Photosynthetic Response of Blueberries Grown in Containers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Weather Conditions
2.3. Gas Exchange Measurement
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stirbet, A.; Lazár, D.; Guo, Y.; Govindjee, G. Photosynthesis: Basics, history and modelling. Ann. Bot. 2020, 126, 511–537. [Google Scholar] [CrossRef] [PubMed]
- FAO. Quarterly Global Report—Crops Prospects and Food Situation. 2023. Available online: https://www.fao.org/3/cc4665en/cc4665en.pdf (accessed on 20 January 2023).
- Wu, A.; Song, Y.; Oosterom, E.J.C.; Hammer, G.L. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement. Front. Plant Sci. 2016, 7, 1518. [Google Scholar] [CrossRef]
- Long, S.P.; Zhu, X.G.; Naidu, S.L.; Ort, D.R. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 2006, 29, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.T.; Fischer, R.A. Yield Potential: Its Definition, Measurement, and Significance. Crop Sci. 1999, 39, 1544–1551. [Google Scholar] [CrossRef]
- Simkin, A.J.; Lopez-Calcagno, P.; Raines, C.A. Feeding the world: Improving photosynthetic efficiency for sustainable crop production. J. Exp. Bot. 2019, 70, 1119–1140. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, A.; Gerlach, C. Controlled environment agriculture and containerized food production in Northern North America. J. Agric. Food Syst. Community Dev. 2021, 10, 4. [Google Scholar] [CrossRef]
- Smrke, T.; Veberic, R.; Hudina, M.; Zitko, V.; Ferlan, M.; Jakopic, J. Fruit Quality and Yield of Three Highbush Blueberry (Vaccinium corymbosum L.) Cultivars Grown in Two Planting Systems under Different Protected Environments. Horticulturae 2021, 7, 591. [Google Scholar] [CrossRef]
- Majsztrik, J.C.; Fernandez, R.T.; Fisher, P.R.; Hitchcock, D.R.; Lea-Cox, J.; Owen, J.S.; Oki, L.R.; White, S.A. Water Use and Treatment in Container-Grown Specialty Crop Production: A Review. Water Air Soil. Pollut. 2017, 228, 151. [Google Scholar] [CrossRef]
- Li, T.; Bi, G. Container Production of Southern Highbush Blueberries Using High Tunnels. Hortscience 2019, 54, 267–274. [Google Scholar] [CrossRef]
- Fang, Y.; Nunez, G.H.; Neves da Silva, M.; Phillips, D.A.; Munoz, P.R. A Review for Southern Highbush Blueberry Alternative Production Systems. Agronomy 2020, 10, 1531. [Google Scholar] [CrossRef]
- Fulcher, A.; Gauthier, N.W.; Klingeman, W.E.; Hale, F.; White, S.A. Blueberry culture and pest, disease, and abiotic disorder management during nursery production in the southeastern US: A review. J. Environ. Hort. 2015, 33, 33–47. [Google Scholar]
- Voogt, W.; van Dijk, P.; Douven, F.; van der Maas, R. Development of a soilless growing system for blueberries (Vaccinium corymbosum): Nutrient demand and nutrient solution. Acta Hort. 2014, 1017, 215–221. [Google Scholar] [CrossRef]
- Kingston, P.H.; Scagel, C.F.; Bryla, D.R.; Strik, B. Suitability of sphagnum moss, coir, and Douglas fir bark as soilless substrates for container production of highbush blueberry. HortScience 2017, 52, 1692–1699. [Google Scholar] [CrossRef]
- Yang, H.; Wu, Y.; Zhang, C.; Wu, W.; Lyu, L.; Li, W. Growth and physiological characteristics of four blueberry cultivars under different high soil pH treatments. Environ. Exp. Bot. 2022, 197, 104842. [Google Scholar] [CrossRef]
- Retamales, J.B.; Hancock, J.F. Blueberries, 2nd ed.; CABI: Wallingford, UK; Oxford, UK, 2018. [Google Scholar]
- Whidden, A. Commercial blueberry production methods in Hillsborough County. Proc. Florida. State Hort. Soc. 2008, 121, 36–37. [Google Scholar]
- Austin, M.E.; Draper, A.D. Cultivar & Germplasm Releases. ‘Baldwin’ Rabbiteye Blueberry. Department of Horticulture, Coastal Plain Experiment Station, Tifton. HortScience 1985, 20, 454. [Google Scholar]
- SAS Software; Version 9.4; SAS Institute Inc.: Cary, NC, USA, 2013.
- Motomura, S.; Cho, A.; Hamasaki, R.; Akahoshi, K.; Kawabata, A.; Kawabata, A.; Nakamoto, S. Evaluation of pot size for greenhouse production of ‘Misty’ southern highbush blueberry in Volcano, Hawai‘i. Fruit Nut Beverage Crops 2016, 1–4. Available online: https://www.ctahr.hawaii.edu/oc/freepubs/pdf/F_N-48.pdf (accessed on 25 July 2023).
- Viencz, T.; Santana, K.; Atub, R.A.; Boelho, R.V. Development, photosynthesis and yield of blueberry cultivar ‘Climax’ growth with different substrates and nitrogen fertilization under protected cultivation. crop production. Cienc. Rural. 2021, 51, 6. [Google Scholar] [CrossRef]
- Owen, J.S.; Altland, J.E. Container height and Douglas fir bark texture affect substrate physical properties. HortScience 2008, 43, 505–508. [Google Scholar] [CrossRef]
- Poorter, H.; Bühler, J.; Van Dusschoten, D.; Climent, J.; Postma, J.A. Pot size matters: A meta-analysis of the effects of rooting volume on plant growth. Funct. Plant Biol. 2012, 39, 839–850. [Google Scholar] [CrossRef]
- Petridis, A.; van der Kaay, J.; Chrysanthou, E.; McCallum, S.; Graham, J.; Hancock, R.D. Photosynthetic limitation as a factor influencing yield in highbush blueberries (Vaccinium corymbosum) grown in a northern European environment. J. Exp. Bot. 2018, 69, 3069–3080. [Google Scholar] [CrossRef]
- Lima, G.V.d.O.; Oki, Y.; Bordignon, L.; Siqueira, W.K.; França, M.G.C.; Boanares, D.; Franco, A.C.; Fernandes, G.W. Interaction between increased CO2 and temperature enhance plant growth but do not affect millet grain production. Acta Sci. Agron. 2022, 44, e53515. [Google Scholar] [CrossRef]
- Runkle, E. Interactions of Light, CO2 and Temperature on Photosynthesis. In Culture, Grower News, Lighting, Plant Health, Production; 2015; Available online: https://gpnmag.com/article/interactions-light-co2-and-temperature-photosynthesis/ (accessed on 25 July 2023).
- Jones, H.G. Stomatal control of photosynthesis and transpiration. J. Exp. Bot. 1998, 49, 387–398. [Google Scholar] [CrossRef]
- Righi, E.Z.; Buriol, G.A.; Angelocci, L.R.; Heldwein, A.B.; Tazzo, I.F. Relationships of photosynthetic photon flux density, air temperature and humidity with tomato leaf diffusive conductance and temperature. Braz. Arch. Biol. Technol. 2012, 55, 359–370. [Google Scholar] [CrossRef]
- Kim, S.J.; Yu, D.J.; Kim, T.-C.; Hee Jae, L. Growth and photosynthetic characteristics of blueberry (Vaccinium corymbosum cv. Bluecrop) under various shade levels. Sci. Hortic. 2011, 129, 486–492. [Google Scholar] [CrossRef]
- Hicklenton, P.R.; Reekie, J.Y.; Gordon, R.J.; Percival, D.C. Seasonal patterns of photosynthesis and stomatal conductance in lowbush blueberry plants managed in a two-year production cycle. HortScience 2000, 35, 55–59. [Google Scholar] [CrossRef]
- Percival, D.; Murray, A.; Stevens, D. Drought stress dynamics of wild blueberry (Vaccinium angustifolium Aiton). Acta Hortic. 2003, 618, 353–362. [Google Scholar] [CrossRef]
- Percival, D.; Kaur, J.; Hainstock, L.J.; Privé, J.P. Seasonal changes in photochemistry, light use efficiency and net photosynthetic rates of wild blueberry (Vaccinium angustifolium Ait.). Can. J. Plant Sci. 2012, 92, 1135–1143. [Google Scholar] [CrossRef]
- Tasnim, R.; Zhang, Y.-J. Are Wild Blueberries a Crop with Low Photosynthetic Capacity? Chamber-Size Effects in Measuring Photosynthesis. Agronomy 2021, 11, 1572. [Google Scholar] [CrossRef]
- Song, J.; Tang, J.; Jeon, B.R. Difference between Day and Night Temperature (DIF) and Light Intensity Affect Growth and Photosynthetic Characteristics of Panax ginseng Meyer Sprouts. Plants 2023, 12, 2820. [Google Scholar]
- Tang, X.; An, B.; Cao, D.; Xu, R.; Wang, S.; Zhang, Z.; Liu, X.; Sun, X. Improving Photosynthetic Capacity, Alleviating Photosynthetic Inhibition and Oxidative Stress Under Low Temperature Stress with Exogenous Hydrogen Sulfide in Blueberry Seedlings. Front. Plant Sci. 2020, 11, 108. [Google Scholar]
Cultivar | AM | PM | |||||||
---|---|---|---|---|---|---|---|---|---|
4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | |
‘Baldwin’ | −0.30 | 8.92 | 11.51 | 14.48 | 10.41 | 8.99 | 11.68 | 6.39 | −0.18 |
‘Jewel’ | −1.03 | 6.40 | 15.05 | 12.74 | 11.51 | 10.97 | 9.44 | 4.31 | −0.34 |
‘Meadowlark’ | −0.29 | 10.42 | 16.85 | 16.56 | 10.52 | 12.01 | 13.09 | 7.35 | −0.34 |
‘Meadowlark_2′ | −0.88 | 8.40 | 13.57 | 13.03 | 14.70 | 12.53 | 8.92 | 1.65 | −0.38 |
‘Victoria’ | −0.01 | 8.92 | 13.25 | 16.25 | 13.41 | 15.61 | 15.50 | 12.04 | −0.26 |
‘Victoria_2′ | −0.54 | 7.36 | 8.58 | 11.20 | 10.64 | 8.43 | 5.10 | 1.04 | −0.40 |
Effect | F Value | p-Value |
---|---|---|
Cultivar | 0.82 | 0.5406 |
Hour | 18.38 | <0.0001 |
Cultivar×Hour | 0.52 | 0.9915 |
Cultivar | Estimate | |
---|---|---|
Meadowlark | 6.0387 | a |
Victoria | 5.5362 | a |
Meadowlark_2 | 5.4186 | a |
Baldwin | 5.1511 | a |
Jewel | 4.4781 | a |
Victoria_2 | 4.0246 | a |
Hour | Estimate | |
---|---|---|
10 | 8.7453 | a |
8 | 8.6977 | a |
12 | 7.1019 | b |
14 | 6.5579 | bc |
16 | 6.3970 | bc |
18 | 3.7961 | c |
6 | 3.5370 | c |
20 | 0.6260 | d |
4 | 0.5121 | d |
A | PPFD | gs | E | Ci | FPSII | Tleaf | VPDleaf | |
---|---|---|---|---|---|---|---|---|
A | 1 | 0.719 | 0.587 | 0.879 | −0.771 | −0.709 | 0.414 | 0.339 |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0019 | 0.012 | ||
PPFD | 0.719 | 1 | 0.135 | 0.630 | −0.711 | −0.893 | 0.810 | 0.751 |
<0.0001 | 0.3282 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
gs | 0.587 | 0.135 | 1 | 0.807 | −0.333 | −0.001 | −0.287 | −0.333 |
<0.0001 | 0.3282 | <0.0001 | 00.0138 | 0.9954 | 0.0356 | 0.0138 | ||
E | 0.879 | 0.630 | 0.807 | 1 | −0.609 | −0.509 | 0.248 | 0.173 |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0002 | 0.0698 | 0.2103 | ||
Ci | −0.771 | −0.711 | −0.333 | −0.609 | 1 | 0.809 | −0.540 | −0.478 |
<0.0001 | <0.0001 | 0.0138 | <0.0001 | <0.0001 | <0.0001 | 0.0003 | ||
FPSII | −0.709 | −0.893 | −0.001 | −0.509 | 0.809 | 1 | −0.716 | −0.660 |
<0.0001 | <0.0001 | 0.9954 | 0.0002 | <0.0001 | <0.0001 | <0.0001 | ||
Tleaf | 0.414 | 0.810 | −0.287 | 0.248 | −0.540 | −0.716 | 1 | 0.971 |
0.0019 | <0.0001 | 0.0356 | 0.0698 | <0.0001 | <0.0001 | <0.0001 | ||
VPDleaf | 0.339 | 0.751 | −0.333 | 0.173 | −0.478 | −0.660 | 0.971 | 1 |
0.012 | <0.0001 | 0.0138 | 0.2103 | 0.0003 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salazar-Gutiérrez, M.R.; Lawrence, K.; Coneva, E.D.; Chaves-Córdoba, B. Photosynthetic Response of Blueberries Grown in Containers. Plants 2023, 12, 3272. https://doi.org/10.3390/plants12183272
Salazar-Gutiérrez MR, Lawrence K, Coneva ED, Chaves-Córdoba B. Photosynthetic Response of Blueberries Grown in Containers. Plants. 2023; 12(18):3272. https://doi.org/10.3390/plants12183272
Chicago/Turabian StyleSalazar-Gutiérrez, Melba R., Kathy Lawrence, Elina D. Coneva, and Bernardo Chaves-Córdoba. 2023. "Photosynthetic Response of Blueberries Grown in Containers" Plants 12, no. 18: 3272. https://doi.org/10.3390/plants12183272
APA StyleSalazar-Gutiérrez, M. R., Lawrence, K., Coneva, E. D., & Chaves-Córdoba, B. (2023). Photosynthetic Response of Blueberries Grown in Containers. Plants, 12(18), 3272. https://doi.org/10.3390/plants12183272