Isolation and Characterization of Anti-Inflammatory Compounds from Ficus microcarpa L.f. Stem Bark
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Collection and Extraction
4.2. Animals
4.3. Drugs and Chemicals
4.4. Acute Toxicity
4.5. Anti-Inflammatory Activities
4.5.1. Carrageenan-Induced Acute Inflammation in Rats
4.5.2. Complete Freund’s Adjuvant (CFA)-Induced Chronic Inflammation in Rats
- % of a rise or inhibition of oedema
- Hematological Parameters
4.6. Bioactivity-Guided Fractionation and Isolation of Phytochemicals
Identification of Isolated Phytochemicals
4.7. In-Vitro Anti-Inflammatory Activity Isolated Phytochemicals
4.7.1. Protein Denaturation Assay
4.7.2. Cyclooxygenase (COX) Inhibitor Screening Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Suzuki, K. Chronic inflammation as an immunological abnormality and effectiveness of exercise. Biomolecules 2019, 9, 223. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.C. Effect and treatment of chronic pain in inflammatory arthritis. Curr. Rheumatol. Rep. 2013, 15, 300. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.; Kumar, V.; Malhotra, H.; Singh, S. Medicinal plants with potential anti-arthritic activity. J. Intercult. Ethnopharmacol. 2015, 4, 147–179. [Google Scholar] [CrossRef] [PubMed]
- Kuraoka-Oliveira, Â.M.; Radai, J.A.S.; Leitão, M.M.; Cardoso, C.A.L.; Silva-Filho, S.E.; Kassuya, C.A.L. Anti-inflammatory and anti-arthritic activity in extract from the leaves of Eriobotrya japonica. J. Ethnopharmacol. 2020, 249, 112418. [Google Scholar] [CrossRef]
- Whelton, A. Nephrotoxicity of non-steroidal anti-inflammatory drugs: Physiologic foundations and clinical implications. Am. J. Med. 1999, 106, 13S–24S. [Google Scholar] [CrossRef]
- McGettigan, P.; Henry, D. Cardiovascular risk with non-steroidal anti-inflammatory drugs: Systematic review of population-based controlled observational studies. PLoS Med. 2011, 8, e1001098. [Google Scholar] [CrossRef] [PubMed]
- Larrey, D. Epidemiology and individual susceptibility to adverse drug reactions affecting liver. Semin Liver Dis. 2002, 22, 145–156. [Google Scholar] [CrossRef]
- Al-Quraishy, S.; Othman, M.S.; Dkhil, M.A.; Moneim, A.E.A. Olive (Olea europaea) leaf methanolic extract prevents HCl/ethanol-induced gastritis in rats by attenuating inflammation and augmenting antioxidant enzyme activities. Biomed. Pharmacother. 2017, 91, 338–349. [Google Scholar] [CrossRef]
- Visscher, M.; De Henau, S.; Wildschut, M.H.; van Es, R.M.; Dhondt, I.; Michels, H.; Kemmeren, P.; Nollen, E.A.; Braeckman, B.P.; Burgering, B.M. Proteome-wide changes in protein turnover rates in C. elegans models of longevity and age-related disease. Cell Rep. 2016, 16, 3041–3051. [Google Scholar] [CrossRef]
- Kuo, Y.H.; Li, Y.C. Constituents of the Bark of Ficus microcarpa Lf. J. Chin. Chem. Soc. 1997, 44, 321–325. [Google Scholar] [CrossRef]
- Ao, C.; Li, A.; Elzaawely, A.A.; Xuan, T.D.; Tawata, S. Evaluation of antioxidant and antibacterial activities of Ficus microcarpa L. fil. extract. Food Control. 2008, 19, 940–948. [Google Scholar] [CrossRef]
- Sivasankari, B.; Anandharaj, M.; Gunasekaran, P. An ethnobotanical study of indigenous knowledge on medicinal plants used by the village peoples of Thoppampatti, Dindigul district, Tamilnadu, India. J. Ethnopharmacol. 2014, 153, 408–423. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.W.C.; Tangah, J.; Inoue, T.; Kainuma, M.; Baba, K.; Oshiro, N.; Kezuka, M.; Kimura, N. Botany, uses, chemistry and pharmacology of Ficus microcarpa: A short review. Syst. Rev. Pharm. 2017, 8, 103. [Google Scholar] [CrossRef]
- Surana, S.J.; Tatiya, A.U.; Kalaskar, M.G. Identification of Bioactive Compounds and Possible Mechanism of Hepatoprotective Activity of Ficus microcarpa L. Fil. Bark Extracts in Ethanol-Induced Chronic Hepatic Injury in Rats. Indian J. Pharmcetical Educ. Res. 2017, 51, 706–712. [Google Scholar] [CrossRef]
- Taira, T.; Ohdomari, A.; Nakama, N.; Shimoji, M.; Ishihara, M. Characterization and antifungal activity of gazyumaru (Ficus microcarpa) latex chitinases: Both the chitin-binding and the antifungal activities of class I chitinase are reinforced with increasing ionic strength. Biosci. Biotechnol. Biochem. 2005, 69, 811–818. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Klaassen, C.D. Protective effect of oleanolic acid against chemical-induced acute necrotic liver injury in mice. Zhongguo Yao Li Xue Bao Acta Pharmacol. Sin. 1995, 16, 97–102. [Google Scholar]
- Xu, H.; Wang, X.M.; Wei, X.; Li, J.Y.; Liu, K. A new chalcone from the aerial roots of Ficus microcarpa. Chin. Chem. Lett. 2009, 20, 576–578. [Google Scholar] [CrossRef]
- Akhtar, N.; Jafri, L.; Green, B.D.; Kalsoom, S.; Mirza, B. A multi-mode bioactive agent isolated from Ficus microcarpa L. Fill. with therapeutic potential for type 2 diabetes mellitus. Front. Pharmacol. 2018, 9, 1376. [Google Scholar] [CrossRef]
- Kirtikar, K.; Basu, B. Indian Medicinal Plants, Vol II, 2nd ed.; International Book Distribution: Dehradun, India, 1987. [Google Scholar]
- Kalaskar, M.G.; Surana, S.J. Free radical scavenging and hepatoprotective potential of Ficus microcarpa L. fil. bark extracts. J. Nat. Med. 2011, 65, 633–640. [Google Scholar] [CrossRef]
- Zamani, M.; Shirinzadeh, A.; Aghajanzadeh, M.; Andalib, S.; Danafar, H. In vivo study of mPEG–PCL as a nanocarriers for anti-inflammatory drug delivery of simvastatin. Pharm. Dev. Technol. 2019, 24, 663–670. [Google Scholar] [CrossRef]
- Odira, H.O.; Mitema, S.O.; Mapenay, I.M.; Moriasi, G.A. Anti-inflammatory, analgesic, and cytotoxic effects of the phytexponent: A polyherbal formulation. J. Evid. Based Integr. Med. 2022, 27, 2515690X221082986. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, D.R.; Tatiya, A.U.; Girase, M.V.; Patil, C.R.; Jamkhande, P.G.; Surana, S.J.; Kalaskar, M.G. Phytochemical and pharmacological validation of folklore medicine practiced in south-western Satpuda Ranges (India) for management of inflammatory conditions. J. Ethnopharmacol. 2022, 285, 114813. [Google Scholar] [CrossRef] [PubMed]
- Bourais, I.; Elmarrkechy, S.; Taha, D.; Mourabit, Y.; Bouyahya, A.; El Yadini, M.; Machich, O.; El Hajjaji, S.; El Boury, H.; Dakka, N. A review on medicinal uses, nutritional value, and antimicrobial, antioxidant, anti-inflammatory, antidiabetic, and anticancer potential related to bioactive compounds of J. regia. Food Rev. Int. 2022, 1–51. [Google Scholar] [CrossRef]
- Mowat, A.G. Hematologic abnormalities in rheumatoid arthritis. Semin. Arthritis Rheum. 1972, 1, 195–219. [Google Scholar] [CrossRef] [PubMed]
- Patil, K.R.; Patil, C.R.; Jadhav, R.B.; Mahajan, V.K.; Patil, P.R.; Gaikwad, P.S. Anti-arthritic activity of bartogenic acid isolated from fruits of Barringtonia racemosa Roxb. (Lecythidaceae). Evid. Based Complement. Alternat. Med. 2011, 2011, 785245. [Google Scholar] [CrossRef] [PubMed]
- Kumar, E.; Mastan, S.; Reddy, K.R.; Reddy, G.A.; Raghunandan, N.; Chaitanya, G. Anti-arthritic property of the methanolic extract of Syzygium cumini seeds. Int. J. Integr. Biol. 2008, 4, 55–61. [Google Scholar]
- Budzikiewicz, H.; Wilson, J.M.; Djerassi, C. Mass spectrometry in structural and stereochemical problems. XXXII. 1 Pentacyclic triterpenes. J. Am. Chem. Soc. 1963, 85, 3688–3699. [Google Scholar] [CrossRef]
- Gangwal, A.; Parmar, S.; Sheth, N. Triterpenoid, flavonoids and sterols from Lagenaria siceraria fruit. Der Pharm. Lett. 2010, 2, 307–317. [Google Scholar]
- Aher, A.; Pal, S.; Yadav, S.; Patil, U.; Bhattacharya, S. Antioxidant activity of isolated phytoconstituents from Casuarina equisetifolia Frost (Casuarinaceae). J. Plant Sci. 2009, 4, 15–20. [Google Scholar] [CrossRef]
- Chiang, Y.M.; Liu, H.K.; Lo, J.M.; Chien, S.C.; Chan, Y.F.; Lee, T.H.; Su, J.K.; Kuo, Y.H. Cytotoxic constituents of the leaves of Calocedrus formosana. J. Chin. Chem. Soc. 2003, 50, 161–166. [Google Scholar] [CrossRef]
- Akhtar, M.F.; Khan, K.; Saleem, A.; Baig, M.M.F.A.; Rasul, A.; Abdel-Daim, M.M. Chemical characterization and anti-arthritic appraisal of Monotheca buxifolia methanolic extract in Complete Freund’s Adjuvant-induced arthritis in Wistar rats. Inflammopharmacology 2021, 29, 393–408. [Google Scholar] [CrossRef] [PubMed]
- Winrow, V.; Winyard, P.; Morris, C.; Blake, D. Free radicals in inflammation: Second messengers and mediators of tissue destruction. Br. Med. Bull. 1993, 49, 506–522. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.C.; Maity, T.K.; Das, J.; Saba, B.; Pal, M. Anti-inflammatory evaluation of Ficus racemosa Linn. leaf extract. J. Ethnopharmacol. 2000, 72, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Li, R.W.; Leach, D.N.; Myers, S.P.; Lin, G.D.; Leach, G.J.; Waterman, P.G. A new anti-inflammatory glucoside from Ficus racemosa L. Planta Med. 2004, 70, 421–426. [Google Scholar] [PubMed]
- Li, R.W.; Myers, S.P.; Leach, D.N.; Lin, G.D.; Leach, G. A cross-cultural study: Anti-inflammatory activity of Australian and Chinese plants. J. Ethnopharmacol. 2003, 85, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Sreelekshmi, R.; Latha, P.; MM Arafat, M.; Shyamal, S.; Shine, V.; Anuja, G.; Suja, S.; Rajasekharan, S. Anti-inflammatory, analgesic and anti-lipid peroxidation studies on stem bark of Ficus religiosa Linn. Nat. Prod. Radiance 2007, 6, 377–381. [Google Scholar]
- Charde, R.M.; Dhongade, H.J.; Charde, M.S.; Kasture, A. Evaluation of antioxidant, wound healing and anti-inflammatory activity of ethanolic extract of leaves of Ficus religiosa. Int. J. Pharm. Sci. Res. 2010, 19, 73–82. [Google Scholar]
- Patil, V.V.; Patil, V.R. A comparative evaluation of anti-inflammatory activity of the bark of Ficus bengalensis in plants of different age. J. Basic. Clin. Pharm. 2010, 1, 107–113. [Google Scholar]
- Patel, M.; Patel, P.; Patel, M. Aqueous extract of Ficus bengalensis Linn. bark for inflammatory bowel disease. J. Young Pharm. 2010, 2, 130–136. [Google Scholar] [CrossRef]
- Patil, V.V.; Patil, V.R. Evaluation of anti-inflammatory activity of Ficus carica Linn. leaves. Indian J. Nat. Prod. Resour. 2011, 2, 151–155. [Google Scholar]
- Fan, F.-Y.; Sang, L.-X.; Jiang, M. Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules 2017, 22, 484. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.-W.; Tan, X.; Sun, J.-Y.; Gu, C.-M.; Liu, C.; Guo, X. Catechin attenuates TNF-α induced inflammatory response via AMPK-SIRT1 pathway in 3T3-L1 adipocytes. PLoS ONE 2019, 14, e0217090. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.-Q.; Wei, W.; Wang, X.-Y. Effects and mechanisms of catechin for adjuvant arthritis in rats. Adv. Ther. 2007, 24, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 2013, 21, 143–152. [Google Scholar] [CrossRef]
- Gavit, A.A.; Gagrani, M.B.; Gurav, S.S.; Ayyanar, M.; Beldar, V.G.; Tatiya, A.U.; Surana, S.J.; Firke, S.D.; Kalaskar, M.G. Chemical composition and biological activities of Lonicera caprifolium L. (Caprifoliaceae) essential oil. Nat. Prod. Res. 2023, 24, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.H.; Yoon, K.D.; Chin, Y.-W.; Park, J.H.; Kim, J. Phenolic compounds with radical scavenging and cyclooxygenase-2 (COX-2) inhibitory activities from Dioscorea opposita. Biorg. Med. Chem. 2009, 17, 2689–2694. [Google Scholar] [CrossRef]
Treatment | % Rise in Paw Oedema (% Inhibition) | |||||
---|---|---|---|---|---|---|
1 h | 2 h | 3 h | 4 h | 5 h | 6 h | |
Control a | 16.84 ± 2.39 | 29.96 ± 1.67 | 37.56 ± 1.25 | 44.79 ± 0.65 | 49.29 ± 0.96 | 52.22 ± 0.62 |
Standard b (10 mg/kg) | 14.28 ± 0.42 * (27.78) | 15.85 ± 0.41 *** (56.84) | 18.19 ±0.36 *** (57.97) | 21.01 ± 0.51 *** (59.39) | 26.18 ± 0.63 *** (54.37) | 31.2 ± 0.81 *** (48.18) |
EAFMB (100 mg/kg) | 16.05 ± 0.52 *** (19.84) | 18.75 ± 1.21 *** (49.57) | 24.96 ± 1.27 *** (43.12) | 26.52 ± 1.42 *** (58.48) | 28.62 ± 1.89 *** (50.82) | 29.58 ± 0.75 *** (51.56) |
EAFMB (200 mg/kg) | 13.87 ± 0.36 *** (26.98) | 16.73 ± 0.26 *** (52.56) | 18.26 ± 0.66 *** (56.16) | 20.67 ± 0.52 *** (59.39) | 23.51 ± 0.34 *** (57.38) | 27.57 ± 0.37 *** (52.34) |
Treatment | % Rise in Paw Oedema (% Inhibition) | |||
---|---|---|---|---|
4th Day | 8th Day | 14th Day | 21st Day | |
Control a | 66.11 ± 2.90 | 81.27 ± 4.10 | 85.83 ± 5.22 | 81.11 ± 3.54 |
Standard b (10 mg/kg) | 41.92 ± 1.46 *** (46.78) | 27.95 ± 1.58 *** (70.16) | 14.77 ± 1.39 *** (84.48) | 11.99 ± 0.89 * (87.35) |
EAFMB (100 mg/kg) | 53.84 ± 1.18 *** (35.88) | 54.57 ± 1.36 *** (46.94) | 43.84 ± 1.17 *** (59.27) | 30.52 ± 2.62 * (69.84) |
EAFMB (200 mg/kg) | 47.48 ± 1.92 *** (41.73) | 46.81 ± 1.48 *** (52.77) | 27.36 ± 2.33 *** (73.93) | 15.49 ± 1.40 * (83.96) |
Treatment | ESR (mm/h) | RBC (millions/cubic mm) | WBC (103/cubic mm) | Hb (g%) |
---|---|---|---|---|
Control a | 11.73 ± 0.34 | 5.63 ± 0.36 | 14.42 ± 0.35 | 9.33 ± 0.29 |
Standard b (10 mg/kg) | 5.42 ± 0.31 *** | 9.58 ± 0.27 *** | 6.37 ± 0.36 *** | 14.62 ± 0.27 *** |
EAFMB (100 mg/kg) | 7.53 ± 0.37 *** | 7.52 ± 0.22 *** | 11.93 ± 0.40 *** | 11.13 ± 0.36 ** |
EAFMB (200 mg/kg) | 6.18 ± 0.28 *** | 9.13 ± 0.36 *** | 8.05 ± 0.35 *** | 14.07 ± 0.46 *** |
FMC-1 | FMC-2 | FMC-2 | ||||||
---|---|---|---|---|---|---|---|---|
Carbon Position | 1H (δ) | 13C (δ) | Carbon Position | 1H (δ) | 13C (δ) | Carbon Position | 1H (δ) | 13C (δ) |
1 | 37.01 | 1 | 1 | 128.89 | ||||
2 | 27.08 | 2 | 4.60 (1H, d) | 81.39 | 2 | 7.78 (2H, d) | 131.06 | |
3 | 3.21 (1H, dd) | 78.95 | 3 | 3.97 (2H, m) | 67.74 | 3 | 6.91 (2H, d) | 118.15 |
4 | 38.31 | 4 | 27.14 | 4 | ||||
5 | 55.12 | 5 | 155.49 | 5 | 6.91 (2H, d) | 118.15 | ||
6 | 18.21 | 6 | 5.82 (1H, d) | 95.81 | 6 | 7.78 (2H, d) | 131.06 | |
7 | 32.35 | 7 | 156.48 | 1′ | 116.36 (β-position) | |||
8 | 38.68 | 8 | 6.01 (1H, d) | 94.73 | 2′ | 6.31 (1H, d, H-2; α-position) | 141.01 (α-position) | |
9 | 1.59 (1H, t) | 47.55 | 9 | 156.15 | 3′ | 7.31 (1H, d, H-1′ β-position) | 169.83 (-COOH) | |
10 | 33.71 | 10 | 99.47 | |||||
11 | 22.82 | 1′ | 130.3 | |||||
12 | 5.27 (1H, m) | 122.56 | 2′ | 6.92 (1H, d) | 114.07 | |||
13 | 143.52 | 3′ | 144.66 | |||||
14 | 41.50 | 4′ | 144.79 | |||||
15 | 5′ | 6.83 (1H, d) | 115.11 | |||||
16 | 23.51 | 6′ | 6.74 (1H, dd) | 119.16 | ||||
17 | 45.78 | |||||||
18 | 1.86 (1H, t) | 39.18 | ||||||
19 | 46.45 | |||||||
20 | 29.65 | |||||||
21 | 33.01 | |||||||
22 | 30.61 | |||||||
23 | 1.05 (1H, s) | 28.07 | ||||||
24 | 15.47 | |||||||
25 | 0.98 (1H, s) | 15.25 | ||||||
26 | 1.13 (1H, s) | 17.04 | ||||||
27 | 1.18 (1H, s) | 25.88 | ||||||
28 | 0.77 (1H, s) | 183.54 | ||||||
29 | 0.91 (1H, s) | 32.51 | ||||||
30 | 0.91 (1H, s) | 23.32 |
Compounds | Protein Denaturation Assay (IC50, µg/mL) | COX Inhibition (IC50, μM) | |
---|---|---|---|
COX-1 | COX-2 | ||
Oleanolic acid | 69.56 | 377.57 | 85.33 |
Catechin | 27.13 | 9.02 | 50.38 |
P-hydroxycinnamic acid | 141.28 | 228.77 | 245.68 |
Indomethacin a | 22.29 | 4.65 | 178.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalaskar, M.; Redasani, V.; Ayyanar, M.; Ghante, M.; Firke, S.; Agrawal, K.; Ghawate, V.; Surana, S.; Alarifi, S.; Chikhale, R.; et al. Isolation and Characterization of Anti-Inflammatory Compounds from Ficus microcarpa L.f. Stem Bark. Plants 2023, 12, 3248. https://doi.org/10.3390/plants12183248
Kalaskar M, Redasani V, Ayyanar M, Ghante M, Firke S, Agrawal K, Ghawate V, Surana S, Alarifi S, Chikhale R, et al. Isolation and Characterization of Anti-Inflammatory Compounds from Ficus microcarpa L.f. Stem Bark. Plants. 2023; 12(18):3248. https://doi.org/10.3390/plants12183248
Chicago/Turabian StyleKalaskar, Mohan, Vivek Redasani, Muniappan Ayyanar, Mahavir Ghante, Sandip Firke, Kapil Agrawal, Vilas Ghawate, Sanjay Surana, Saud Alarifi, Rupesh Chikhale, and et al. 2023. "Isolation and Characterization of Anti-Inflammatory Compounds from Ficus microcarpa L.f. Stem Bark" Plants 12, no. 18: 3248. https://doi.org/10.3390/plants12183248
APA StyleKalaskar, M., Redasani, V., Ayyanar, M., Ghante, M., Firke, S., Agrawal, K., Ghawate, V., Surana, S., Alarifi, S., Chikhale, R., & Gurav, S. (2023). Isolation and Characterization of Anti-Inflammatory Compounds from Ficus microcarpa L.f. Stem Bark. Plants, 12(18), 3248. https://doi.org/10.3390/plants12183248