Rosehip Extract-Loaded Liposomes for Potential Skin Application: Physicochemical Properties of Non- and UV-Irradiated Liposomes
Abstract
:1. Introduction
2. Results
2.1. Encapsulation Efficiency
2.2. HPLC Analysis of the Extract and Extract-Loaded Liposomes
2.3. Physical Properties of Rosehip Extract-Loaded Liposomes
2.3.1. Size of Liposomes
2.3.2. PDI of Liposomes
2.3.3. Zeta Potential of Liposomes
2.3.4. Conductivity of Liposomes
2.3.5. Mobility of Liposomes
2.4. Antioxidant Capacity of Rosehip Extract and Liposomes
2.5. Raman Spectroscopy
2.6. Thermal Properties of Rosehip Extract and Liposomes
3. Discussion
4. Materials and Methods
4.1. Plant Material and Reagents
4.2. Extract Preparation
4.3. Liposomes Preparation
4.4. Lyophilization
4.5. Determination of Total Polyphenol Content and Encapsulation Efficiency
4.6. HPLC Analysis
4.7. Determination of the Antioxidant Potential of the Extract and Liposomes
4.7.1. ABTS Assay
4.7.2. DPPH Assays
4.8. Size, PDI, Zeta Potential, Conductivity, and Mobility Analyses
4.9. UV-Stability Study
4.10. Raman Spectroscopy
4.11. DSC Analysis
4.12. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jafarirad, S.; Mehrabi, M.; Divband, B.; Kosari-Nasab, M. Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: A mechanistic approach. Mater. Sci. Eng. C. 2016, 59, 296–302. [Google Scholar] [CrossRef]
- Butnaru, E.; Stoleru, E.; Brebu, M.A.; Darie-Nita, R.N.; Bargan, A.; Vasile, C. Chitosan-based bionanocomposite films prepared by emulsion technique for food preservation. Materials 2019, 12, 373. [Google Scholar] [CrossRef] [PubMed]
- Grajzer, M.; Prescha, A.; Korzonek, K.; Wojakowska, A.; Dziadas, M.; Kulma, A.; Grajeta, H. Characteristics of rose hip (Rosa canina L.) cold-pressed oil and its oxidative stability studied by the differential scanning calorimetry method. Food Chem. 2015, 188, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Ilyasoğlu, H. Characterization of rosehip (Rosa canina L.) seed and seed oil. Int. J. Food Prop. 2014, 17, 1591–1598. [Google Scholar] [CrossRef]
- Khan, I.A.; Abourashed, E.A. Leung’s Encyclopedia of Common Natural Ingredients Used in Food, Drugs, and Cosmetics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 528–530. [Google Scholar]
- Ouerghemmia, S.; Sebei, H.; Siracusa, L.; Ruberto, G.; Saija, A.; Cimino, F.; Cristanic, M. Comparative study of phenolic composition and antioxidant activity of leaf extracts from three wild Rosa species grown in different Tunisia regions: Rosa canina L., Rosa moschata Herrm. and Rosa sempervirens L. Ind. Crops Prod. 2016, 94, 167–177. [Google Scholar] [CrossRef]
- Veisi, H.; Rashtiani, A.; Barjasteh, V. Biosynthesis of palladium nanoparticles using Rosa canina fruit extract and their use as a heterogeneous and recyclable catalyst for Suzuki-Miyaura coupling reactions in water. Appl. Organometal. Chem. 2016, 30, 231–235. [Google Scholar] [CrossRef]
- Pasukamonset, P.; Kwon, O.; Adisakwattana, S. Alginate-based encapsulation of polyphenols from Clitoria ternatea petal flower extract enhances stability and biological activity under simulated gastrointestinal conditions. Food Hydrocoll. 2016, 61, 772–779. [Google Scholar] [CrossRef]
- Ćujić, N.; Trifković, K.; Bugarski, B.; Ibrić, S.; Pljevljakušić, D.; Šavikin, K. Chokeberry (Aronia melanocarpa L.) extract loaded in alginate and alginate/inulin system. Ind. Crops Prod. 2016, 86, 120–131. [Google Scholar] [CrossRef]
- Stojanović, R.; Belščak-Cvitanović, A.; Manojlović, V.; Komes, D.; Nedović, V.; Bugarski, B. Encapsulation of thyme (Thymus serpyllum L.) aqueous extract in calcium alginate beads. J. Sci. Food Agric. 2012, 92, 685–696. [Google Scholar] [CrossRef]
- Delma, K.L.; Lechanteur, A.; Evrard, B.; Semdé, R.; Piel, G. Sterilization methods of liposomes: Drawbacks of conventional methods and perspectives. Int. J. Pharm. 2021, 597, 120271. [Google Scholar] [CrossRef]
- Meunier, S.M.; Sasges, M.R.; Aucoin, M.G. Evaluating ultraviolet sensitivity of adventitious agents in biopharmaceutical manufacturing. J. Ind. Microbiol. Biotechnol. 2017, 44, 893–909. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Guerrero, Y.S.; Del Prado-Audelo, M.L.; Borbolla-Jiménez, F.V.; Gomez, D.M.G.; García-Aguirre, I.; Colín-Castro, C.A.; Morales-González, J.A.; Leyva-Gómez, G.; Magaña, J.J. Effect of UV and gamma irradiation sterilization processes in the properties of different polymeric nanoparticles for biomedical applications. Materials 2020, 13, 1090. [Google Scholar] [CrossRef]
- Delorme, M.M.; Guimarãesa, J.T.; Coutinhoa, N.M.; Balthazara, C.F.; Rochaa, R.S.; Silva, R.; Margalho, L.P.; Pimentel, T.C.; Silva, M.C.; Freitas, M.Q.; et al. Ultraviolet radiation: An interesting technology to preserve quality and safety of milk and dairy foods. Trends Food Sci. Technol. 2020, 102, 146–154. [Google Scholar] [CrossRef]
- Lee, Y.H.; Lin, Y.C.; Feng, C.H.; Tseng, W.-L.; Lu, C.-Y. A derivatization-enhanced detection strategy in mass spectrometry: Analysis of 4-hydroxybenzoates and their metabolites after keratinocytes are exposed to UV radiation. Sci. Rep. 2017, 7, 39907. [Google Scholar] [CrossRef]
- Bryła, A.; Lewandowicz, G.; Juzwa, W. Encapsulation of elderberry extract into phospholipid nanoparticles. J. Food Eng. 2015, 167, 189–195. [Google Scholar] [CrossRef]
- Kechai, N.; Geiger, S.; Fallacara, A.; Canero Infante, I.; Nicolas, V.; Ferrary, E.; Huang, N.; Bochot, A.; Agnely, F. Mixtures of hyaluronic acid and liposomes for drug delivery: Phase behavior, microstructure and mobility of liposomes. Int. J. Pharm. 2017, 523, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Giuberti, C.; de Oliveira Reis, E.C.; Ribeiro Rocha, T.G.; Leite, E.A.; Lacerda, R.G.; Ramaldes, G.A.; de Oliveira, M.C. Study of the pilot production process of long-circulating and pH-sensitive liposomes containing cisplatin. J. Liposome Res. 2011, 21, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Guldiken, B.; Gibis, M.; Boyacioglu, D.; Capanoglu, E.; Weiss, J. Physical and chemical stability of anthocyanin-rich black carrot extract-loaded liposomes during storage. Int. Food Res. J. 2018, 108, 491–497. [Google Scholar] [CrossRef]
- Pećinar, I.; Krstić, D.; Caruso, G.; Popović-Djordjević, J.B. Rapid characterization of hypanthium and seed in wild and cultivated rosehip: Application of Raman microscopy combined with multivariate analysis. R. Soc. Open Sci. 2021, 8, 202064. [Google Scholar] [CrossRef]
- Schulz, H.; Baranska, M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 2007, 43, 13–25. [Google Scholar] [CrossRef]
- Silva, C.E.; Vandenabeele, P.; Edwards, H.G.; de Oliveira, L.F. NIR-FT-Raman spectroscopic analytical characterization of the fruits, seeds, and phytotherapeutic oils from rosehips. Anal. Bioanal. Chem. 2008, 392, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
- Boyaci, H.I.; Temiz, H.T.; Geniş, H.E.; Soykut, E.A.; Yazgan, N.N.; Güven, B.; Şeker, F.C.D. Dispersive and FT-Raman spectroscopic methods in food analysis. RSC Adv. 2015, 5, 56606–56624. [Google Scholar] [CrossRef]
- Nekvapil, F.; Brezestean, I.; Barchewitz, D.; Glamuzina, B.; Chiş, V.; Pinzaru, S.C. Citrus fruits freshness assessment using Raman spectroscopy. Food Chem. 2018, 242, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Cherney, D.P.; Conboy, J.C.; Harris, J.M. Optical-trapping Raman microscopy detection of single unilamellar lipid vesicles. Anal. Chem. 2003, 75, 6621–6628. [Google Scholar] [CrossRef] [PubMed]
- Czamara, K.; Majzner, K.; Pacia, M.Z.; Kochan, K.; Kaczor, A.; Baranska, M. Raman spectroscopy of lipids: A review. J. Raman Spectrosc. 2015, 46, 4–20. [Google Scholar] [CrossRef]
- Gaber, B.P.; Peticolas, W.L. On the quantitative interpretation of biomembrane structure by Raman spectroscopy. Biochim. Biophys. Acta Biomembr. 1977, 465, 260–274. [Google Scholar] [CrossRef]
- Lee, C.; Bain, C.D. Raman spectra of planar supported lipid bilayers. Biochim. Biophys. Acta Biomembr. 2005, 1711, 59–71. [Google Scholar] [CrossRef]
- Nakata, A.; Nomoto, T.; Toyota, T.; Fujinami, M. Tip-enhanced Raman spectroscopy of lipid bilayers in water with an alumina-and silver-coated tungsten tip. Anal Sci. 2013, 29, 865–869. [Google Scholar] [CrossRef]
- Sanderson, J.M.; Ward, A.D. Analysis of liposomal membrane composition using Raman tweezers. Chem. Commun. 2004, 9, 1120–1121. [Google Scholar] [CrossRef]
- Larsson, K.; Rand, R.P. Detection of changes in the environment of hydrocarbon chains by Raman spectroscopy and its application to lipid-protein systems. Biochim. Biophys. Acta 1973, 326, 245–255. [Google Scholar] [CrossRef]
- Demetzos, C. Differential scanning calorimetry (DSC): A tool to study the thermal behavior of lipid bilayers and liposomal stability DSC for lipid bilayer thermal activity. J. Liposome Res. 2008, 18, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Gibis, M.; Zeeb, B.; Weiss, J. Formation, characterization, and stability of encapsulated hibiscus extract in multilayered liposomes. Food Hydrocoll. 2014, 38, 28–39. [Google Scholar] [CrossRef]
- Trucillo, P.; Campardelli, R.; Aliakbarian, B.; Perego, P.; Reverchon, E. Supercritical assisted process for the encapsulation of olive pomace extract into liposomes. J. Supercrit. Fluids 2018, 135, 152–159. [Google Scholar] [CrossRef]
- Gibis, M.; Rahn, N.; Weiss, J. Physical and oxidative stability of uncoated and chitosan-coated liposomes containing grape seed extract. Pharmaceutics 2013, 5, 421–433. [Google Scholar] [CrossRef]
- Dag, D.; Oztop, M.H. Formation and characterization of green tea extract loaded liposomes. J. Food Sci. 2017, 82, 463–470. [Google Scholar] [CrossRef]
- Lopez-Pinto, J.M.; Gonzalez-Rodriguez, M.L.; Rabasco, A.M. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. Int. J. Pharm. 2005, 298, 1–12. [Google Scholar] [CrossRef]
- Fathi Azarbayjani, A.; Jouyban, A.; Chan, S.Y. Impact of surface tension in pharmaceutical sciences. J. Pharm. Pharm. Sci. 2009, 12, 218–228. [Google Scholar] [CrossRef]
- Bordi, F.; Cametti, C.; Sennato, S.; Viscomi, D. Counterion release in overcharging of polyion-liposome complexes. Phys. Rev. E 2006, 74, 030402. [Google Scholar] [CrossRef]
- Temprana, C.F.; Amor, M.S.; Femia, A.L.; Gasparri, J.; Taira, M.C.; del Valle Alonso, S. Ultraviolet irradiation of diacetylenic liposomes as a strategy to improve size stability and to alter protein binding without cytotoxicity enhancement. J. Liposome Res. 2011, 21, 141–150. [Google Scholar] [CrossRef]
- Toopkanloo, S.P.; Tan, T.B.; Abas, F.; Azam, M.; Nehdi, I.A.; Tan, C.P. Improving vesicular integrity and antioxidant activity of novel mixed soy lecithin-based liposomes containing squalene and their stability against UV light. Molecules 2020, 25, 5873. [Google Scholar] [CrossRef]
- Jovanović, A.; Balanč, B.; Ota, A.; Ahlin Grabnar, P.; Djordjević, V.; Šavikin, K.; Bugarski, B.; Nedović, V.; Poklar Ulrih, N. Comparative effects of cholesterol and β-sitosterol on the liposome membrane characteristics. Eur. J. Lipid Sci. Technol. 2018, 120, 1800039. [Google Scholar] [CrossRef]
- Isailović, B.; Kostić, I.; Zvonar, A.; Đorđević, V.; Gašperlin, M.; Nedović, V.; Bugarski, B. Resveratrol loaded liposomes produced by different techniques. Innov. Food Sci. Emerg. Tech. 2013, 19, 181–189. [Google Scholar] [CrossRef]
- Ardani, H.K.; Imawan, C.; Handayani, W.; Djuhana, D.; Harmoko, A.; Fauzia, V. Enhancement of the stability of silver nanoparticles synthesized using aqueous extract of Diospyros discolor Willd. leaves using polyvinyl alcohol. IOP Conf. Ser. Mater. Sci. Eng. 2017, 188, 012056. [Google Scholar] [CrossRef]
- Jovanović, A.A.; Balanč, B.D.; Djordjević, V.B.; Ota, A.; Skrt, M.; Šavikin, K.P.; Bugarski, B.M.; Nedović, V.A.; Ulrih, N.P. Effect of gentisic acid on the structural-functional properties of liposomes incorporating β-sitosterol. Colloids Surf. B. 2019, 183, 110422. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, A.; Petrović, P.; Ćujić, D.; Stepanović, S.; Gnjatović, M.; Marinković, A.; Bugarski, B. The stability of liposomes with ergosterol and Thymus serpyllum L. extract. In Proceedings of the VIII International Congress “Engineering, Environment and Materials in Process Industry”, Jahorina, Bosnia and Herzegovina, 20–23 March 2023. [Google Scholar]
- Arias-Alpizar, G.; Kong, L.; Vlieg, R.C.; Rabe, A.; Papadopoulou, P.; Meijer, M.S.; Bonnet, S.; Vogel, S.; van Noort, J.; Kros, A.; et al. Light-triggered switching of liposome surface charge directs delivery of membrane impermeable payloads in vivo. Nat. Commun. 2020, 11, 3638. [Google Scholar] [CrossRef]
- Froude, V.; Zhu, Y. Dielectrophoresis of functionalized lipid unilamellar vesicles (liposomes) with contrasting surface constructs. J. Phys. Chem. B 2009, 113, 1552–1558. [Google Scholar] [CrossRef] [PubMed]
- Duffy, C.; Gafoor, S.; Richards, D.; Admadzadeh, H.; O’Kennedy, R.; Arriaga, E. Determination of properties of individual liposomes by capillary electrophoresis with postcolumn laser-induced fluorescence detection. Anal. Chem. 2001, 73, 1855–1861. [Google Scholar] [CrossRef] [PubMed]
- Pysher, M.; Hayes, M. Examination of the electrophoretic behavior of liposomes. Langmuir 2004, 20, 4369–4375. [Google Scholar] [CrossRef]
- Yang, D.; Wang, X.; Gan, L.; Zhang, H.; Shin, J.; Lee, K.; Hong, S. Effects of flavonoid glycosides obtained from a Ginkgo biloba extract fraction on the physical and oxidative stabilities of oil-in-water emulsions prepared from a stripped structured lipid with a low omega-6 to omega-3 ratio. Food Chem. 2015, 174, 124–131. [Google Scholar] [CrossRef]
- Horžić, D.; Režek Jambrak, A.; Belščak-Cvitanović, A.; Komes, D.; Lelas, V. Comparison of conventional and ultrasound assisted extraction techniques of yellow tea and bioactive composition of obtained extracts. Food Bioproc. Tech. 2012, 5, 2858–2870. [Google Scholar] [CrossRef]
- Jovanović, A.; Djordjević, V.; Petrović, P.; Pljevljakušić, D.; Zdunić, G.; Šavikin, K.; Bugarski, B. The influence of different extraction conditions on polyphenol content, antioxidant and antimicrobial activities of wild thyme. J. Appl. Res. Med. Aromat. Plants 2021, 25, 100328. [Google Scholar] [CrossRef]
- Taneva, I.; Petkova, N.; Dimov, I.; Ivanov, I.; Denev, P. Characterization of rosehip (Rosa canina L.) fruits extracts and evaluation of their in vitro antioxidant activity. J. Pharmacogn. Phytochem. 2016, 5, 35–38. [Google Scholar]
- Hosseini, S.M.; Abbasalipourkabir, R.; Jalilian, F.A.; Asl, S.S.; Farmany, A.; Roshanaei, G.; Arabestani, M.R. Doxycycline-encapsulated solid lipid nanoparticles as promising tool against Brucella melitensis enclosed in macrophage: A pharmacodynamics study on J774A.1 cell line. Antimicrob. Resist. 2019, 8, 62. [Google Scholar] [CrossRef]
- Šeremet, D.; Štefančić, M.; Petrović, P.; Kuzmić, S.; Doroci, S.; Mandura Jarić, A.; Vojvodić Cebin, A.; Pjanović, R.; Komes, D. Development, characterization and incorporation of alginate-plant protein covered liposomes containing ground ivy (Glechoma hederacea L.) extract into candies. Foods 2022, 11, 1816. [Google Scholar] [CrossRef]
- Maiti, K.; Mukherjee, K.; Gantait, A.; Pada Saha, B.; Mukherjee, P.K. Curcumin-phospholipid complex: Preparation, therapeutic evaluation and pharmacokinetic study in rats. Int. J. Pharm. 2007, 330, 155–163. [Google Scholar] [CrossRef]
- Khurana, R.K.; Bansal, A.K.; Beg, S.; Burrow, A.J.; Katare, O.P.; Singh, K.K.; Singh, B. Enhancing biopharmaceutical attributes of phospholipid complex-loaded nanostructured lipidic carriers of mangiferin: Systematic development, characterization and evaluation. Int. J. Pharm. 2017, 518, 289–306. [Google Scholar] [CrossRef] [PubMed]
- Ramos, P.M.; Gil, J.M.; Ramos Sánchez, M.K.; Navas Gracia, L.M.; Hernández Navarro, S.; Gil, F.J.M. Vibrational and thermal characterization of seeds, pulp, leaves and seed oil of Rosa rubiginosa. Bol. Soc. Argent. Bot. 2016, 51, 429–439. [Google Scholar] [CrossRef]
- Batinić, P.M.; Đorđević, V.B.; Stevanović, S.I.; Balanč, B.D.; Marković, S.B.; Luković, N.D.; Mijin, D.Ž.; Bugarski, B.M. Formulation and characterization of novel liposomes containing histidine for encapsulation of a poorly soluble vitamin. J. Drug Deliv. Sci. Technol. 2020, 59, 101920. [Google Scholar] [CrossRef]
- Balanč, B.; Trifković, K.; Đorđević, V.; Marković, S.; Pjanović, R.; Nedović, V.; Bugarski, B. Novel resveratrol delivery systems based on alginate-sucrose and alginate-chitosan microbeads containing liposomes. Food Hydrocoll. 2016, 61, 832–842. [Google Scholar] [CrossRef]
- Saija, A.; Bonina, F.; Trombetta, D.; Tomaino, A.; Montenegro, L.; Smeriglio, P.; Castelli, F. Flavonoid-biomembrane interactions: A calorimetric study on dipalmitoylphosphatidylcholine vesicles. Int. J. Pharm. 1995, 124, 1–8. [Google Scholar] [CrossRef]
- Kaczmarek, H.; Oldak, D. The effect of UV-irradiation on composting of polyethylene modified by cellulose. Polym. Degrad. Stab. 2006, 91, 2282–2291. [Google Scholar] [CrossRef]
- Ramos-Hernández, J.A.; Ragazzo-Sánchez, J.A.; Calderón-Santoyo, M.; Ortiz-Basurto, R.I.; Prieto, C.; Lagaron, J.M. Use of electrosprayed agave fructans as nanoencapsulating hydrocolloids for bioactives. Nanomaterials 2018, 8, 868. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, A.; Ćujić, D.; Šavikin, K.; Živković, J.; Čutović, N.; Gnjatović, M.; Bugarski, B. Ultrasound assisted extraction of rosehips Rosa canina L. In Proceedings of the International Conference on Advanced Technologies, Van, Turkey, 25–27 November 2022; pp. 444–447. [Google Scholar]
- Jovanović, A.; Pjanović, R.; Živković, J.; Ćujić, D.; Gnjatović, M.; Stepanović, S.; Šavikin, K. Natural deep eutectic solvent as a tool for improving Rosa canina L. polyphenol recovery in maceration. Nat. Med. Mat. 2022, 42, 5–9. [Google Scholar] [CrossRef]
- Galván d’Alessandro, L.G.; Kriaa, K.; Nikov, I.; Dimitrov, K. Ultrasound assisted extraction of polyphenols from black chokeberry. Sep. Purif. Technol. 2012, 93, 42–47. [Google Scholar] [CrossRef]
- Petrović, S.; Taćić, A.; Savić, S.; Nikolić, V.; Nikolić, L.; Savić, S. Sulfanilamide in solution and liposome vesicles; in vitro release and UV-stability studies. Saudi Pharm. J. 2017, 25, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Liu, C.; Wang, N.; Zhou, H.; Shafiq, F.; Yu, S.; Qiao, W. O-nitrobenzyl liposomes with dual-responsive release capabilities for drug delivery. J. Mol. Liq. 2021, 334, 116016. [Google Scholar] [CrossRef]
- Menges, F. Spectragryph—Optical Spectroscopy Software, Version 1.2.8. Available online: http://www.effemm2.de/spectragryph (accessed on 1 November 2022).
L | LUV | L + e | L + eUV | |
---|---|---|---|---|
EE [%] | n.a. 1 | n.a. | 90.8 ± 0.4 a | 91.0 ± 0.8 a |
size [nm] | 363.2 ± 7.8 b | 361.0 ± 4.2 b | 251.5 ± 7.2 a | 247.3 ± 5.6 a |
PDI | 0.376 ± 0.023 a | 0.387 ± 0.010 a | 0.439 ± 0.027 b | 0.428 ± 0.003 b |
ζ [mV] | −21.7 ± 0.7 a | −21.3 ± 0.5 a | −22.2 ± 0.5 a | −22.4 ± 0.7 a |
G [mS/cm] | 0.004 ± 0.000 b | 0.004 ± 0.000 b | 0.007 ± 0.001 a | 0.008 ± 0.001 a |
µ [µmcm/Vs] | −2.66 ± 0.10 b | −2.51 ± 0.09 b | −1.92 ± 0.15 a | −1.96 ± 0.05 a |
Sample | Chlorogenic Acid | Rutin | Hyperoside | Isoquercetin | Quercitrin |
---|---|---|---|---|---|
µg/mL | |||||
Extract | 45.02 ± 0.87 * | 159.12 ± 1.13 | 81.46 ± 1.04 | 185.57 ± 1.17 | 77.23 ± 1.25 |
µg/g | |||||
Extract-loaded liposomes | 46.03 ± 0.54 | 169.29 ± 1.40 | 28.79 ± 0.28 | 355.27 ± 2.15 | 4.45 ± 0.12 |
Extract-loaded liposomesUV | 43.68 ± 0.98 | 152.32 ± 1.22 | 21.44 ± 0.84 | 329.18 ± 1.94 | tr. |
Sample | Temperature (°C) | ΔH (J/g) | ||
---|---|---|---|---|
Onset | Peak | Offset | ||
Phospholipon | 121.4 | 138.7 | 159.4 | −22.7 |
225.2 | 233.6 | 241.0 | −2.9 | |
306.6 | 333.9 | 347.3 | −31.6 | |
E | 79.8 | 87.8 | 115.9 | −38.5 |
165.6 | 174.4 | 181.3 | −7.5 | |
E UV | 81.9 | 89.5 | 100.4 | −8.9 |
164.8 | 174.5 | 182.9 | −2.2 | |
L | 140.9 | 152.4 | 177.7 | −30.5 |
220.25 | 232.1 | 239.9 | −4.2 | |
L UV | 141.4 | 168.4 | 199.5 | −20.9 |
223.73 | 232.1 | 237.9 | −1.61 | |
L + e | 113.8 | 125.6 | 155.5 | −32.8 |
248.3 | 260.3 | 292.2 | −24.81 | |
L + e UV | 119.2 | 127.6 | 133.3 | −8.9 |
246.9 | 262.3 | 293.5 | −5.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovanović, A.A.; Balanč, B.; Volić, M.; Pećinar, I.; Živković, J.; Šavikin, K.P. Rosehip Extract-Loaded Liposomes for Potential Skin Application: Physicochemical Properties of Non- and UV-Irradiated Liposomes. Plants 2023, 12, 3063. https://doi.org/10.3390/plants12173063
Jovanović AA, Balanč B, Volić M, Pećinar I, Živković J, Šavikin KP. Rosehip Extract-Loaded Liposomes for Potential Skin Application: Physicochemical Properties of Non- and UV-Irradiated Liposomes. Plants. 2023; 12(17):3063. https://doi.org/10.3390/plants12173063
Chicago/Turabian StyleJovanović, Aleksandra A., Bojana Balanč, Mina Volić, Ilinka Pećinar, Jelena Živković, and Katarina P. Šavikin. 2023. "Rosehip Extract-Loaded Liposomes for Potential Skin Application: Physicochemical Properties of Non- and UV-Irradiated Liposomes" Plants 12, no. 17: 3063. https://doi.org/10.3390/plants12173063
APA StyleJovanović, A. A., Balanč, B., Volić, M., Pećinar, I., Živković, J., & Šavikin, K. P. (2023). Rosehip Extract-Loaded Liposomes for Potential Skin Application: Physicochemical Properties of Non- and UV-Irradiated Liposomes. Plants, 12(17), 3063. https://doi.org/10.3390/plants12173063