Bio-Stimulant for Improving Simmondsia chinensis Secondary Metabolite Production, as Well as Antimicrobial Activity and Wound Healing Abilities
Abstract
:1. Introduction
2. Results
2.1. The Impacts of He–Ne Laser Treatment of Pre-Sowing Seeds on Seed Germination Percentage of S. chinensis
2.2. The Impact of He–Ne Laser Pre-Sowing on In Vitro Shootlets Multiplication of S. chinensis
2.3. The Impact of He–Ne Laser Pre-Sowing on In Vitro Shootlets Rooting and Acclimatization of S. chinensis
2.4. The Impact of He–Ne Laser Pre-Sowing on Photosynthetic Pigment Contents of S. chinensis
2.5. ISSR-PCR Analysis
2.6. Evaluation of Methanolic Leaf Product with the Help of Gas Chromatography–Mass Spectrometry (GC–MS)
2.7. Excision Wound Healing Evaluation
2.7.1. Effects of Methanolic Products of S. chinensis on Excised Area Shrinkage and Epithelialization
2.7.2. Effects of Methanolic Extracts of S. chinensis Leaves on Collagen, Hydroxyproline, and Hexosamine
2.7.3. Effects of Methanolic Extracts of S. chinensis Leaves on Angiogenesis Factors
2.7.4. Effects of Methanolic Extracts of S. chinensis Leaves on the Inflammatory Mediators
2.8. The Effect of Jojoba on Antimicrobial Activity of the Extraction
3. Discussion
4. Materials and Methods
4.1. Helium–Neon Laser Irradiation
4.2. Impacts of Laser Treatments on S. chinensis Seed Growth
4.3. Effect of Laser Treatments on S. chinensis Shoot Multiplication
4.4. Effect of Laser Treatments on S. chinensis Root Induction
4.5. Determination of Photosynthetic Pigment Contents
4.6. GC–MS Evaluation
4.7. Genomic DNA Separation and ISSR-PCR Evaluation
Primer Code | Combination | Primer Code | Sequence |
---|---|---|---|
ISSR 1 | [AG]8YC | HB11 | [GT]6CC |
ISSR 2 | [AG]8YG | HB12 | [CAC]3GC |
ISSR 3 | [AC]8YT | HB13 | [GAG]3GC |
ISSR 4 | [Ac]8YG | Sh 1 | [AG]8CTC |
ISSR 5 | [GT]8YG | Sh 2 | [AG]8CTG |
ISSR 6 | CGC[GATA]4 | Sh 3 | [AC]8CTT |
ISSR 7 | GAC[GATA]4 | Sh 4 | [AC]8CTG |
ISSR 8 | [AGAC]4GC | Sh 5 | [GT]8CTG |
ISSR 9 | [GATA]4GC | Issr2[h] | CAC[TCC]5 |
ISSR 10 | [GACA]4AT | Sh 8[h] | [AGAC]4GC |
814A | [CT]8TG | Sh 9[h] | [GATA]4GC |
844A | [CT]8AC | Issr3[h] | TTT[TCC]5 |
844B | [CT]8GC | Issr10[h] | [TCC]5NAC |
17898A | [CA]6AC | ||
17899A | [CA]6AG | ||
HB9 | [GT]6GG |
4.8. In Vivo Wound Healing Experiment
4.8.1. Animal’s Acquisition and Ethical Agreement
4.8.2. Excisional Wound
4.8.3. Experimental Design
4.8.4. Preparation of Jojoba for Topical Application
4.8.5. Wound Contraction % and Epithelialization Time
4.8.6. Assessment of Jojoba on Hydroxyproline, Collagen, and Hexosamine
4.8.7. Assessment of Jojoba on the Angiogenesis Factors
4.8.8. Assessment of Jojoba on the Inflammatory Cytokine
4.9. Determination of Jojoba Methanolic Leaves Extract Antimicrobial Property by Disc Diffusion Assay
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Al-Obaidi, J.R.; Halabi, M.F.; AlKhalifah, N.S.; Asanar, S.; Al-Soqeer, A.A.; Attia, M.F. A review on plant importance, biotechnological aspects, and cultivation challenges of jojoba plant. Biol. Res. 2017, 50, 25. [Google Scholar] [CrossRef]
- Gad, H.A.; Roberts, A.; Hamzi, S.H.; Gad, H.A.; Touiss, I.; Altyar, A.E.; Kensara, O.A.; Ashour, M.L. Jojoba oil: An updated comprehensive review on chemistry, pharmaceutical uses, and toxicity. Polymers 2021, 13, 1711. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Mageed, W.M.; Bayoumi, S.A.L.H.; Salama, A.A.R.; Salem-Bekhit, M.M.; Abd-Alrahman, S.H.; Sayed, H.M. Antioxidant lipoxygenase inhibitors from the leaf extracts of Simmondsia chinensis. Asian Pac. J. Trop. Med. 2014, 7, S521–S526. [Google Scholar] [CrossRef] [PubMed]
- Hussain, G.; Bashir, M.A.; Ahmad, M. Brackish water impact on growth of Jojoba (Simmondsia chinensis). J. Agric. Res. 2011, 49, 591–596. [Google Scholar]
- Luckett, D.; Halloran, G. Plant Breeding What Is Plant Breeding and Why Do It? In Plant Breed; Graham Centre for Agricultural Innovation, Albert Pugsley Place: Wagga Wagga, NSW, Australia, 1995; Chapter 4; pp. 1–255. [Google Scholar]
- Bala, R. Jojoba-The Gold of Desert. In Deserts and Desertification (Internet); Zhu, Y., Luo, Q., Liu, Y., Eds.; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar] [CrossRef]
- Llorente, B.E.; Apóstolo, N.M. In Vitro Propagation of Jojoba. In Protocols for Micropropagation of Selected Economically-Important Horticultural Plants; Humana: Totowa, NJ, USA, 2012; pp. 19–31. [Google Scholar] [CrossRef]
- Sevostyanova, N.N.; Pchelina, E.A.; Gordievskaia, V.O.; Danilovskikh, M.G.; Trezorova, O.Y. Effect of laser irradiation on the processes involved in growth of mustard and radish seeds. IOP Conf. Ser. Earth Environ. Sci. 2020, 613, 012136. [Google Scholar] [CrossRef]
- Taha, R.A.; Taha, L.S.; Metwally, A. In vitro cultures of Jojoba (Simmondsia chinensis L.) affecting by laser irradiation. J. Chem. Bio Phy. Sci. Sec. 4 2015, 5, 3906–3913. Available online: www.jcbsc.org (accessed on 15 August 2023).
- Mahmood, S.; Afzal, B.; Perveen, S.; Wahid, A.; Azeem, M.; Iqbal, N. He-Ne Laser Seed Treatment Improves the Nutraceutical Metabolic Pool of Sunflowers and Provides Better Tolerance Against Water Deficit. Front. Plant Sci. 2021, 12, 579429. [Google Scholar] [CrossRef]
- Urva; Shafique, H.; Jamil, Y.; Haq, Z.U.; Mujahid, T.; Khan, A.U.; Iqbal, M.; Abbas, M. Low power continuous wave-laser seed irradiation effect on Moringa oleifera germination, seedling growth and biochemical attributes. J. Photochem. Photobiol. B Biol. 2017, 170, 314–323. [Google Scholar] [CrossRef]
- Nadimi, M.; Loewen, G.; Bhowmik, P.; Paliwal, J. Effect of Laser Biostimulation on Germination of Sub-Optimally Stored Flaxseeds (Linum usitatissimum). Sustainability 2022, 14, 12183. [Google Scholar] [CrossRef]
- Swathy, P.S.; Kiran, K.R.; Joshi, M.B.; Mahato, K.K.; Muthusamy, A. He–Ne laser accelerates seed germination by modulating growth hormones and reprogramming metabolism in brinjal. Sci. Rep. 2021, 11, 7948. [Google Scholar] [CrossRef]
- Osman, S.A.; Rayan, W.A. The influence of He-Ne laser on agro-morphological criteria, ISSR marker and SDS-PAGE of Moringa oleifera. Bull. Natl. Res. Cent. 2020, 44, 3. [Google Scholar] [CrossRef]
- El-Sherif, F. Laser Irradiation Induces DNA Polymorphism and Alters Phytochemicals Compositions as Well as Growth and Yield of Curcuma longa. J. Dis. Med. Plants 2019, 5, 29. [Google Scholar]
- Zhou, S.; Wang, Q.; Huang, A.; Fan, H.; Yan, S.; Zhang, Q. Advances in skin wound and scar repair by polymer scaffolds. Molecules 2021, 26, 6110. [Google Scholar] [CrossRef]
- Wolfram, D.; Tzankov, A.; Pülzl, P.; Piza-Katzer, H. Hypertrophic scars and keloids-A review of their pathophysiology, risk factors, and therapeutic management. Dermatol. Surg. 2009, 35, 171–181. [Google Scholar] [CrossRef]
- Habashy, R.R.; Abdel-Naim, A.B.; Khalifa, A.E.; Al-Azizi, M.M. Anti-inflammatory effects of jojoba liquid wax in experimental models. Pharmacol. Res. 2005, 51, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Kopustinskiene, D.M.; Bernatoniene, J. Antioxidant effects of schisandra chinensis fruits and their active constituents. Antioxidants 2021, 10, 620. [Google Scholar] [CrossRef] [PubMed]
- Wagdy, S.M.; Taha, F.S. Primary Assessment of the Biological Activity of Jojoba Hull Extracts. Life Sci. J. 2012, 9, 244–253. [Google Scholar]
- Diekema, D.J.; Pfaller, M.A.; Schmitz, F.J.; Smayevsky, J.; Bell, J.; Jones, R.N.; Beach, M. Survey of infections due to Staphylococcus species: Frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin. Infect. Dis. 2001, 32 (Suppl. S2), S114–S132. [Google Scholar] [CrossRef]
- Elezkurtaj, S.; Greuel, S.; Ihlow, J.; Michaelis, E.G.; Bischoff, P.; Kunze, C.A.; Sinn, B.V.; Gerhold, M.; Hauptmann, K.; Ingold-Heppner, B.; et al. Causes of death and comorbidities in hospitalized patients with COVID-19. Sci. Rep. 2021, 11, 4263. [Google Scholar] [CrossRef]
- Al-Ghamdi, A.; Elkholy, T.; Abuhelal, S.; Al-Abbadi, H.; Qahwaji, D.; Khalefah, N. Against antibacterial and antifungal activity of jojoba wax liquid (Simmondsia chinensis). Pharmacogn. J. 2019, 11, 191–194. [Google Scholar] [CrossRef]
- Możdżeń, K.; Barabasz-Krasny, B.; Zandi, P. Effect of long-term of He-Ne laser light irradiation on selected physiological processes of triticale. Plants 2020, 9, 1703. [Google Scholar] [CrossRef] [PubMed]
- Perveen, R.; Wang, X.; Jamil, Y.; Ali, Q.; Ali, S.; Zakaria, M.Q.; Afzaal, M.; Kasana, R.A.; Saleem, M.H.; Fiaz, S. Quantitative determination of the effects of He–Ne laser irradiation on seed thermodynamics, germination attributes and metabolites of safflower (Carthamus tinctorius L.) in relation with the activities of germination enzymes. Agronomy 2021, 11, 1411. [Google Scholar] [CrossRef]
- Swathy, P.S.; Rupal, G.; Prabhu, V.; Mahato, K.K.; Muthusamy, A. In vitro culture responses, callus growth and organogenetic potential of brinjal (Solanum melongena L.) to He-Ne laser irradiation. J. Photochem. Photobiol. B Biol. 2017, 174, 333–341. Available online: https://www.sciencedirect.com/science/article/pii/S1011134417308515 (accessed on 15 January 2023). [CrossRef]
- Abou-Dahab, A.-D.M.; Mohammed, T.A.; Heikal, A.A.; Taha, L.S.; Gabr, A.M.M.; Metwally, S.A.; Ali, A.I.R. In vitro laser radiation induces mutation and growth in Eustoma grandiflorum plant. Bull. Natl. Res. Cent. 2019, 43, 3. [Google Scholar] [CrossRef]
- Musznski, S.; Gladyszewska, B. He-Ne laser irradiation effect on radish seeds with selected germination indices. Int. Agrophysics. 2008, 22, 151–157. [Google Scholar]
- Podleśny, J.; Stochmal, A.; Podleśna, A.; Misiak, L.E. Effect of laser light treatment on some biochemical and physiological processes in seeds and seedlings of white lupine and faba bean. Plant Growth Regul. 2012, 67, 227–233. [Google Scholar] [CrossRef]
- Chen, Y.-P.; Yue, M.; Wang, X.-L. Influence of He-Ne laser irradiation on seeds thermodynamic parameters and seedlings growth of Isatis indogotica. Plant Sci. 2005, 168, 601–606. [Google Scholar] [CrossRef]
- Harma, K.; Agrawal, V.; Gupta, S.; Kumar, R.; Prasad, M. ISSR marker-assisted selection of male and female plants in a promising dioecious crop: Jojoba (Simmondsia chinensis). Plant Biotechnol. Rep. 2008, 2, 239–243. [Google Scholar]
- Mostfa, D.M.; Ibrahim, S. Detection of issr markers linked to seed oil content of jojoba plants (Simmondsia chinensis) cultivated in egypt. Egypt. J. Genet. Cytol. 2021, 50, 159–170. [Google Scholar]
- Bekheet, S.A.; Gabr, A.; Reda, A.A.; El-Bahr, M.K. Micropropagation and assessment of genetic stability of In Vitro raised Jojoba (Simmondsia chinensis Link.) plants using SCoT and ISSR markers. Plant Tissue Cult. Biotechnol. 2015, 25, 165–179. [Google Scholar] [CrossRef]
- Dasgupta, N.; Nandy, P.; Sengupta, C.; Das, S. RAPD and ISSR marker mediated genetic polymorphism of two mangroves Bruguiera gymnorrhiza and Heritiera fomes from Indian Sundarbans in relation to their sustainability. Physiol. Mol. Biol. Plants. 2015, 21, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wen, K.-S.; Ruan, X.; Zhao, Y.-X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef] [PubMed]
- Zrig, A.; Najar, B.; Magdy Korany, S.; Hassan, A.H.A.; Alsherif, E.A.; Ali Shah, A.; Fahad, S.; Selim, S.; AbdElgawad, H. The Interaction Effect of Laser Irradiation and 6-Benzylaminopurine Improves the Chemical Composition and Biological Activities of Linseed (Linum usitatissimum) Sprouts. Biology 2022, 11, 1398. [Google Scholar] [CrossRef] [PubMed]
- Ranzato, E.; Martinotti, S.; Burlando, B. Wound healing properties of Jojoba liquid wax: An in vitro study. J. Ethnopharmacol. 2011, 134, 443–449. [Google Scholar] [CrossRef]
- Mathew-Steiner, S.S.; Roy, S.; Sen, C.K. Collagen in wound healing. Bioengineering 2021, 8, 63. [Google Scholar] [CrossRef]
- Dwivedi, D.; Dwivedi, M.; Malviya, S.; Singh, V. Evaluation of wound healing, anti-microbial and antioxidant potential of Pongamia pinnata in wistar rats. J. Tradit. Complement. Med. 2017, 7, 79–85. [Google Scholar] [CrossRef]
- El-Ezz, A.; Abdel-Rahman, D.; Al-Farhan, L.H.; Mostafa, B.S.; Ayad, D.A.; Basha, E.G. Enhanced In Vivo Wound Healing Efficacy of a Novel Hydrogel Loaded with Copper (II) Schiff Base Quinoline Complex (CuSQ) Solid Lipid Nanoparticles. Pharmaceuticals 2022, 15, 978. [Google Scholar] [CrossRef]
- Sanchez, M.C.; Lancel, S.; Boulanger, E.; Neviere, R. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: A systematic review. Antioxidants 2018, 7, 98. [Google Scholar] [CrossRef]
- Chen, L.-Y.; Huang, C.-N.; Liao, C.-K.; Chang, H.-M.; Kuan, Y.-H.; Tseng, T.-J.; Yen, K.-J.; Yang, K.-L.; Lin, H.-C. Effects of rutin on wound healing in hyperglycemic rats. Antioxidants 2020, 9, 1122. [Google Scholar] [CrossRef]
- Umaiyal, P.; Gayathri, M.; Vishnupriya, R.; Geetha, V. Anti microbial activity of jojoba oil against selected microbes: An invitro study. J. Pharm. Sci. Res. 2016, 8, 528–529. [Google Scholar]
- Gaafar, A.A.; Taha, R.A.; Abou-Baker, N.H.; Shaaban, E.A.; Salama, Z.A. Evaluation of Regeneration, Active Ingredients and Antioxidant Activities in Jojoba Tissue Cultures as Affected by Carbon Nanotubes. Biosci. Res. 2018, 15, 2383–2392. Available online: www.isisn.org (accessed on 15 August 2023).
- Boo, Y.C. Arbutin as a Skin Depigmenting Agent with Antimelanogenic and Antioxidant Properties. Antioxidants 2021, 10, 1129. [Google Scholar] [CrossRef] [PubMed]
- Kalemci, S.; Zeybek, A.; Intepe, Y.S.; Uner, A.G.; Acar, T.; Yaylali, A.; Aksun, S.; Can, C.; Gulaydin, A.; Sütçü, R. Methyl palmitate attenuates lipopolysaccharide-induced acute lung injury in mice. Clin. Ter. 2013, 164, e453–e459. [Google Scholar] [CrossRef]
- Olowofolahan, A.O.; Oyebode, O.T.; Olorunsogo, O.O. Methyl palmitate reversed estradiol benzoate-induced endometrial hyperplasia in female rats. Toxicol. Mech. Methods 2021, 31, 43–52. [Google Scholar] [CrossRef]
- Arab, H.H.; Salama, S.A.; Eid, A.H.; Kabel, A.M.; Shahin, N.N. Targeting MAPKs, NF-κB, and PI3K/AKT pathways by methyl palmitate ameliorates ethanol-induced gastric mucosal injury in rats. J. Cell Physiol. 2019, 234, 22424–22438. [Google Scholar] [CrossRef]
- Hannemann, A.; Cytlak, U.M.; Gbotosho, O.T.; Rees, D.C.; Tewari, S.; Gibson, J.S. Effects of o-vanillin on K⁺ transport of red blood cells from patients with sickle cell disease. Blood Cells Mol. Dis. 2014, 53, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Santa-María, C.; López-Enríquez, S.; Montserrat-de la Paz, S.; Geniz, I.; Reyes-Quiroz, M.E.; Moreno, M.; Palomares, F.; Sobrino, F.; Alba, G. Update on Anti-Inflammatory Molecular Mechanisms Induced by Oleic Acid. Nutrients 2023, 15, 224. [Google Scholar] [CrossRef]
- Carrillo, C.; Cavia Mdel, M.; Alonso-Torre, S.R. Antitumor effect of oleic acid; mechanisms of action: A review. Nutr. Hosp. 2012, 27, 1860–1865. [Google Scholar] [CrossRef]
- Carrillo, C.; Cavia Mdel, M.; Alonso-Torre, S. Role of oleic acid in immune system; mechanism of action; A review. Nutr. Hosp. 2012, 27, 978–990. [Google Scholar] [CrossRef]
- Langfeld, L.Q.; Du, K.; Bereswill, S.; Heimesaat, M.M. A review of the antimicrobial and immune-modulatory properties of the gut microbiota-derived short chain fatty acid propionate—What is new? Eur. J. Microbiol. Immunol. 2021, 11, 50–56. [Google Scholar] [CrossRef]
- Carvalho, A.M.S.; Heimfarth, L.; Pereira, E.W.M.; Oliveira, F.S.; Menezes, I.R.A.; Coutinho, H.D.M.; Picot, L.; Antoniolli, A.R.; Quintans, J.S.S.; Quintans-Júnior, L.J. Phytol, a Chlorophyll Component, Produces Antihyperalgesic, Anti-inflammatory, and Antiarthritic Effects: Possible NFκB Pathway Involvement and Reduced Levels of the Proinflammatory Cytokines TNF-α and IL-6. J. Nat. Prod. 2020, 83, 1107–1117. [Google Scholar] [CrossRef] [PubMed]
- AOAC Official Method of Analysis of the Association of Officail Chemist. Official Methods of Analysis, 14th ed.; HOWITZ, Ed.; Association of O: Washington, DC, USA, 1984; p. 200400. [Google Scholar]
- El Sherif, F.; Alkuwayti, M.A.; Khattab, S. Foliar Spraying of Salicylic Acid Enhances Growth, Yield, and Curcuminoid Biosynthesis Gene Expression as Well as Curcuminoid Accumulation in Curcuma longa. Horticulturae 2022, 8, 417. [Google Scholar] [CrossRef]
- Khattab, S.; El Sherif, F.; AlDayel, M.; Yap, Y.-K.; Meligy, A.; Ibrahim, H.I.M. Silicon dioxide and silver nanoparticles elicit antimicrobial secondary metabolites while enhancing growth and multiplication of Lavandula officinalis in-vitro plantlets. Plant Cell Tissue Organ. Cult. 2022, 149, 411–421. [Google Scholar] [CrossRef]
- Bahramsoltani, R.; Farzaei, M.H.; Abdolghaffari, A.H.; Rahimi, R.; Samadi, N.; Heidari, M.; Esfandyari, M.; Baeeri, M.; Hassanzadeh, G.; Abdollahi, M.; et al. Evaluation of phytochemicals, antioxidant and burn wound healing activities of Cucurbita moschata Duchesne fruit peel. Iran. J. Basic Med. Sci. 2017, 20, 799–806. [Google Scholar] [CrossRef]
- Fikru, A.; Makonnen, E.; Eguale, T.; Debella, A.; Abie Mekonnen, G. Evaluation of in vivo wound healing activity of methanol extract of Achyranthes aspera L. J. Ethnopharmacol. 2012, 143, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Pastar, I.; Stojadinovic, O.; Yin, N.C.; Ramirez, H.; Nusbaum, A.G.; Sawaya, A.; Patel, S.B.; Khalid, L.; Isseroff, R.R.; Tomic-Canic, M. Epithelialization in Wound Healing: A Comprehensive Review. Adv. Wound Care 2014, 3, 445–464. [Google Scholar] [CrossRef]
- Woessner, J.F., Jr. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch. Biochem. Biophys. 1961, 93, 440–447. [Google Scholar] [CrossRef]
- Thomas, W.; Morgan, J. A colorimetric method for the determination of glucosamine and chondrosamine. Biochem. J. 1933, 27, 1824–1828. [Google Scholar] [CrossRef]
- Aldayel, M.; El Semary, N. UV irradiation-promoting effect on the antibacterial activity of cyanobacterial extracts against plant pathogens: A first record. Egypt. J. Biol. Pest. Control 2020, 30, 132. [Google Scholar] [CrossRef]
- Suppakul, P.; Miltz, J.; Sonneveld, K.; Bigger, S.W. Antimicrobial properties of basil and its possible application in food packaging. J. Agric. Food Chem. 2001, 51, 3197–3207. [Google Scholar] [CrossRef]
Laser Treatments [min] | S. chinensis Lines | No. of Shoots/ Explant [n] | Explant’s Fresh Weight [g] | No. of Leaves/Explant [n] |
---|---|---|---|---|
Control | 1 | 20.2 c * | 3.61 g | 54.25 d |
Control | 2 | 8.1 i | 3.9 f | 23.05 h |
Control | 3 | 18.3 e | 1.75 j | 25.20 g |
5 | 4 | 19.2 d | 3.2 h | 35.25 f |
10 | 5 | 21.2 b | 8. 01 b | 82.15 b |
10 | 6 | 12.05 g | 5.35 c | 55.35 c |
10 | 7 | 12.20 g | 4.9 e | 42.15 e |
10 | 8 | 28.2 a | 8.65 a | 105.15 a |
15 | 9 | 10.3 h | 2.15 i | 25.3 g |
15 | 10 | 15.2 f | 5.15 d | 13.1 i |
Laser Treatments [min] | S. chinensis Lines | Shoot Length [cm] | Explant’s Fresh Weight [g] | No. of Leaves/Explant [n] | Length of the Longest Root [cm] | No. of Roots/ Explant [n] |
---|---|---|---|---|---|---|
Control | 1 | 3.88 b * | 0.425 b | 6.5 c | 1.25 b | 0.75 b |
Control | 2 | 3.00 b | 0.45 ab | 18.0 a | 0.00 c | 0.00 c |
Control | 3 | 3.25 b | 0.70 ab | 13.0 ab | 0.00 c | 0.00 c |
10 | 5 | 5.30 a | 0.52 ab | 6.7 bc | 0.00 c | 0.00 c |
10 | 8 | 5.50 a | 1.00 a | 7.3 bc | 4.50 a |
Laser Treatments [min] | S. chinensis Lines | Chl a [mg/100 g F.W.] | Chl b [mg/100 g FW.] | Carotenoids [mg/100 g FW.] |
---|---|---|---|---|
Control | 1 | 61.09 c * | 18.85 c | 61.424 b |
Control | 2 | 55.40 c | 16.04 c | 56.94 b |
Control | 3 | 69.30 c | 20.20 c | 70.80 b |
10 | 5 | 109.39 b | 32.47 b | 111.46 a |
10 | 8 | 131.31 a | 38.44 a | 118.75 a |
Laser Treatments [min] | S. chinensis Lines | Total | Primers | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ISSR 2 | ISSR 3 | ISSR 4 | ISSR 8 | 844B | 17898A | Sh 1 | Sh 3 | Issr3 [h] | ||||
AF | 41 | 3 | 7 | 6 | 7 | 3 | 4 | 5 | 4 | 2 | ||
MB | 29 | 3 | 3 | 5 | 6 | 3 | 2 | 2 | 3 | 2 | ||
PB | 12 | 0 | 4 | 1 | 1 | 0 | 2 | 3 | 1 | 0 | ||
PB% | 29.27 | 0 | 57.14 | 16.67 | 14.29 | 0 | 50 | 60 | 25 | 0 | ||
SM | 8 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | ||
Control | 1 | AF | 33 | 3 | 4 | 5 | 6 | 3 | 3 | 4 | 3 | 2 |
SM | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||
10 | 5 | AF | 34 | 3 | 5 | 5 | 7 | 3 | 2 | 4 | 3 | 2 |
SM | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | ||
10 | 8 | AF | 36 | 3 | 6 | 6 | 6 | 3 | 3 | 3 | 4 | 2 |
SM | 5 | 0 | 2 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
Laser Treatments [min] | S. chinensis Lines | ISSR Primers | |||||
---|---|---|---|---|---|---|---|
ISSR3 | ISSR8 | ISSR4 | Sh3 | 17898A | Sh1 | ||
Control | 1 | 1000 | |||||
10 | 5 | 900 | 800 | ||||
10 | 8 | 600 350 | 1000 | 700 | 560 |
Phytochemical | Composition [Area %] | ||
---|---|---|---|
S. chinensis Lines | |||
Control [1] | 5 | 8 | |
N-Methyl-L-proline | 14.46 a * | 5.47 b | 0.61 c |
1-[4-hydroxy-3-methylphenyl]ethanone | 0.63 c | 1.35 a | 1.17 b |
Pyrrolidine | 0.08 c | 0.15 b | 0.49 a |
Methyl alpha-D-glucopyranoside | 0.29 c | 11.82 a | 4.48 b |
Levoglucosan | 3.86 a | 2.12 b | 0.24 c |
D-Glucose | 2.92 a | 0.59 b | 0.19 c |
Methyl palmitate | 0.21 b | 1.14 a | 0.20 b |
l-[+]-Ascorbic acid 2,6-dihexadecanoate | 0.60 a | 0.58 a | 0.50 a |
D-Fructose, 3-O-methyl | 60.15 b | 68.53 a | 0.00 c |
Arbutin | 0.30 a | 0.06 b | 0.00 c |
Acetosyringone | 0.21 a | 0.09 b | 0.00 c |
[4-hydroxyphenyl] acetonitrile | 0.75 a | 0.00 b | 0.76 a |
L-Thymidine. | 0.00 c | 0.34 a | 0.18 b |
Undecane | 0.00 c | 1.02 a | 0.14 b |
Propanoic acid | 0.00 c | 0.69 a | 0.49 b |
Phytol | 0.00 c | 0.40 a | 0.17 b |
Groups | Lesion Shrinkage % | Epithelialization Period [Days] | |||
---|---|---|---|---|---|
3rd Day | 7th Day | 14th Day | 21st Day | ||
Normal | 12.33 ± 1.4 | 30.94 ± 2.04 | 64.96 ± 3.1 | 90.6 ± 4.45 | 22.05 ± 1.42 |
Control Jojoba | 16.95 ± 2.11 * | 50.71 ± 2.2 * | 75.94 ± 2.17 * | 100 | 18.5 ± 0.5 * |
Line 5 Jojoba | 17.75 ± 1.91 * | 60.76 ± 1.87 * ₳ | 85.94 ± 3.48 * ₳ | 100 | 16.0 ± 0.61 * ₳ |
Line 8 Jojoba | 15.96 ± 1.51 * | 55.83 ± 1.2 * ₳ | 80.94 ± 2.92 * ₳ | 100 | 16.0 ± 1.02 * ₳ |
Test Solution | Inhibition Zone [mm] | |
---|---|---|
S. aureus | E. coli | |
Jojoba (control) | 13 ± 1 d * | 10 ± 2 d |
Jojoba extract line 5 | 14 ± 1 c | 12 ± 0 c |
Jojoba extract line 8 | 18 ± 2 ab | 14 ± 0 b |
Imipenem 10 µg | 18 ± 3 a | 15 ± 2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Sherif, F.; AlDayel, M.; Ismail, M.B.; Alrajeh, H.S.; Younis, N.S.; Khattab, S. Bio-Stimulant for Improving Simmondsia chinensis Secondary Metabolite Production, as Well as Antimicrobial Activity and Wound Healing Abilities. Plants 2023, 12, 3311. https://doi.org/10.3390/plants12183311
El Sherif F, AlDayel M, Ismail MB, Alrajeh HS, Younis NS, Khattab S. Bio-Stimulant for Improving Simmondsia chinensis Secondary Metabolite Production, as Well as Antimicrobial Activity and Wound Healing Abilities. Plants. 2023; 12(18):3311. https://doi.org/10.3390/plants12183311
Chicago/Turabian StyleEl Sherif, Fadia, Munirah AlDayel, Mohammad Bani Ismail, Hind Salih Alrajeh, Nancy S. Younis, and Salah Khattab. 2023. "Bio-Stimulant for Improving Simmondsia chinensis Secondary Metabolite Production, as Well as Antimicrobial Activity and Wound Healing Abilities" Plants 12, no. 18: 3311. https://doi.org/10.3390/plants12183311
APA StyleEl Sherif, F., AlDayel, M., Ismail, M. B., Alrajeh, H. S., Younis, N. S., & Khattab, S. (2023). Bio-Stimulant for Improving Simmondsia chinensis Secondary Metabolite Production, as Well as Antimicrobial Activity and Wound Healing Abilities. Plants, 12(18), 3311. https://doi.org/10.3390/plants12183311