Biodegradable Mulching Film vs. Traditional Polyethylene: Effects on Yield and Quality of San Marzano Tomato Fruits
Abstract
:1. Introduction
2. Results
2.1. Air and Soil Temperatures
2.2. Yield, Yield Components, and Firmness of Tomato Fruits
2.3. Color Parameters and Carotenoids of Tomato Fruits
2.4. Antioxidant Activity and Compounds of Tomato Fruits
2.5. Degradation of Biodegradable Mulching Film
3. Discussion
4. Materials and Methods
4.1. Experimental Setting and Crop Management
4.2. Mulching Film Characteristics
4.3. Yield, and Yield Components of Tomato Fruits
4.4. Color Parameters, Total Soluble Solids, and Firmness Determination of Tomato Fruits
4.5. Carotenoids, Antioxidant Activity and Compounds Determination of Tomato Fruits
4.6. Soil and Air Temperatures Measurements
4.7. Mulching Film Measurements
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Production—WPTC. Available online: https://www.wptc.to (accessed on 18 April 2023).
- ISTAT. 2022. Available online: https://www.istat.it/it/archivio/279831 (accessed on 18 April 2023).
- El-Beltagi, H.S.; Basit, A.; Mohamed, H.I.; Ali, I.; Ullah, S.; Kamel, E.A.R.; Shalaby, T.A.; Ramadan, K.M.A.; Alkhateeb, A.A.; Ghazzawy, H.S. Mulching as a sustainable water and soil saving practice in agriculture: A review. Agronomy 2022, 12, 1881. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Tarolli, P.; Cerdà, A. Mulching practices for reducing soil water erosion: A review. Earth-Sci. Rev. 2016, 161, 191–203. [Google Scholar] [CrossRef]
- Wang, F.X.; Wu, X.X.; Shock, C.C.; Chu, L.Y.; Gu, X.X.; Xue, X. Effects of drip irrigation regimes on potato tuber yield and quality under plastic mulch in arid Northwestern China. Field Crop. Res. 2011, 122, 78–84. [Google Scholar] [CrossRef]
- Touchaleaume, F.; Martin-Closas, L.; Angellier-Coussy, H.; Chevillard, A.; Cesar, G.; Gontard, N.; Gastaldi, E. Performance and environmental impact of biodegradable polymers as agricultural mulching films. Chemosphere 2016, 144, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Malinconico, M. Soil Degradable Bioplastics for a Sustainable Modern Agriculture; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Zhang, W.; Wang, L.; Zhou, J.; Zhu, K.; Sun, S. Degradability of biodegradable plastic films and its mulching effects on soil temperature and maize yield in northeastern China. Int. J. Agric. Biol. Eng. 2020, 13, 146–153. [Google Scholar] [CrossRef]
- Anzalone, A.; Cirujeda, A.; Aibar, J.; Pardo, G.; Zaragoza, C. Effect of biodegradable mulch materials on weed control in processing tomatoes. Weed Technol. 2010, 24, 369–377. [Google Scholar] [CrossRef]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Develop. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Espí, E.; Salmerón, A.; Fontecha, A.; García, Y.; Real, A.I. Plastic films for agricultural applications. J. Plast. Film Sheeting 2006, 22, 85–102. [Google Scholar] [CrossRef]
- Le Moine, B.; Ferry, X. Plasticulture: Economy of resources. Acta Hortic. 2019, 1252, 121–130. [Google Scholar] [CrossRef]
- Plastic Pollution Is Growing Relentlessly as Waste Management and Recycling Fall Short, Says OECD. Available online: www.oecd.org (accessed on 20 July 2023).
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef]
- European Commission 2020. Available online: https://ec.europa.eu/info/research-and-innovation/research-area/environment/plastics-circular-economy_en (accessed on 18 April 2023).
- Miles, C.; DeVetter, L.; Ghimire, S.; Hayes, D.G. Suitability of biodegradable plastic mulches for organic and sustainable agricultural production systems. HortScience 2017, 52, 10–15. [Google Scholar] [CrossRef]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Riccardi, R.; Spigno, P.; Fagnano, M.; Mori, M. Agronomic and environmental benefits of ‘re-using’ a biodegradable mulching film for two consecutive lettuce cycles. Ital. J. Agron. 2022, 17, 2061. [Google Scholar] [CrossRef]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Duri, L.G.; Riccardi, R.; Spigno, P.; Mori, M. The effect of novel biodegradable films on agronomic performance of zucchini squash grown under open-field and greenhouse conditions. Aust. J. Crop Sci. 2019, 13, 1810–1818. [Google Scholar]
- Briassoulis, D.; Giannoulis, A. Evaluation of the functionality of bio-based plastic mulching films. Polym. Test. 2018, 67, 99–109. [Google Scholar] [CrossRef]
- Martin-Closas, L.; Costa, J.; Pelacho, A.M. Agronomic Effects of Biodegradable Films on Crop and Field Environment. In Soil Degradable Bioplastics for a Sustainable Modern Agriculture; Malinconico, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 67–104. [Google Scholar] [CrossRef]
- Mendonça, S.R.; Ávila, M.C.R.; Vital, R.G.; Evangelista, Z.R.; de Carvalho Pontes, N.; dos Reis Nascimento, A. The effect of different mulching on tomato development and yield. Sci. Hort 2021, 275, 109657. [Google Scholar] [CrossRef]
- Abduwaiti, A.; Liu, X.; Yan, C.; Xue, Y.; Jin, T.; Wu, H.; He, P.; Bao, Z.; Liu, Q. Testing biodegradable films as alternatives to plastic-film mulching for enhancing the yield and economic benefits of processed tomato in Xinjiang Region. Sustainability 2021, 13, 3093. [Google Scholar] [CrossRef]
- Di Mola, I.; Ottaiano, L.; Cozzolino, E.; Marra, R.; Vitale, S.; Pironti, A.; Fiorentino, N.; Mori, M. Yield and Quality of Processing Tomato as Improved by Biostimulants Based on Trichoderma sp. and Ascophyllum nodosum and Biodegradable Mulching Films. Agronomy 2023, 13, 901. [Google Scholar] [CrossRef]
- Cozzolino, E.; Di Mola, I.; Ottaiano, L.; Bilotto, M.; Petriccione, M.; Ferrara, E.; Mori, M.; Morra, L. Assessing Yield and Quality of Melon (Cucumis melo L.) Improved by Biodegradable Mulching Film. Plants 2023, 12, 219. [Google Scholar] [CrossRef]
- Jia, H.; Wang, Z.; Zhang, J.; Li, W.; Ren, Z.; Jia, Z.; Wang, Q. Effects of biodegradable mulch on soil water and heat conditions, yield and quality of processing tomatoes by drip irrigation. J. Arid. Land 2020, 12, 819–836. [Google Scholar] [CrossRef]
- Li, X.Y.; Guo, Y.; Ding, Z.J.; Leng, X.; Tian, T.; Hu, Q. Influence of different film mulchings on soil temperature at different time scales and maize yield. Trans. Chin. Soc. Agric. Mach. 2018, 49, 247–256. [Google Scholar]
- Sekara, A.; Pokluda, R.; Cozzolino, E.; del Piano, L.; Cuciniello, A.; Caruso, G. Plant growth, yield, and fruit quality of tomato affected by biodegradable and non-degradable mulches. Hortic. Sci. 2019, 46, 138–145. [Google Scholar] [CrossRef]
- Morra, L.; Cozzolino, E.; Salluzzo, A.; Modestia, F.; Bilotto, M.; Baiano, S.; del Piano, L. Plant growth, yields and fruit quality of processing tomato (Solanum lycopersicon L.) as affected by the combination of biodegradable mulching and digestate. Agronomy 2021, 11, 100. [Google Scholar] [CrossRef]
- Sams, C.E. Preharvest factors affecting postharvest texture. Postharvest Biol. Technol. 1999, 15, 249–254. [Google Scholar] [CrossRef]
- Aurand, R.; Faurobert, M.; Page, D.; Maingonnat, J.F.; Brunel, B.; Causse, M.; Bertin, N. Anatomical and biochemical trait network underlying genetic variations in tomato fruit texture. Euphytica 2012, 187, 99–116. [Google Scholar] [CrossRef]
- Capitello. Available online: https://digimparoreda.capitello.it/app/books (accessed on 3 July 2023).
- Raffo, A.; Leonardi, C.; Fogliano, V.; Ambrosino, P.; Salucci, M.; Gennaro, L.; Bugianesi, R.; Giuffrida, F.; Quaglia, G. Nutritional value of cherry tomatoes (Lycopersicon esculentum cv Naomi F1) harvested at different ripening stages. J. Agric. Food Chem. 2002, 50, 6550–6556. [Google Scholar] [CrossRef]
- Canene-Adams, K.; Campbell, J.K.; Zaripheh, S.; Jeffery, E.H.; Erdman, J.W. The tomato as a functional food. J. Nutr. 2005, 135, 1226–1230. [Google Scholar] [CrossRef]
- Campbell, J.K.; Canene-Adams, K.; Lindshield, B.L.; Boileau, T.W.M.; Clinton, S.K.; Erdman, J.W. Tomato phytochemicals and prostate cancerrisk. J. Nutr. 2004, 134, 3486–3492. [Google Scholar] [CrossRef]
- Bhuvaneswari, V.; Nagini, S. Lycopene: A review of its potential as an anticancer agent. Curr. Med. Chem. Anti-Cancer Agent 2005, 5, 627–635. [Google Scholar] [CrossRef]
- Palozza, P.; Parrone, N.; Catalano, A.; Simone, R. Tomato lycopene and inflammatory cascade: Basic interactions and clinical implications. Curr. Med. Chem. 2010, 17, 2547–2563. [Google Scholar] [CrossRef]
- Ried, K.; Falker, P. Protective effect of lycopene on serum cholesterol and blood pressure: Meta-analyses of intervention trials. Maturitas 2011, 68, 299–310. [Google Scholar] [CrossRef]
- Hargreaves, G.; Samani, Z. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Bastioli, C. Properties and applications of Mater-Bi starchbased materials. Polym. Degrad. Stabil. 1998, 59, 263–272. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophyls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Kampfenkel, K.; Montagu, M.; Inzé, D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal. Biochem. 1995, 225, 165–167. [Google Scholar] [CrossRef]
- Petriccione, M.; Mastrobuoni, F.; Pasquariello, M.S.; Zampella, L.; Nobis, E.; Capriolo, G.; Scortichini, M. Effect of chitosan coating on the postharvest quality and antioxidant enzyme system response of strawberry fruit during cold storage. Foods 2015, 4, 501–523. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colourimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Petriccione, M.; De Sanctis, F.; Pasquariello, M.S.; Mastrobuoni, F.; Rega, P.; Scortichini, M.; Mencarelli, F. The effect of chitosan coating on the quality and nutraceutical traits of sweet cherry during postharvest life. Food Bioprocess. Technol. 2015, 8, 394–408. [Google Scholar] [CrossRef]
- Filippi, F.; Magnani, G.; Guerrini, S.; Ranghino, F. Agronomic evaluation of green biodegradable mulch on melon crop. Ital. J. Agron. 2011, 6, e18. [Google Scholar] [CrossRef]
Treatments | Marketable Fruits | TSS | Firmness | |
---|---|---|---|---|
n m−2 | g fruit−1 | Brix | kg cm−2 | |
Mulching | ||||
BS | 69.2 ± 4.5 b | 62.2 ± 1.9 | 5.14 ± 0.06 b | 0.52 ± 0.01 a |
LDPE | 89.5 ± 7.5 a | 60.9 ± 1.3 | 5.72 ± 0.10 a | 0.41 ± 0.01 c |
MB12 | 92.3 ± 8.1 a | 62.5 ± 3.0 | 5.59 ± 0.12 a | 0.46 ± 0.01 b |
Years | ||||
2014 | 72.2 ± 2.2 b | 66.1 ± 0.8 a | 5.42 ± 0.09 | 0.46 ± 0.01 |
2015 | 95.2 ± 5.2 a | 57.7 ± 0.7 b | 5.54 ± 0.12 | 0.46 ± 0.01 |
Significance | ||||
Mulching (M) | ** | ns | ** | ** |
Year (Y) | ** | ** | ns | ns |
M × Y | ns | ns | ns | ns |
Treatments | Hunter Ratio a/b | Carotenoids |
---|---|---|
mg 100 g−1 fw | ||
Mulching | ||
BS | 2.30 ± 0.01 c | 4.26 ± 0.14 b |
LDPE | 2.37 ± 0.01 b | 6.67 ± 0.45 a |
MB12 | 2.51 ± 0.01 a | 6.69 ± 0.47 a |
Years | ||
2014 | 2.39 ± 0.02 | 5.88 ± 0.41 |
2015 | 2.40 ± 0.02 | 5.87 ± 0.38 |
Significance | ||
Mulching (M) | ** | ** |
Year (Y) | ns | ns |
M × Y | ns | ns |
Treatments | Flavonoids | Polyphenols | AA | AsA |
---|---|---|---|---|
mg CAE 100 g−1 fw | mg GAE 100 g−1 fw | µmol TE g−1 fw | mg 100 g−1 fw | |
Mulching | ||||
BS | 3.14 ± 0.08 b | 110.9 ± 6.9 b | 1.96 ± 0.06 b | 13.0 ± 1.2 b |
LDPE | 3.36 ± 0.12 a | 135.5 ± 7.5 a | 2.18 ± 0.08 b | 14.3 ± 1.0 a |
MB12 | 3.51 ± 0.09 a | 143.9 ± 9.8 a | 2.69 ± 0.14 a | 14.7 ± 1.2 a |
Years | ||||
2014 | 3.48 ± 0.11 a | 113.0 ± 5.5 b | 2.23 ± 0.10 | 11.6 ± 0.3 b |
2015 | 3.20 ± 0.07 b | 147.2 ± 5.5 a | 2.32 ± 0.22 | 16.4 ± 0.5 a |
Significance | ||||
Mulching (M) | ** | ** | ** | ** |
Year (Y) | ** | ** | ns | * |
M × Y | ns | ns | ns | ns |
DAPM | Degradation of Buried Film | Degradation of Unburied Film | Resistance to Tearing |
---|---|---|---|
28 | 9.0 ± 0.0 a | 9.0 ± 0.0 a | 9.0 ± 0.0 a |
43 | 9.0 ± 0.0 a | 9.0 ± 0.0 a | 9.0 ± 0.0 a |
71 | 8.1 ± 0.1 b | 8.4 ± 0.2 b | 8.4 ± 0.2 b |
113 | 7.2 ± 0.2 c | 7.5 ± 0.2 c | 7.2 ± 0.2 c |
162 | 2.0 ± 0.0 d | 1.0 ± 0.0 d | 2.0 ± 0.0 d |
Significance | *** | *** | *** |
DAPM | Degradation of Buried Film | Degradation of Unburied Film | Resistance to Tearing |
---|---|---|---|
55 | 7.3 ± 0.3 a | 8.7 ± 0.3 a | 7.3 ± 0.3 a |
76 | 6.7 ± 0.3 ab | 8.3 ± 0.7 a | 7.3 ± 0.9 a |
104 | 6.3 ± 0.7 ab | 7.0 ± 0.0 ab | 5.3 ± 0.3 b |
134 | 5.3 ± 0.9 b | 5.3 ± 0.7 b | 5.0 ± 0.6 c |
Significance | * | * | * |
Parameter | Measure Unit | 2014 | 2015 |
---|---|---|---|
Particle size distribution | |||
| % | 19.5 | 20.2 |
| % | 42.1 | 41.2 |
| % | 22.8 | 23.4 |
| % | 15.6 | 15.2 |
Texture | Sandy loam | ||
N-Total * | % | 0.15 | 0.18 |
P2O5 ** | ppm | 205.0 | 211.0 |
K2O *** | ppm | 1500.9 | 1846.5 |
Organic matter # | % | 2.22 | 3.36 |
pH | 7.4 | 7.2 | |
Electrical conductivity + | dS m−1 | 0.13 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Riccardi, R.; Spigno, P.; Petriccione, M.; Fiorentino, N.; Fagnano, M.; Mori, M. Biodegradable Mulching Film vs. Traditional Polyethylene: Effects on Yield and Quality of San Marzano Tomato Fruits. Plants 2023, 12, 3203. https://doi.org/10.3390/plants12183203
Di Mola I, Cozzolino E, Ottaiano L, Riccardi R, Spigno P, Petriccione M, Fiorentino N, Fagnano M, Mori M. Biodegradable Mulching Film vs. Traditional Polyethylene: Effects on Yield and Quality of San Marzano Tomato Fruits. Plants. 2023; 12(18):3203. https://doi.org/10.3390/plants12183203
Chicago/Turabian StyleDi Mola, Ida, Eugenio Cozzolino, Lucia Ottaiano, Riccardo Riccardi, Patrizia Spigno, Milena Petriccione, Nunzio Fiorentino, Massimo Fagnano, and Mauro Mori. 2023. "Biodegradable Mulching Film vs. Traditional Polyethylene: Effects on Yield and Quality of San Marzano Tomato Fruits" Plants 12, no. 18: 3203. https://doi.org/10.3390/plants12183203
APA StyleDi Mola, I., Cozzolino, E., Ottaiano, L., Riccardi, R., Spigno, P., Petriccione, M., Fiorentino, N., Fagnano, M., & Mori, M. (2023). Biodegradable Mulching Film vs. Traditional Polyethylene: Effects on Yield and Quality of San Marzano Tomato Fruits. Plants, 12(18), 3203. https://doi.org/10.3390/plants12183203