Determining Genetic Markers and Seed Compositions Related to High Test Weight in Glycine max
Abstract
:1. Introduction
1.1. Overview of Test Weight in Soybean
1.2. Breeding Efforts to Increase Test Weight
1.3. Correlation with Other Traits
2. Results
2.1. Test Weight
2.2. Genome-Wide Association Study
2.3. Candidate Genes
2.4. Correlation of Test Weight with Seed Composition Traits
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Test Weight
4.3. Genome-Wide Association Study (GWAS)
4.4. Protein, Oil, and Sugar Content
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pagano, M.C.; Miransari, M. 1–The Importance of Soybean Production Worldwide. In Abiotic and Biotic Stresses in Soybean Production; Miransari, M., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 1–26. Available online: https://www.sciencedirect.com/science/article/pii/B9780128015360000013 (accessed on 23 August 2021).
- Shahbandeh. Global Major Soybean Exporting Countries Share 2020 [Internet]. Statista. 2021. Available online: https://www.statista.com/statistics/961087/global-leading-exporters-of-soybeans-export-share/ (accessed on 23 August 2021).
- Davidson, D. Test Weight Matters in 2019 [Internet]. Ilsoyadvisor. 2018. Available online: https://www.ilsoyadvisor.com/on-farm/ilsoyadvisor/test-weight-matters-2019 (accessed on 23 August 2021).
- Staton, M. Understanding Soybean Discount Schedules [Internet]. MSU Extension-Soybeans. 2020. Available online: https://www.canr.msu.edu/news/understanding_soybean_discount_schedules (accessed on 23 August 2021).
- Vázquez-Carrillo, M.G.; Rojas-Martínez, I.; Santiago-Ramos, D.; Arellano-Vázquez, J.L.; Espinosa-Calderón, A.; García-Pérez, M.; Crossa, J. Stability Analysis of Yield and Grain Quality Traits for the Nixtamalization Process of Maize Genotypes Cultivated in the Central High Valleys of Mexico. Crop Sci. 2016, 56, 3090–3099. [Google Scholar] [CrossRef]
- Jing, Q.; Jiang, D.; Dai, T.; Cao, W. [Effects of genotype and environment on wheat grain quality and protein components]. Ying Yong Sheng Tai Xue Bao 2003, 14, 1649–1653. [Google Scholar] [PubMed]
- Doehlert, D.C.; McMullen, M.S.; Hammond, J.J. Genotypic and Environmental Effects on Grain Yield and Quality of Oat Grown in North Dakota. Crop Sci. 2001, 41, 1066–1072. [Google Scholar] [CrossRef]
- Liu, L.; Prenger, E.; Zhang, J.; Little, B.; Mian, M.A.R.; Li, Z. Impact of genotype, seed composition, agronomic trait, and environment on soybean test weight. J. Crop Improv. 2019, 33, 711–729. [Google Scholar] [CrossRef]
- McNeece, B.T.; Gillenwater, J.H.; Li, Z.; Mian, M.A.R. Assessment of soybean test weight among genotypes, environments, agronomic and seed compositional traits. Agron. J. 2021, 113, 2303–2313. [Google Scholar] [CrossRef]
- Schuler, S.F.; Bacon, R.K.; Finney, P.L.; Gbur, E.E. Relationship of Test Weight and Kernel Properties to Milling and Baking Quality in Soft Red Winter Wheat. Crop Sci. 1995, 35, 949–953. [Google Scholar] [CrossRef]
- Gürsoy, S.; Sessİz, A.; Malhi, S.S. Short-term effects of tillage and residue management following cotton on grain yield and quality of wheat. Field Crops Res. 2010, 119, 260–268. [Google Scholar] [CrossRef]
- Bonfil, D.J.; Abbo, S.; Svoray, T. Sowing Date and Wheat Quality as Determined by Gluten Index. Crop Sci. 2015, 55, 2294–2306. [Google Scholar] [CrossRef]
- Rharrabti, Y.; Villegas, D.; Del Moral, L.F.G.; Aparicio, N.; Elhani, S.; Royo, C. Environmental and genetic determination of protein content and grain yield in durum wheat under Mediterranean conditions. Plant Breed. 2001, 120, 381–388. [Google Scholar] [CrossRef]
- Mijić, A.; Liović, I.; Zdunić, Z.; Marić, S.; Marjanović-Jeromela, A.; Jankulovska, M. Quantitative Analysis of Oil Yield and Its Components in Sunflower (Helianthus annuus L.). Rom. Agric.Res. 2009, 26, 41–46. [Google Scholar]
- Holland, J.B.; Frey, K.J.; Hammond, E.G. Correlated responses of fatty acid composition, grain quality, and agronomic traits to nine cycles of recurrent selection for increased oil content in oat. Euphytica 2001, 122, 69–79. [Google Scholar] [CrossRef]
- Severin, A.J.; Woody, J.L.; Bolon, Y.-T.; Joseph, B.; Diers, B.W.; Farmer, A.D.; Muehlbauer, G.J.; Nelson, R.T.; Grant, D.; Specht, J.E.; et al. RNA-Seq Atlas of Glycine max: A guide to the soybean transcriptome. BMC Plant Biol. 2010, 10, 160. [Google Scholar] [CrossRef] [PubMed]
- Cloninger, F.D.; Horrocks, R.D.; Zuber, M.S. Effects of Harvest Date, Plant Density, and Hybrid on Corn Grain Quality 1. Agron. J. 1975, 67, 693–695. [Google Scholar] [CrossRef]
- Lloyd, B.J.; Siebenmorgen, T.J.; Bacon, R.K.; Vories, E. Harvest date and conditioned moisture content effects on test weight of soft red winter wheat. Appl. Eng. Agric. 1999, 15, 525–534. [Google Scholar] [CrossRef]
- Guarienti, E.M.; Ciacco, C.F.; Cunha, G.R.D.; Del Duca, L.D.J.A.; Camargo, C.M.D.O. Effects of rainfall, relative humidity, and water excess and deficit on test weight, thousand kernel weight, and grain yield of wheat. Food Sci. Technol. 2005, 25, 412–418. [Google Scholar] [CrossRef]
- Hossain, I.; Epplin, F.M.; Krenzer, E.G. Planting Date Influence on Dual-Purpose Winter Wheat Forage Yield, Grain Yield, and Test Weight. Agron. J. 2003, 95, 1179–1188. [Google Scholar] [CrossRef]
- Agrawal, H.P.; Mishra, A.K. Sulphur nutrition of soybean. Commun. Soil Sci. Plant Anal. 1994, 25, 1303–1312. [Google Scholar] [CrossRef]
- Akter, F.; Md Islam, N.; Shamsuddoha, A.T.M.; Bhuiyan, M.S.I.; Shilpi, S. Effect of Phosphorus and Sulphur on Growth and Yield of Soybean. Int. J. Bio-Resour. Stress Manag. 2014, 4, 555–560. [Google Scholar]
- Singer, W.M.; Shea, Z.; Yu, D.; Huang, H.; Mian, M.A.R.; Shang, C.; Rosso, M.L.; Song, Q.J.; Zhang, B. Genome-Wide Association Study and Genomic Selection for Proteinogenic Methionine in Soybean Seeds. Front. Plant Sci. 2022, 13, 859109. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, D.; Morota, G.; Dhakal, K.; Singer, W.M.; Lord, N.; Huang, H.; Chen, P.; Mozzoni, L.; Li, S.; et al. Genome-wide association analuysis of sucrose and alanine contents in edamame bean. Front. Plant Sci. 2023, 13, 1086007. [Google Scholar] [CrossRef]
- Song, Q.; Hyten, D.L.; Jia, G.; Quigley, C.V.; Fickus, E.W.; Nelson, R.L.; Cregan, P.B. Development and Evaluation of SoySNP50K, a High-Density Genotyping Array for Soybean. PLoS ONE 2013, 8, e54985. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Hyten, D.L.; Jia, G.; Quigley, C.V.; Fickus, E.W.; Nelson, R.L.; Cregan, P.B. Fingerprinting Soybean Germplasm and Its Utility in Genomic Research. G3 Genes|Genomes|Genet. 2015, 5, 1999–2006. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Pressoir, G.; Briggs, W.H.; Vroh Bi, I.; Yamasaki, M.; Doebley, J.F.; McMullen, M.D.; Gaut, B.S.; Nielsen, D.M.; Holland, J.B.; et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 2006, 38, 203–208. [Google Scholar] [CrossRef]
- Li, J.; Ji, L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity 2005, 95, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.D. qqman: An R package for visualizing GWAS results using Q-Q and manhattan plots. bioRxiv 2014. [Google Scholar] [CrossRef]
- Grant, D.; Nelson, R.T.; Cannon, S.B.; Shoemaker, R.C. SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res. 2010, 38 (Suppl. 1), D843–D846. [Google Scholar] [CrossRef]
- Luciana Rosso, M.; Burleson, S.A.; Maupin, L.M.; Rainey, K.M. Development of breeder-friendly markers for selection of MIPS1 mutations in soybean. Mol. Breed. 2011, 28, 127–132. [Google Scholar] [CrossRef]
Environment (−log10(p)) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Marker | Chr. | Position | BB 2019 | BB 2020 | BB 2021 | W 2019 | W 2020 | W 2021 | Combined 2019 | Combined 2020 | Combined 2021 |
ss715618482 | 14 | 3559612 | NS b | NS | NS | 4.41 a | NS | NS | NS | NS | NS |
ss715619843 | 14 | 7207504 | NS | 8.86 | NS | NS | NS | NS | NS | NS | NS |
ss715618025 | 14 | 2201645 | NS | NS | 9.13 | NS | NS | NS | NS | NS | NS |
ss715623162 | 15 | 8758404 | NS | 5.37 | NS | NS | NS | NS | NS | NS | NS |
ss715623211 | 15 | 9205168 | NS | NS | NS | 5.51 | NS | NS | 5.13 | NS | NS |
ss715623224 | 15 | 9279044 | NS | NS | NS | 5.85 | NS | NS | 5.44 | NS | NS |
ss715620221 | 15 | 9383632 | NS | NS | NS | 5.72 | NS | NS | 5.33 | NS | NS |
ss715623250 | 15 | 9557248 | NS | NS | NS | 4.99 | NS | NS | 5.39 | NS | NS |
ss715623269 | 15 | 9748128 | 4.60 a | NS | NS | 5.76 | NS | NS | NS | NS | NS |
ss715623270 | 15 | 9749617 | 5.09 | NS | NS | 6.04 | NS | NS | 6.66 | NS | NS |
ss715623292 | 15 | 9927090 | NS | NS | NS | NS | NS | 4.77 a | NS | 4.70 a | NS |
ss715620172 | 15 | 10176737 | NS | NS | NS | NS | 4.56 a | NS | NS | NS | NS |
Chromosome | SNP (Position) | Gene | Expression Pattern | Function |
---|---|---|---|---|
14 | ss715618482 (3559612) | Glyma.14g046800 | leaf, flower, pod, seed | Serine phosphatase |
14 | ss715619843 (7207504) | Glyma.14g082900 | leaf, flower, pod | Cytochrome subfamily |
14 | ss715618025 (2201645) | Glyma.15g111700 | leaf, flower, pod, seed, | Ribosomal protein |
15 | ss715623162 (8758404) | Glyma.14g030400 | flower | Dioxygenase |
15 | ss715623211 (9205168) | Glyma.15g117100 | leaf and pod | Transcriptional regulation |
15 | ss715623224 (9279044) | Glyma.15g118100 | leaf, flower, pod, seed | Pentatricopeptide protein |
15 | ss715620221 (9383632) | Glyma.15g119200 | pod, seed | Seed storage protein |
15 | ss715623269 (9748128) | Glyma.15g122800 | root hair, root tip | RNA and protein binding |
15 | ss715623270 (9749617) | Glyma.15g122800 | root hair, root tip | RNA and protein binding |
15 | ss715623292 (9927090) | Glyma.15g125000 | root | Serves as a methyltransferase |
15 | ss715620172 (10176737) | Glyma.15g127900 | root | Unknown |
Trait | BB 2019 | W 2019 | BB 2020 | W 2020 | BB 2021 | W 2021 |
---|---|---|---|---|---|---|
Protein | −0.115 * | −0.136 * | 0.021 | 0.390 * | −0.052 | 0.047 |
Oil | −0.174 * | −0.297 * | −0.203 * | −0.265 * | −0.024 | −0.387 * |
Raffinose | −0.175 * | −0.118 | NA | NA | NA | NA |
Sucrose | −0.086 | −0.08 | NA | NA | NA | NA |
Stachyose | −0.003 | −0.063 | NA | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shea, Z.; Singer, W.M.; Rosso, L.; Song, Q.; Zhang, B. Determining Genetic Markers and Seed Compositions Related to High Test Weight in Glycine max. Plants 2023, 12, 2997. https://doi.org/10.3390/plants12162997
Shea Z, Singer WM, Rosso L, Song Q, Zhang B. Determining Genetic Markers and Seed Compositions Related to High Test Weight in Glycine max. Plants. 2023; 12(16):2997. https://doi.org/10.3390/plants12162997
Chicago/Turabian StyleShea, Zachary, William M. Singer, Luciana Rosso, Qijian Song, and Bo Zhang. 2023. "Determining Genetic Markers and Seed Compositions Related to High Test Weight in Glycine max" Plants 12, no. 16: 2997. https://doi.org/10.3390/plants12162997
APA StyleShea, Z., Singer, W. M., Rosso, L., Song, Q., & Zhang, B. (2023). Determining Genetic Markers and Seed Compositions Related to High Test Weight in Glycine max. Plants, 12(16), 2997. https://doi.org/10.3390/plants12162997