Effect of Different Monochromatic LEDs on the Environmental Adaptability of Spathiphyllum floribundum and Chrysanthemum morifolium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Plant Growth
2.3. Photosynthetic Pigments
2.4. Soluble Sugar and Soluble Protein
2.5. Antioxidant Enzyme Activities
2.6. Photosynthetic Parameters
2.7. Chlorophyll Fluorescence
2.8. Statistical Analysis
3. Results
3.1. Growth Characteristics
3.2. Soluble Sugars, Soluble Proteins, and Chlorophyll
3.3. Activity Levels of Antioxidant Enzyme
3.4. Photosynthetic Characteristics
3.5. Fast Chlorophyll Fluorescence
3.6. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Lu, W.; Tong, Y.X.; Yang, Q.C. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Front. Plant Sci. 2016, 7, 250. [Google Scholar] [CrossRef] [PubMed]
- Li, J.F.; Yi, C.Y.; Zhang, C.R.; Pan, F.; Xie, C.; Zhou, W.Z.; Zhou, C.F. Effects of light quality on leaf growth and photosynthetic fluorescence of Brasenia schreberi seedlings. Heliyon 2021, 7, e06082. [Google Scholar] [CrossRef] [PubMed]
- Demotes-Mainard, S.; Peron, T.; Corot, A.; Bertheloot, J.; Le Gourrierec, J.; Pelleschi-Travier, S.; Crespel, L.; Morel, P.; Huché-Thélier, L.; Boumaza, R.; et al. Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 2016, 121, 4–21. [Google Scholar] [CrossRef]
- Chen, X.L.; Yang, Q.C. Effects of intermittent light exposure with red and blue light emitting diodes on growth and carbohydrate accumulation of lettuce. Sci. Hortic. 2018, 234, 220–226. [Google Scholar] [CrossRef]
- Sarah, E.; Aidan, D.F.; Winston, E.; Kathryn, D.A.; Pathmanathan, U. The impact of light on vase life in (Anthurium andraeanum Hort.) cut flowers. Postharvest Biol. Technol. 2020, 159, 110984. [Google Scholar] [CrossRef]
- Kim, H.H.; Goins, G.D.; Wheeler, R.M.; Sager, J.C. Green-light supplementation for enhanced lettuce growth under red-and blue-lightemitting diodes. HortScience 2004, 39, 1617–1622. [Google Scholar] [CrossRef] [PubMed]
- Massa, G.D.; Kim, H.H.; Wheeler, R.M.; Mitchell, C.A. Plant productivity in response to LED lighting. HortScience 2008, 43, 1951–1956. [Google Scholar] [CrossRef]
- Dutta, G.S.; Jatothu, B. Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol. Rep. 2013, 7, 211–220. [Google Scholar] [CrossRef]
- Hernandez, R.; Kubota, C. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ. Exp. Bot. 2016, 29, 66–74. [Google Scholar] [CrossRef]
- Ma, Y.C.; Xu, A.; Cheng, Z.M. Effects of light emitting diode lights on plant growth, development and traits a meta-analysis. Hortic. Plant J. 2021, 76, 552–564. [Google Scholar] [CrossRef]
- Park, Y.G.; Muneer, S.; Jeong, B.R. Morphogenesis, flowering, and gene expression of Dendranthema grandiflorum in response to shift in light quality of night interruption. Int. J. Mol. Sci. 2015, 16, 16497–16513. [Google Scholar] [CrossRef] [PubMed]
- Keyser, E.D.; Dhooghe, E.; Christiaens, A.; Labeke, M.C.V.; Huylenbroeck, J.V. LED light quality intensifies leaf pigmentation in ornamental pot plants. Sci. Hortic. 2019, 253, 270–275. [Google Scholar] [CrossRef]
- Dutta, G.S.; Sahoo, T.K. Light-emitting diode (LED) induced alteration of oxidative events during in vitro shoot organogenesis of Curculigo orchioides gaertn. Acta Physiol. Plant. 2015, 37, 1–9. [Google Scholar] [CrossRef]
- Hosotani, S.; Yamauchi, S.; Kobayashi, H.; Fuji, S.; Koya, S.; Shimazaki, K.I.; Takemiya, A. A BLUS1 kinase signal and a decrease in intercellular CO2 concentration are necessary for stomatal opening in response to blue light. Plant Cell 2021, 33, 1813–1827. [Google Scholar] [CrossRef]
- Kang, J.H.; Krishnakumar, S.; Atulba, S.L.S.; Jeong, B.R.; Hwang, S.J. Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Hortic. Environ. Biotechnol. 2013, 54, 501–509. [Google Scholar] [CrossRef]
- Thi, P.D.N.; Thi, T.H.T.; Jang, D.C.; Kim, I.S.; Nguyen, Q.T. Effects of Supplemental Green LEDs to Red and Blue Light on the Growth, Yield and Quality of Hydroponic Cultivated Spinach (Spinacia oleracea L.) in Plant Factory. Prot. Hortic. Plant Fact. 2020, 29, 171–180. [Google Scholar] [CrossRef]
- Kong, Y.; Zheng, Y.B. Growth and morphology responses to narrow-band blue light and its co-action with low-level UVB or green light: A comparison with red light in four microgreen species. Environ. Exp. Bot. 2020, 178, 104189. [Google Scholar] [CrossRef]
- Hideg, E.; Jansen, M.A.; Strid, A. UV-B exposure, ROS, and stress: Inseparable companions or loosely linked associates? Trends Plant Sci. 2013, 18, 107–115. [Google Scholar] [CrossRef]
- Huché-Thélier, L.; Crespel, L.; Le Gourrierec, J.; Morel, P.; Sakr, S.; Leduc, N. Light signaling and plant responses to blue light and UV radiation-perspectives for applications in horticulture. Environ. Exp. Bot. 2016, 121, 22–38. [Google Scholar] [CrossRef]
- Quaite, F.E.; Sutherland, B.M.; Sutherland, J.C. Action spectrum for dma damage in alfalfa lowers predicted impact of ozone depletion. Nature 1992, 358, 576–578. [Google Scholar] [CrossRef]
- Strid, A.; Chow, W.S.; Anderson, J.M. UV-B damage and protection at the molecular level in plants. Photosynth. Res. 1994, 39, 475–489. [Google Scholar] [CrossRef] [PubMed]
- Mitani-Sano, M.; Tezuka, T. Near-UV radiation acts as a beneficial factor for physiological responses in cucumber plants. J. Photochem. Photobiol. B Biol. 2013, 128, 64–69. [Google Scholar] [CrossRef]
- Lee, M.J.; Son, J.E.; Oh, M.M. Growth and phenolic content of sowthistle grown in a closed-type plant production system with a UV-A or UV-B lamp. Hortic. Environ. Biotechnol. 2013, 54, 492–500. [Google Scholar] [CrossRef]
- Wang, H.; Gu, M.; Cui, J.X.; Shi, K.; Zhou, Y.H.; Yu, J.Q. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J. Photochem. Photobiol. B Biol. 2009, 96, 30–37. [Google Scholar] [CrossRef]
- Johkan, M.; Shoji, K.; Goto, F.; Hahida, S.; Yoshihara, T. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environ. Exp. Bot. 2012, 75, 128–133. [Google Scholar] [CrossRef]
- Terashima, I.; Fujita, T.; Inoue, T.; Chow, W.S.; Oguchi, R. Green light drives leaf photosynthesis more efficiently than red light in strong white light: Revisiting the enigmatic question of why leaves are green. Plant Cell Physiol. 2009, 50, 684–697. [Google Scholar] [CrossRef]
- Alvarenga, I.C.A.; Pacheco, F.V.; Silva, S.T.; Bertolucci, S.K.V.; Pinto, J.E.B.P. In vitro culture of Achillea millefolium L.: Quality and intensity of light on growth and production of volatiles. Plant Cell Tissue Organ Cult. 2015, 122, 299–308. [Google Scholar] [CrossRef]
- Paredes, M.; Quiles, M.J. Chilling stress and hydrogen peroxide accumulation in Chmorifolium morifolium and Spathiphyllum lanceifolium. involvement of chlororespiration. J. Plant Physiol. 2017, 211, 36. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Xv, L.B.; Zhang, M.; Wang, Y.; Zhu, H. Research Progress on the Effect of Light on Plant Growth. Agric. Biotechnol. 2022, 3, 38–44. [Google Scholar]
- Liu, X.Y.; Yang, M.J.; Xie, X.D.; Khaldun, A.B.M.; Arif, A.T.A.K.; Zhong, C.H.; Li, D.W. Effect of light on growth and chlorophyll development in kiwifruit ex vitro and in vitro. Sci. Hortic. 2022, 291, 110599. [Google Scholar] [CrossRef]
- Pagliano, C.; Saracco, G.; Barber, J. Structural, functional and auxiliary proteins of photosystem II. Photosynth. Res. 2013, 116, 167–188. [Google Scholar] [CrossRef]
- Lee, S.; Ahsan, N.; Lee, K.; Kim, D.; Lee, D.; Kwak, S.; Kwon, S.; Kim, T.; Lee, B. Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J. Plant Physiol. 2007, 164, 1626–1638. [Google Scholar] [CrossRef]
- Murchie, E.H.; Horton, P. Contrasting patterns of photosynthetic acclimation to the light environment are dependent on the differential expression of the responses to altered irradiance and spectral quality. Plant Cell Environ. 1998, 21, 139–148. [Google Scholar] [CrossRef]
- Hallik, L.; Niinemets, Ü.; Kull, O. Photosynthetic acclimation to light in woody and herbaceous species: A comparison of leaf structure, pigment content and chlorophyll fluorescence characteristics measured in the field. Plant Biol. 2012, 14, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Liao, F.X.; Liu, J.M.; Sun, Y.B.; Huang, L.L. Efficient regeneration and transformation of Spathiphyllum cannifolium. Plant Cell Tiss. Org. 2016, 127, 325–334. [Google Scholar] [CrossRef]
- Liu, H.; Chen, H.X.; Chen, X.X.; Lu, J.; Chen, D.L.; Luo, C.; Cheng, X.; Huang, C.L. Transcriptomic and metabolomic analyses reveal that MYB transcription factors regulate anthocyanin synthesis and accumulation in the disc florets of the anemone form of Chrysanthemum morifolium. Sci. Hortic. 2023, 307, 110847. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The water culture method for growing plants without soil. Calif. Agric. Exp. Stn. Circ. 1950, 347, 1–32. [Google Scholar]
- Song, Y.L.; Shang, W.Q.; Wang, Z.; He, S.L.; Shi, L.Y.; Shen, Y.X.; Lou, X.Y.; Sun, Y.K. Effects of different light-emitting diode qualities on the growth and photosynthetic characteristics of Spathiphyllum floribundum. Can. J. Plant Sci. 2022, 102, 911–925. [Google Scholar] [CrossRef]
- Holm, G. Chlorophyll mutation in barley. Hereditas 2009, 55, 79–120. [Google Scholar] [CrossRef]
- Fairbairn, D. The metabolism of Heterakis gallinae. II. Carbon dioxide fixation. Exp. Parasitol. 1954, 3, 52–63. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Stewart, R.R.; Bewley, J.D. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol. 1980, 65, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.X.; Kirham, M.B. Drought-Stress-Induced Changes in Activities of Superoxide Dismutase, Catalase, and Peroxidase in Wheat Species. Plant Cell Physiol. 1994, 35, 785–791. [Google Scholar] [CrossRef]
- Cakmak, I.; Marschner, H. Magnesium deficiency and high light intensity enhance activities of superoxide-dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 1992, 98, 1222–1227. [Google Scholar] [CrossRef] [PubMed]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the chlorophyll a fluorescence transient. In Chlorophyll a Fluorescence, Advances in Photosynthesis and Respiration; Papageorgiou, G.C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; Volume 19, pp. 321–362. [Google Scholar]
- Roel, C.R.; Glenn, B.; Thomas, T.; Paul, J.R. Effect of Spectral Quality of Monochromatic LED Lights on the Growth of Artichoke Seedlings. Front. Plant Sci. 2017, 8, 190. [Google Scholar] [CrossRef]
- Kim, E.Y.; Park, S.A.; Park, B.J.; Yi, L.; Oh, M.M. Growth and antioxidant phenolic compounds in cherry tomato seedlings grown under monochromatic light-emitting diodes. Hortic. Environ. Biotechnol. 2014, 55, 506–513. [Google Scholar] [CrossRef]
- Muneer, S.; Kim, E.J.; Park, J.S.; Lee, J.H. Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). Int. J. Mol. Sci. 2014, 15, 4657–4670. [Google Scholar] [CrossRef]
- Manivannan, A.; Soundararajan, P.; Halimah, N.; Ko, C.H.; Jeong, B.R. Blue LED light enhances growth, phytochemical contents, and antioxidant enzyme activities of Rehmannia glutinosa cultured in vitro. Hortic. Environ. Biotechnol. 2015, 56, 105–113. [Google Scholar] [CrossRef]
- Richter, G.; Wessel, K. Red light inhibits blue light-induced chloroplast development in cultured plant cells at the mRNA level. Plant Mol. Biol. 1985, 5, 175–182. [Google Scholar] [CrossRef]
- Topchiy, N.M.; Sytnik, S.K.; Syvash, O.O.; Zolotareva, O.K. The effect of additional red irradiation on the photosynthetic apparatus of Pisum sativum. Photosynthetica 2005, 43, 451–456. [Google Scholar] [CrossRef]
- Tholen, D.; Pons, T.L.; Voesenek, L.A.C.J.; Poorter, H. Ethylene insensitivity results in down-regulation of Rubisco expression and photosynthetic capacity in tobacco. Plant Physiol. 2007, 144, 1305–1315. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.L.; Shang, W.Q.; Ma, D.D.; Wang, Z.; He, S.L.; Shi, L.Y.; Shen, Y.X.; He, D.; Wang, E.Q.; Wang, X.H. Effect on the Growth and Photosynthetic Characteristics of Anthurium andreanum (‘Pink Champion’, ‘Alabama’) under Hydroponic Culture by Different LED Light Spectra. Horticulturae 2022, 8, 389. [Google Scholar] [CrossRef]
- Kamiya, A.; Ikegami, I.; Hase, E. Effects of light on chlorophyll formation. Plant Cell Physiol. 1983, 24, 799–809. [Google Scholar] [CrossRef]
- Shang, W.Q.; Wang, Z.; He, S.L.; Meng, X.Y.; Song, Y.L. Effect of light quality ratio and intensity of red/blue light on growth of Hemerocallis middendorfii plantlets in vitro. J. Northwest A F Univ.-Nat. Sci. Ed. 2017, 45, 90–96. [Google Scholar]
- Lin, K.H.; Huang, M.Y.; Huang, W.D.; Hsu, M.H.; Yang, Z.W.; Yang, C.M. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci. Hortic. 2013, 150, 86–91. [Google Scholar] [CrossRef]
- Szechynska-Hebda, M.; Kruk, J.; Gorecka, M.; Karpinska, B.; Karpinski, S. Evidence for light wavelength-specific photoelectrophysiological signaling and memory of excess light episodes in Arabidopsis. Plant Cell 2010, 22, 2201–2218. [Google Scholar] [CrossRef] [PubMed]
- Samuoliene, G.; Brazaityte, A.; Sirtautas, A.; Viršilė, A.; Sakalauskaitė, J.; Sakalauskienė, S.; Duchovskis, P. LED illumination affects bioactive compounds in romaine baby leaf lettuce. J. Sci. Food Agric. 2013, 93, 3286–3291. [Google Scholar] [CrossRef]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Lin, C.C.; Kao, C.H. Abscisic acid induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Sci. 2001, 160, 323–329. [Google Scholar] [CrossRef]
- Cavalcanti, F.R.; Oliveira, J.T.A.; Martins-Miranda, A.S.; Viégas, R.A.; Silveira, J.A.G. Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt-stressed cowpea leaves. New Phytol. 2004, 163, 563–571. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, M.; Cheng, F.; Liu, S.A.; Liang, Y.Y. Effects of LED photoperiods and light qualities on in vitro growth and chlorophyll fluorescence of Cunninghamia lanceolata. BMC Plant Biol. 2020, 20, 269. [Google Scholar] [CrossRef] [PubMed]
- Lawson, T. Guard cell photosynthesis and stomatal function. New Phytol. 2009, 181, 13–34. [Google Scholar] [CrossRef] [PubMed]
- Hiyama, A.; Takemiya, A.; Munemasa, S.; Okuma, E.; Sugiyama, N.; Tada, Y.; Murata, Y.; Shimazaki, K. Blue light and CO2 signals converge to regulatelight-induced stomatal opening. Nat Commun. 2017, 8, 1284. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Sharkey, T.D. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 1982, 33, 317–345. [Google Scholar] [CrossRef]
- Brodersen, C.R.; Vogelmann, T.C. Do changes in light direction affect absorption profiles in leaves? Funct. Plant Biol. 2010, 37, 403–412. [Google Scholar] [CrossRef]
- Ouzounis, T.; Rosenqvist, E.; Ottosen, C.O. Spectral effects of artificial light on plant physiology and secondary metabolism: A review. HortScience 2015, 8, 1128–1135. [Google Scholar] [CrossRef]
- Liu, H.; Fu, Y.; Wang, M.; Liu, H. Green light enhances growth, photosynthetic pigments and CO2, assimilation efficiency of lettuce as revealed by ‘knock-out’ of the 480-560 nm spectral waveband. Photosynthetica 2016, 55, 144–152. [Google Scholar] [CrossRef]
- Jensen, N.B.; Clausen, M.R.; Kjaer, K.H. Spectral quality of supplemental LED grow light permanently alters stomatal functioning and chilling tolerance in basil (Ocimum basilicum L.). Sci. Hortic. 2018, 227, 38–47. [Google Scholar] [CrossRef]
- Zienkiewicz, M.; Kokoszka, N.; Bacławska, I.; Drożak, A.; Romanowska, E. Light intensity and quality stimulated Deg1-dependent cleavage of PSII components in the chloroplasts of maize. Plant Physiol. Biochem. 2013, 67, 126–136. [Google Scholar] [CrossRef]
- Appenroth, K.J.; Stöckel, J.; Srivastava, A.; Strasser, R.J. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environ. Pollut. 2001, 115, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Murchie, E.H.; Horton, P. Acclimation of photosynthesis to irradiance and spectral quality in British plant species: Chlorophyll content, photosynthetic capacity and habitat preference. Plant Cell Environ. 2008, 20, 438–448. [Google Scholar] [CrossRef]
- Jin, H.L.; Ming, Y.; Wang, H.B. An overview of the differences between shade and sun plants in photosynthetic structure and function. Acta Sci. Nat. Univ. Sunyatseni 2021, 60, 1–8. [Google Scholar] [CrossRef]
Species | Light Quality | Total Fresh Weight (g) | Total Dry Weight (g) | Plant Height (cm) | No. of Leaves (Per Plant) | Root Length (cm) |
---|---|---|---|---|---|---|
S. floribundum | UV-A | 2.01 d ± 0.04 | 0.23 d ± 0.01 | 12.62 c ± 0.18 | 5.40 c ± 0.24 | 9.34 c ± 0.20 |
B | 7.49 a ± 0.09 | 0.88 a ± 0.03 | 17.02 a ± 0.22 | 9.80 a ± 0.37 | 13.80 a ± 0.26 | |
G | 4.12 b ± 0.06 | 0.45 c ± 0.02 | 13.80 b ± 0.23 | 6.20 bc ± 0.37 | 14.30 a ± 0.66 | |
R | 3.80 c ± 0.11 | 0.56 b ± 0.01 | 12.50 c ± 0.09 | 6.40 b ± 0.24 | 10.94 b ± 0.29 | |
C. morifolium | UV-A | 4.37 d ± 0.10 | 0.40 c ± 0.01 | 8.66 c ± 0.20 | 13.40 c ± 0.51 | 3.08 c ± 0.26 |
B | 17.91 a ± 0.17 | 1.84 a ± 0.02 | 30.36 a ± 1.29 | 22.60 a ± 0.68 | 5.28 b ± 0.15 | |
G | 14.08 b ± 0.23 | 1.39 b ± 0.24 | 19.20 b ± 0.13 | 20.60 b ± 0.75 | 5.94 a ± 0.18 | |
R | 12.87 c ± 0.24 | 1.38 b ± 0.02 | 18.84 b ± 0.20 | 23.20 a ± 0.58 | 5.26 b ± 0.14 |
Species | Light Quality | Soluble Sugar (mg·g−1 FW) | Soluble Protein (mg·g−1 FW) | Chl a (mg·g−1 FW) | Chl b (mg·g−1 FW) | Carotenoid (mg·g−1 FW) | Chl a/b |
---|---|---|---|---|---|---|---|
S. floribundum | UV-A | 1.00 d ± 0.02 | 30.94 c ± 0.34 | 0.98 b ± 0.06 | 0.29 c ± 0.02 | 0.24 a ± 0.01 | 3.37 a ± 0.33 |
B | 3.12 b ± 0.09 | 37.35 b ± 1.32 | 1.06 b ± 0.05 | 0.29 c ± 0.01 | 0.23 a ± 0.01 | 3.69 a ± 0.11 | |
G | 1.69 c ± 0.03 | 33.26 c ± 0.68 | 1.18 ab ± 0.03 | 0.34 b ± 0.01 | 0.23 a ± 0.01 | 3.49 a ± 0.16 | |
R | 4.06 a ± 0.11 | 43.38 a ± 1.64 | 1.30 a ± 0.10 | 0.42 a ± 0.01 | 0.23 a ± 0.01 | 3.11 a ± 0.21 | |
C. morifolium | UV-A | 0.67 b ± 0.05 | 10.15 d ± 0.54 | 0.39 c ± 0.04 | 0.16 d ± 0.01 | 0.10 c ± 0.01 | 2.41 b ± 0.33 |
B | 0.55 bc ± 0.01 | 25.81 a ± 0.51 | 0.92 a ± 0.05 | 0.40 a ± 0.01 | 0.11 bc ± 0.01 | 2.28 b ± 0.08 | |
G | 0.87 a ± 0.06 | 14.90 c ± 0.38 | 0.70 b ± 0.01 | 0.25 b ± 0.01 | 0.13 b ± 0.01 | 2.81 b ± 0.11 | |
R | 0.49 c ± 0.02 | 19.00 b ± 0.30 | 0.88 a ± 0.02 | 0.21 c ± 0.01 | 0.20 a ± 0.01 | 4.23 a ± 0.12 |
Species | Light Quality | φPo | ψo | φEo | φRo | φDo |
---|---|---|---|---|---|---|
S. floribundum | UV-A | 0.782 a ± 0.004 | 0.630 b ± 0.023 | 0.493 b ± 0.020 | 0.147 b ± 0.020 | 0.219 b ± 0.004 |
B | 0.774 a ± 0.007 | 0.802 a ± 0.026 | 0.621 a ± 0.024 | 0.263 a ± 0.037 | 0.226 b ± 0.007 | |
G | 0.799 a ± 0.002 | 0.787 a ± 0.004 | 0.628 a ± 0.004 | 0.288 a ± 0.014 | 0.201 b ± 0.002 | |
R | 0.681 b ± 0.036 | 0.623 b ± 0.032 | 0.426 b ± 0.042 | 0.158 b ± 0.028 | 0.319 a ± 0.036 | |
C. morifolium | UV-A | 0.792 ab ± 0.005 | 0.710 b ± 0.021 | 0.562 b ± 0.015 | 0.163 b ± 0.007 | 0.208 ab ± 0.005 |
B | 0.803 a ± 0.001 | 0.782 a ± 0.014 | 0.628 a ± 0.012 | 0.245 a ± 0.020 | 0.197 b ± 0.001 | |
G | 0.790 b ± 0.002 | 0.761 a ± 0.011 | 0.602 a ± 0.010 | 0.208 ab ± 0.012 | 0.210 a ± 0.002 | |
R | 0.794 ab ± 0.004 | 0.778 a ± 0.003 | 0.618 a ± 0.002 | 0.249 a ± 0.022 | 0.206 ab ± 0.004 |
Species | Light Quality | ABS/RC | DIo/RC | TRo/RC | ETo/RC | REo/RC | PIabs | PItotal |
---|---|---|---|---|---|---|---|---|
S. floribundum | UV-A | 1.391 ab ± 0.084 | 0.305 b ± 0.024 | 1.087 ab ± 0.060 | 0.201 b ± 0.014 | 0.682 b ± 0.015 | 4.569 b ± 0.449 | 2.044 b ± 0.193 |
B | 1.220 b ± 0.018 | 0.276 b ± 0.012 | 0.943 bc ± 0.006 | 0.319 a ± 0.042 | 0.757 a ± 0.022 | 12.017 a ± 1.205 | 9.457 a ± 0.659 | |
G | 1.129 b ± 0.034 | 0.227 b ± 0.007 | 0.901 c ± 0.027 | 0.325 a ± 0.016 | 0.709 ab ± 0.025 | 12.995 a ± 0.176 | 11.091 a ± 0.976 | |
R | 1.673 a ± 0.197 | 0.548 a ± 0.044 | 1.125 a ± 0.072 | 0.253 ab ± 0.019 | 0.697 ab ± 0.011 | 2.507 b ± 0.300 | 1.596 b ± 0.215 | |
C. morifolium | UV-A | 1.993 ab ± 0.122 | 0.415 a ± 0.027 | 1.578 ab ± 0.098 | 1.116 ab ± 0.041 | 0.323 b ± 0.015 | 4.826 b ± 0.299 | 1.972 c ± 0.345 |
B | 1.693 b ± 0.101 | 0.335 b ± 0.022 | 1.359 b ± 0.079 | 1.061 b ± 0.046 | 0.414 ab ± 0.030 | 8.829 a ± 0.621 | 5.810 a ± 0.262 | |
G | 2.079 a ± 0.097 | 0.436 a ± 0.020 | 1.643 a ± 0.078 | 1.251 a ± 0.064 | 0.433 a ± 0.040 | 5.845 b ± 0.478 | 3.057 b ± 0.092 | |
R | 1.826 ab ± 0.069 | 0.376 ab ± 0.017 | 1.450 ab ± 0.054 | 1.128 ab ± 0.039 | 0.453 a ± 0.031 | 7.433 a ± 0.409 | 5.145 a ± 0.312 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Liu, W.; Wang, Z.; He, S.; Jia, W.; Shen, Y.; Sun, Y.; Xu, Y.; Wang, H.; Shang, W. Effect of Different Monochromatic LEDs on the Environmental Adaptability of Spathiphyllum floribundum and Chrysanthemum morifolium. Plants 2023, 12, 2964. https://doi.org/10.3390/plants12162964
Song Y, Liu W, Wang Z, He S, Jia W, Shen Y, Sun Y, Xu Y, Wang H, Shang W. Effect of Different Monochromatic LEDs on the Environmental Adaptability of Spathiphyllum floribundum and Chrysanthemum morifolium. Plants. 2023; 12(16):2964. https://doi.org/10.3390/plants12162964
Chicago/Turabian StyleSong, Yinglong, Weichao Liu, Zheng Wang, Songlin He, Wenqing Jia, Yuxiao Shen, Yuke Sun, Yufeng Xu, Hongwei Wang, and Wenqian Shang. 2023. "Effect of Different Monochromatic LEDs on the Environmental Adaptability of Spathiphyllum floribundum and Chrysanthemum morifolium" Plants 12, no. 16: 2964. https://doi.org/10.3390/plants12162964
APA StyleSong, Y., Liu, W., Wang, Z., He, S., Jia, W., Shen, Y., Sun, Y., Xu, Y., Wang, H., & Shang, W. (2023). Effect of Different Monochromatic LEDs on the Environmental Adaptability of Spathiphyllum floribundum and Chrysanthemum morifolium. Plants, 12(16), 2964. https://doi.org/10.3390/plants12162964