] [CrossRef]
- López-Cobo, A.; Gómez-Caravaca, A.M.; Pasini, F.; Caboni, M.F.; Segura-Carretero, A.; Fernández-Gutiérrez, A. HPLC-DAD-ESI-QTOF-MS and HPLC-FLD-MS as Valuable Tools for the Determination of Phenolic and Other Polar Compounds in the Edible Part and by-Products of Avocado. LWT-Food Sci. Technol. 2016, 73, 505–513. [Google Scholar] [CrossRef]
- Ramos-Aguilar, A.L.; Ornelas-Paz, J.; Tapia-Vargas, L.M.; Gardea-Bejar, A.A.; Yahia, E.M.; Ornelas-Paz, J.d.J.; Perez-Martinez, J.D.; Rios-Velasco, C.; Escalante-Minakata, P. Metabolomic Analysis and Physical Attributes of Ripe Fruits from Mexican Creole (Persea americana Var. Drymifolia) and “Hass” Avocados. Food Chem. 2021, 354, 129571. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A. Comprehensive Characterization of Phenolic and Other Polar Compounds in the Seed and Seed Coat of Avocado by HPLC-DAD-ESI-QTOF-MS. Food Res. Int. 2018, 105, 752–763. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A. Comprehensive Identification of Bioactive Compounds of Avocado Peel by Liquid Chromatography Coupled to Ultra-High-Definition Accurate-Mass Q-TOF. Food Chem. 2018, 245, 707–716. [Google Scholar] [CrossRef]
- Hurtado-Fernández, E.; González-Fernández, J.J.; Hormaza, J.I.; Bajoub, A.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A. Targeted LC-MS Approach to Study the Evolution over the Harvesting Season of Six Important Metabolites in Fruits from Different Avocado cultivars. Food Anal. Methods 2016, 9, 3479–3491. [Google Scholar] [CrossRef]
- Di Stefano, V.; Avellone, G.; Bongiorno, D.; Indelicato, S.; Massenti, R.; Lo Bianco, R. Quantitative Evaluation of the Phenolic Profile in Fruits of Six Avocado (Persea americana) Cultivars by Ultra-High-Performance Liquid Chromatography-Heated Electrospray-Mass Spectrometry. Int. J. Food Prop. 2017, 20, 1302–1312. [Google Scholar] [CrossRef]
- Serrano-García, I.; Hurtado-Fernández, E.; Gonzalez-Fernandez, J.J.; Hormaza, J.I.; Pedreschi, R.; Reboredo-Rodríguez, P.; Figueiredo-González, M.; Olmo-García, L.; Carrasco-Pancorbo, A. Prolonged On-Tree Maturation vs. Cold Storage of Hass Avocado Fruit: Changes in Metabolites of Bioactive Interest at Edible Ripeness. Food Chem. 2022, 394, 133447. [Google Scholar] [CrossRef] [PubMed]
- Pedreschi, R.; Ponce, E.; Hernández, I.; Fuentealba, C.; Urbina, A.; González-Fernández, J.J.; Hormaza, J.I.; Campos, D.; Chirinos, R.; Aguayo, E. Short vs. Long-Distance Avocado Supply Chains: Life Cycle Assessment Impact Associated to Transport and Effect of Fruit Origin and Supply Conditions Chain on Primary and Secondary Metabolites. Foods 2022, 11, 1807. [Google Scholar] [CrossRef] [PubMed]
- Campos, D.; Teran-Hilares, F.; Chirinos, R.; Aguilar-Galvez, A.; García-Ríos, D.; Pacheco-Avalos, A.; Pedreschi, R. Bioactive Compounds and Antioxidant Activity from Harvest to Edible Ripeness of Avocado Cv. Hass (Persea americana) throughout the Harvest Seasons. Int. J. Food Sci. Technol. 2020, 55, 2208–2218. [Google Scholar] [CrossRef]
- Fan, S.; Qi, Y.; Shi, L.; Giovani, M.; Zaki, N.A.A.; Guo, S.; Suleria, H.A.R. Screening of Phenolic Compounds in Rejected Avocado and Determination of Their Antioxidant Potential. Processes 2022, 10, 1747. [Google Scholar] [CrossRef]
- Hurtado-Fernández, E.; Pacchiarotta, T.; Gómez-Romero, M.; Schoenmaker, B.; Derks, R.; Deelder, A.M.; Mayboroda, O.a.; Carrasco-Pancorbo, A.; Fernández-Gutiérrez, A. Ultra High Performance Liquid Chromatography-Time of Flight Mass Spectrometry for Analysis of Avocado Fruit Metabolites: Method Evaluation and Applicability to the Analysis of Ripening Degrees. J. Chromatogr. A 2011, 1218, 7723–7738. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Hurtado-Fernández, E.; Pacchiarotta, T.; Mayboroda, O.A.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A. Quantitative Characterization of Important Metabolites of Avocado Fruit by Gas Chromatography Coupled to Different Detectors (APCI-TOF MS and FID). Food Res. Int. 2014, 62, 801–811. [Google Scholar] [CrossRef]
- Pereira, C.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Use of UFLC-PDA for the Analysis of Organic Acids in Thirty-Five Species of Food and Medicinal Plants. Food Anal. Methods 2013, 6, 1337–1344. [Google Scholar] [CrossRef]
- Rodríguez-Carpena, J.G.; Morcuende, D.; Andrade, M.J.; Kylli, P.; Estevez, M. Avocado (Persea americana Mill.) Phenolics, in Vitro Antioxidant and Antimicrobial Activities, and Inhibition of Lipid and Protein Oxidation in Porcine Patties. J. Agric. Food Chem. 2011, 59, 5625–5635. [Google Scholar] [CrossRef]
- van den Berg, R.A.; Hoefsloot, H.C.J.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, Scaling, and Transformations: Improving the Biological Information Content of Metabolomics Data. BMC Genom. 2006, 7, 142. [Google Scholar] [CrossRef] [PubMed]
- AOAC Official Methods of Analysis of AOAC International. 2016. Available online: https://www.techstreet.com/standards/official-methods-of-analysis-of-aoac-international-20th-edition-2016?product_id=1937367 (accessed on 5 August 2023).
Compound | Family | Molecular Formula | Rt (min) | m/z experim | m/z theoret | Error (ppm) | mSigma Value | MS/MS |
---|---|---|---|---|---|---|---|---|
Uridine | Nucleoside | C9H12N2O6 | 2.7 | 243.0610 | 243.0623 | 0.7 | 6.9 | 199.9 [M-H-43]- |
Tyrosine | Amino acid | C9H11NO3 | 3.0 | 180.0662 | 180.0666 | 2.5 | 18.2 | 162.9 [M-H-17]- |
Succinic acid | Organic acid | C4H6O4 | 3.2 | 117.0192 | 117.0193 | 1.0 | 8.8 | - |
Dihydroxybenzoic acid hexose | Phenolic acid derivative | C13H16O9 | 4.9 | 315.0715 | 315.0722 | 2.0 | 3.6 | 152.9 [M-H-162]- |
Phenylalanine | Amino acid | C9H11NO2 | 4.9 | 164.0720 | 164.0717 | −1.7 | 16.6 | 146.9 [M-H-17]- |
Unknown 1 | - | C13H22O10 | 5.0 | 337.1139 | 337.1140 | 0.3 | 12.1 | - |
Pantothenic acid | Vitamin | C9H17NO5 | 5.2 | 218.1028 | 218.1034 | 2.7 | 17.9 | 145.9 [M-H-28-44]- |
Hydroxybenzoic acid hexose | Phenolic acid derivative | C13H16O8 | 6.3 | 299.0770 | 299.0772 | 0.7 | 52.8 | - |
Tryptophan | Amino acid | C11H12N2O2 | 6.5 | 203.0818 | 203.0826 | 4.1 | 2.1 | 159.0 [M-H-44]- 115.9 [M-H-28-44]- |
N-acetyl-tyrosine | Amino acid derivative | C11H13NO4 | 6.6 | 222.0772 | 222.0772 | −0.2 | 7.3 | 179.9 [M-H-42]- 162.9 [M-H-42-17]-107.0 |
Chlorogenic acid | Phenolic acid | C16H18O9 | 7.1 | 353.0887 | 353.0878 | −2.4 | 25.1 | 191.0 [M-H-caffeic moiety]- |
Coumaric acid hexose I | Phenolic acid derivative | C15H18O8 | 7.5 | 325.0934 | 325.0929 | −1.5 | 6.6 | 162.9 [M-H-162]- 145.0 [M-H-162-18]- |
Coumaric acid hexose II | Phenolic acid derivative | C15H18O8 | 7.8 | 325.0917 | 325.0929 | 3.6 | 6.5 | 162.9 [M-H-162]- 145.0 [M-H-162-18]- |
Ferulic acid hexose I | Phenolic acid derivative | C16H20O9 | 7.8 | 355.1033 | 355.1035 | 0.3 | 21.4 | 192.9 [M-H-162]- |
Unknown 2 | - | C16H22O8 | 7.8 | 341.1242 | 341.1242 | 0.0 | 4.8 | 298.8 [M-H-42]- 280.9 [M-H-162]- |
Ferulic acid hexose II | Phenolic acid derivative | C16H20O9 | 8.1 | 355.1027 | 355.1035 | 2.2 | 22.1 | 192.9 [M-H-162]- |
Epicatechin | Flavonoid | C15H14O6 | 8.3 | 289.0711 | 289.0718 | 2.3 | 8.5 | 244.9 [M-H-44]- |
N-acetyl-leucine | Amino acid derivative | C8H15NO3 | 8.6 | 172.0974 | 172.0979 | 2.8 | 22.1 | - |
Coumaric acid malonyl-hexose I | Phenolic acid derivative | C17H20O9 | 9.0 | 367.1021 | 367.1035 | 3.8 | 3.4 | 162.9 [M-H-162-86]- 144.9 [M-H-180-86]- |
Coumaric acid malonyl-hexose II | Phenolic acid derivative | C17H20O9 | 9.3 | 367.1027 | 367.1035 | 2.1 | 14.9 | 162.9 [M-H-162-86]- 145.0 [M-H-180-86]- |
N-acetyl-phenylalanine | Amino acid derivative | C11H13NO3 | 9.4 | 206.0817 | 206.0823 | 2.5 | 27.1 | 163.9 [M-H-42]- 146.9 [M-H-42-17]- |
p-Coumaric acid | Phenolic acid | C9H8O3 | 9.9 | 163.0395 | 163.0401 | 1.5 | 6.2 | 118.9 [M-H-44]- |
Ferulic Acid | Phenolic acid | C10H10O4 | 10.4 | 193.0498 | 193.0506 | 4.3 | 17.2 | 177.8 [M-H-15]- 133.9 [M-H-15-44]- |
Unknown 3 | - | C9H16O4 | 11.4 | 187.0976 | 187.0976 | 0.0 | 10.9 | - |
Unknown 4 | - | C14H24O6 | 12.3 | 287.1492 | 287.1500 | 0.1 | 19.4 | 227.0 [M-H-60]- 209.0 [M-H-18]- |
Abscisic acid | Phytohormone | C15H20O4 | 12.9 | 263.1286 | 263.1289 | 1.2 | 3.9 | 219.0 [M-H-44]- 153.0 [M-H-44-66]- |
Unknown 5 | - | C9H16O3 | 13.6 | 171.1020 | 171.1027 | 4.1 | 5.4 | 152.9 [M-H-18]- 127.0 [M-H-44]- |
Chemical Class | Spain | Chile | Peru | |||
---|---|---|---|---|---|---|
Compound | Mean | SD | Mean | SD | Mean | SD |
Amino acids and nucleotides | ||||||
N-acetyl-leucine | 3.35 | 2.37 | 1.99 | 0.42 | 1.24 | 0.50 |
N-acetyl-phenylalanine | 16.76 | 9.02 | 10.24 | 2.77 | 19.31 | 11.84 |
N-acetyl-tyrosine | 13.33 | 2.77 | 9.96 | 2.45 | 24.25 | 15.84 |
Phenylalanine | 5.42 | 2.33 | 11.05 | 6.30 | 18.11 | 7.30 |
Tryptophan | 1.58 | 0.66 | 5.98 | 3.49 | 2.65 | 0.94 |
Tyrosine | 2.62 | 0.76 | 9.18 | 5.85 | 5.74 | 3.80 |
Uridine | 18.68 | 6.85 | 96.72 | 10.14 | 41.46 | 6.71 |
Flavonoids | ||||||
Epicatechin | 27.82 | 17.48 | 7.11 | 6.51 | 0.05 | 0.03 |
Organic acids | ||||||
Succinic acid | 836.34 | 170.16 | 1295.68 | 263.90 | 383.93 | 139.43 |
Phytohormones | ||||||
Abscisic acid | 11.22 | 3.87 | 30.81 | 7.77 | 7.89 | 3.42 |
Phenolic acids and related compounds | ||||||
Chlorogenic acid | 1.89 | 1.49 | 1.14 | 0.76 | 0.55 | 0.37 |
Coumaric acid hexose I | 165.16 | 37.33 | 212.37 | 30.49 | 18.67 | 14.09 |
Coumaric acid hexose II | 49.08 | 33.63 | 22.62 | 18.89 | 3.99 | 3.73 |
Coumaric acid malonyl-hexose I | 44.70 | 18.38 | 49.52 | 28.71 | 8.62 | 7.21 |
Coumaric acid malonyl-hexose II | 51.54 | 21.28 | 26.95 | 13.58 | 12.51 | 10.56 |
Dihydroxybenzoic acid hexose | 6.18 | 0.94 | 9.25 | 4.21 | 35.96 | 11.30 |
Ferulic Acid | 8.08 | 2.46 | 13.57 | 3.56 | 3.06 | 1.40 |
Ferulic acid hexose I | 10.78 | 3.20 | 19.25 | 18.29 | 1.74 | 1.56 |
Ferulic acid hexose II | 6.35 | 3.59 | 3.99 | 3.33 | 0.37 | 0.23 |
Hydroxybenzoic acid hexose | 1.94 | 1.67 | 3.40 | 3.10 | 3.12 | 2.38 |
p-Coumaric acid | 52.54 | 20.80 | 75.40 | 34.52 | 11.29 | 10.48 |
Vitamins | ||||||
Pantothenic acid | 20.15 | 4.84 | 30.26 | 4.04 | 35.14 | 6.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano-García, I.; Domínguez-García, J.; Hurtado-Fernández, E.; González-Fernández, J.J.; Hormaza, J.I.; Beiro-Valenzuela, M.G.; Monasterio, R.; Pedreschi, R.; Olmo-García, L.; Carrasco-Pancorbo, A. Assessing the RP-LC-MS-Based Metabolic Profile of Hass Avocados Marketed in Europe from Different Geographical Origins (Peru, Chile, and Spain) over the Whole Season. Plants 2023, 12, 3004. https://doi.org/10.3390/plants12163004
Serrano-García I, Domínguez-García J, Hurtado-Fernández E, González-Fernández JJ, Hormaza JI, Beiro-Valenzuela MG, Monasterio R, Pedreschi R, Olmo-García L, Carrasco-Pancorbo A. Assessing the RP-LC-MS-Based Metabolic Profile of Hass Avocados Marketed in Europe from Different Geographical Origins (Peru, Chile, and Spain) over the Whole Season. Plants. 2023; 12(16):3004. https://doi.org/10.3390/plants12163004
Chicago/Turabian StyleSerrano-García, Irene, Joel Domínguez-García, Elena Hurtado-Fernández, José Jorge González-Fernández, José Ignacio Hormaza, María Gemma Beiro-Valenzuela, Romina Monasterio, Romina Pedreschi, Lucía Olmo-García, and Alegría Carrasco-Pancorbo. 2023. "Assessing the RP-LC-MS-Based Metabolic Profile of Hass Avocados Marketed in Europe from Different Geographical Origins (Peru, Chile, and Spain) over the Whole Season" Plants 12, no. 16: 3004. https://doi.org/10.3390/plants12163004
APA StyleSerrano-García, I., Domínguez-García, J., Hurtado-Fernández, E., González-Fernández, J. J., Hormaza, J. I., Beiro-Valenzuela, M. G., Monasterio, R., Pedreschi, R., Olmo-García, L., & Carrasco-Pancorbo, A. (2023). Assessing the RP-LC-MS-Based Metabolic Profile of Hass Avocados Marketed in Europe from Different Geographical Origins (Peru, Chile, and Spain) over the Whole Season. Plants, 12(16), 3004. https://doi.org/10.3390/plants12163004