Evaluation of Anticancer Activity of 76 Plant Species Collected in Andalusia (Spain) against Lung Cancer Cells
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Plant Material
3.2. Preparation of the Extracts
3.3. Drugs and Reagents
3.4. Cell Lines
3.5. Cell Viability Assay
3.6. Co-Culture Assay
3.7. Flow Cytometry
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Health Organization International Agency for Research on Cancer The Global Cancer Observatory—All cancers. Int. Agency Res. Cancer WHO 2020, 419, 199–200. [Google Scholar]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Dillekås, H.; Rogers, M.S.; Straume, O. Are 90% of deaths from cancer caused by metastases? Cancer Med. 2019, 8, 5574–5576. [Google Scholar] [CrossRef] [PubMed]
- Sahli, B.; Eckwright, D.; Darling, E.; Gleason, P.P.; Leach, J.W. Chimeric antigen receptor T-cell therapy real-world assessment of total cost of care and clinical events for the treatment of relapsed or refractory lymphoma. J. Clin. Oncol. 2021, 39, e19500. [Google Scholar] [CrossRef]
- Choi, G.; Shin, G.; Bae, S.J. Price and Prejudice? The Value of Chimeric Antigen Receptor (CAR) T-Cell Therapy. Int. J. Environ. Res. Public Health 2022, 19, 12366. [Google Scholar] [CrossRef]
- Verma, V.; Sprave, T.; Haque, W.; Simone, C.B.; Chang, J.Y.; Welsh, J.W.; Thomas, C.R. A systematic review of the cost and cost-effectiveness studies of immune checkpoint inhibitors 11 Medical and Health Sciences 1112 Oncology and Carcinogenesis. J. Immunother. Cancer 2018, 6, 128. [Google Scholar] [CrossRef]
- Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T.; et al. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther. 2021, 6, 201. [Google Scholar] [CrossRef]
- López-Lázaro, M. Two preclinical tests to evaluate anticancer activity and to help validate drug candidates for clinical trials. Oncoscience 2015, 2, 91–98. [Google Scholar] [CrossRef]
- Lopez-Lazaro, M. A Simple and Reliable Approach for Assessing Anticancer Activity In Vitro. Curr. Med. Chem. 2015, 22, 1324–1334. [Google Scholar] [CrossRef]
- López-Lázaro, M. How many times should we screen a chemical library to discover an anticancer drug? Drug Discov. Today 2015, 20, 167–169. [Google Scholar] [CrossRef]
- Cragg, G.M.; Grothaus, P.G.; Newman, D.J. Impact of natural products on developing new anti-cancer agents. Chem. Rev. 2009, 109, 3012–3043. [Google Scholar] [CrossRef]
- Kingston, D.G.I.; Newman, D.J. The search for novel drug leads for predominately antitumor therapies by utilizing mother nature’s pharmacophoric libraries. Curr. Opin. Drug Discov. Devel. 2005, 8, 207–227. [Google Scholar]
- World Health Organization. WHO Model List of Essential Medicines—22nd List, 2021; (WHO/MHP/HPS/EML/2021.02); World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Cutts, J.H.; Beer, C.T.; Noble, R.L. Biological properties of Vincaleukoblastine, an alkaloid in Vinca rosea Linn, with reference to its antitumor action. Cancer Res. 1960, 20, 1023–1031. [Google Scholar]
- Noble, R.L. The discovery of the vinca alkaloids—Chemotherapeutic agents against cancer. Biochem. Cell Biol. 1990, 68, 1344–1351. [Google Scholar] [CrossRef]
- Potier, P. The synthesis of Navelbine prototype of a new series of vinblastine derivatives. Semin. Oncol. 1989, 16, 2–4. [Google Scholar]
- Zhang, X.; Rakesh, K.P.; Shantharam, C.S.; Manukumar, H.M.; Asiri, A.M.; Marwani, H.M.; Qin, H.L. Podophyllotoxin derivatives as an excellent anticancer aspirant for future chemotherapy: A key current imminent needs. Bioorg. Med. Chem. 2018, 26, 340–355. [Google Scholar] [CrossRef] [PubMed]
- Wall, M.E.; Wani, M.C. Camptothecin. Discovery to clinic. Ann. N. Y. Acad. Sci. 1996, 803, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; Mcphail, A.T. Plant Antitumor Agents.VI.The Isolation and Structure of Taxol, a Novel Antileukemic and Antitumor Agent from Taxus brevifolia2. J. Am. Chem. Soc. 1971, 93, 2325–2327. [Google Scholar] [CrossRef] [PubMed]
- Saijo, N. Clinical trials of irinotecan hydrochloride (CPT, campto injection, topotecin injection) in Japan. Ann. N. Y. Acad. Sci. 1996, 803, 292–305. [Google Scholar] [CrossRef] [PubMed]
- Bailly, C. Irinotecan: 25 years of cancer treatment. Pharmacol. Res. 2019, 148, 104398. [Google Scholar] [CrossRef]
- Potier, P.; Guéritte-Voegelein, F.; Guénard, D. Taxoids, a new class of antitumour agents of plant origin: Recent results. Nouv. Rev. Fr. Hematol. 1994, 36 (Suppl. 1), S21–S23. [Google Scholar]
- Yang, C.P.H.; Horwitz, S.B. Taxol®: The first microtubule stabilizing agent. Int. J. Mol. Sci. 2017, 18, 1733. [Google Scholar] [CrossRef] [PubMed]
- Azad, I.; Khan, T.; Ahmad, N.; Khan, A.R.; Akhter, Y. Updates on drug designing approach through computational strategies: A review. Futur. Sci. OA 2023, 9, FSO862. [Google Scholar] [CrossRef] [PubMed]
- Ulloa Ulloa, C.; Acevedo-Rodríguez, P.; Beck, S.; Belgrano, M.J.; Bernal, R.; Berry, P.E.; Brako, L.; Celis, M.; Davidse, G.; Forzza, R.C.; et al. An integrated assessment of the vascular plant species of the Americas. Science 2017, 358, 1614–1617. [Google Scholar] [CrossRef]
- Lughadha, E.N.; Govaerts, R.; Belyaeva, I.; Black, N.; Lindon, H.; Allkin, R.; Magill, R.E.; Nicolson, N. Counting counts: Revised estimates of numbers of accepted species of flowering plants, seed plants, vascular plants and land plants with a review of other recent estimates. Phytotaxa 2016, 272, 82–88. [Google Scholar] [CrossRef]
- Valdés Castrillón, B.; Talavera Lozano, S.; Fernández-Galiano Fernández, E. Flora Vascular de Andalucía 497 Occidental; Ketres editora S.A.: Barcelona, Spain, 1987. [Google Scholar]
- Blanca, G.; Cabezudo, B.; Cueto, M.; Salazar, C.; Morales Torres, C. Flora Vascular de Andalucía Oriental, 2nd ed.; 499 Consejería de Medio Ambiente, Junta de Andalucía: Sevilla, Spain, 2011. [Google Scholar]
- Cueto, M.; Melendo, M.; Giménez, E.; Fuentes, J.; Carrique, E.L.; Blanca, G. First updated checklist of the vascular flora of Andalusia (S of Spain), one of the main biodiversity centres in the mediterranean basin. Phytotaxa 2018, 339, 1–95. [Google Scholar] [CrossRef]
- Calderón-Montaño, J.M.; Martínez-Sánchez, S.M.; Burgos-Morón, E.; Guillén-Mancina, E.; Jiménez-Alonso, J.J.; García, F.; Aparicio, A.; López-Lázaro, M. Screening for selective anticancer activity of plants from Grazalema Natural Park, Spain. Nat. Prod. Res. 2019, 33, 3454–3458. [Google Scholar] [CrossRef]
- Calderón-Montaño, J.M.; Martínez-Sánchez, S.M.; Jiménez-González, V.; Burgos-Morón, E.; Guillén-Mancina, E.; Jiménez-Alonso, J.J.; Díaz-Ortega, P.; García, F.; Aparicio, A.; López-Lázaro, M. Screening for selective anticancer activity of 65 extracts of plants collected in western andalusia, spain. Plants 2021, 10, 2193. [Google Scholar] [CrossRef]
- Lung Cancer Statistics. Available online: https://www.cancer.org/cancer/types/lung-cancer/about/key-507statistics.html (accessed on 4 July 2023).
- Mamone, L.; Di Venosa, G.; Valla, J.J.; Rodriguez, L.; Gándara, L.; Batlle, A.; Heinrich, M.; Juarranz, A.; Sanz-Rodriguez, F.; Casas, A. Cytotoxic effects of Argentinean plant extracts on tumour and normal cell lines. Cell. Mol. Biol. 2011, 57, OL1487-99. [Google Scholar]
- Basar, N.; Oridupa, O.A.; Ritchie, K.J.; Nahar, L.; Osman, N.M.M.; Stafford, A.; Kushiev, H.; Kan, A.; Sarker, S.D. Comparative cytotoxicity of Glycyrrhiza glabra roots from different geographical origins against immortal human keratinocyte (HaCaT), lung adenocarcinoma (A549) and liver carcinoma (HepG2) cells. Phyther. Res. 2015, 29, 944–948. [Google Scholar] [CrossRef]
- Witherup, K.M.; Look, S.A.; Stasko, M.W.; Ghiorzi, T.J.; Muschik, G.M.; Cragg, G.M. Taxus spp. needles contain amounts of taxol comparable to the bark of Taxus brevifolia: Analysis and isolation. J. Nat. Prod. 1990, 53, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.S.; Maeng, H.G.; Hong, S.W.; Moon, J.H.; Kim, J.S.; Suh, Y.A.; Kim, E.S.; Lee, Y.M.; Kim, Y.S.; Choi, E.K.; et al. Iris Nertschinskia ethanol extract differentially induces cytotoxicity in human breast cancer cells depending on AKT1/2 activity. Asian Pac. J. Cancer Prev. 2012, 13, 6511–6516. [Google Scholar] [CrossRef] [PubMed]
- Mavrodiev, E.V.; Martínez-Azorín, M.; Dranishnikov, P.; Crespo, M.B. At least 23 genera instead of one: The case of Iris L. s.l. (Iridaceae). PLoS ONE 2014, 9, e106459. [Google Scholar] [CrossRef] [PubMed]
- Conforti, F.; Menichini, F.; Rigano, D.; Senatore, F. Antiproliferative Activity on Human Cancer Cell Lines after Treatment with Polyphenolic Compounds Isolated from Iris pseudopumila Flowers and Rhizomes. Z. Für Naturforsch C 2009, 64, 490–494. [Google Scholar] [CrossRef] [PubMed]
- Rigano, D.; Conforti, F.; Formisano, C.; Menichini, F.; Senatore, F. Comparative free radical scavenging potential and cytotoxicity of different extracts from Iris pseudopumila Tineo flowers and rhizomes. Nat. Prod. Res. 2009, 23, 17–25. [Google Scholar] [CrossRef]
- Mykhailenko, O.; Lesyk, R.; Finiuk, N.; Stoika, R.; Yushchenko, T.; Ocheretniuk, A.; Vaschuk, V.; Mishchenko, V.; Georgiyants, V. In vitro anticancer activity screening of Iridaceae plant extracts. J. Appl. Pharm. Sci. 2020, 10, 59–63. [Google Scholar] [CrossRef]
- Shin, J.S.; Hong, S.W.; Lee, J.G.; Lee, Y.M.; Kim, D.W.; Kim, J.E.; Jung, D.J.; An, S.K.; Hong, N.J.; Kim, D.; et al. An ethanol extract of Iris nertschinskia induces p53-dependent apoptosis in the MCF7 human breast cancer cell line. Int. J. Mol. Med. 2011, 27, 401–405. [Google Scholar]
- Amin, A.; Wani, S.H.; Mokhdomi, T.A.; Bukhari, S.; Wafai, A.H.; Mir, J.I.; Hassan, Q.P.; Qadri, R.A. Investigating the pharmacological potential of Iris kashmiriana in limiting growth of epithelial tumors. Pharmacogn. J. 2013, 5, 170–175. [Google Scholar] [CrossRef]
- Khatib, S.; Faraloni, C.; Bouissane, L. Exploring the Use of Iris Species: Antioxidant Properties, Phytochemistry, Medicinal and Industrial Applications. Antioxidants 2022, 11, 526. [Google Scholar] [CrossRef]
- Xing, B.; Li, S.; Yang, J.; Lin, D.; Feng, Y.; Lu, J.; Shao, Q. Phytochemistry, pharmacology, and potential clinical applications of saffron: A review. J. Ethnopharmacol. 2021, 281, 114555. [Google Scholar] [CrossRef]
- Mykhailenko, O.; Korinek, M.; Ivanauskas, L.; Bezruk, I.; Myhal, A.; Petrikaitė, V.; El-Shazly, M.; Lin, G.-H.; Lin, C.-Y.; Yen, C.-H.; et al. Qualitative and Quantitative Analysis of Ukrainian Iris Species: A Fresh Look on Their Antioxidant Content and Biological Activities. Molecules 2020, 25, 4588. [Google Scholar] [CrossRef] [PubMed]
- Machalska, A.; Skalicka-Woźniak, K.; Widelski, J.; Głowniak, K.; Purevsuren, G.; Oyun, Z.; Khishgee, D.; Urjin, B. Screening for phenolic acids in five species of Iris collected in Mongolia. Acta Chromatogr. 2008, 20, 259–267. [Google Scholar] [CrossRef]
- Kostić, A.Ž.; Gašić, U.M.; Pešić, M.B.; Stanojević, S.P.; Barać, M.B.; Mačukanović-Jocić, M.P.; Avramov, S.N.; Tešić, Ž.L. Phytochemical Analysis and Total Antioxidant Capacity of Rhizome, Above-Ground Vegetative Parts and Flower of Three Iris Species. Chem. Biodivers. 2019, 16, e1800565. [Google Scholar] [CrossRef]
- Mocan, A.; Zengin, G.; Mollica, A.; Uysal, A.; Gunes, E.; Crişan, G.; Aktumsek, A. Biological effects and chemical characterization of Iris schachtii Markgr. extracts: A new source of bioactive constituents. Food Chem. Toxicol. 2018, 112, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Sary, H.; Ayoub, N.; Singab, A.; Ahmed, A.; Al-Azizi, M. Chemical Constituents and Molluscicidal Activity of Iris pseudacorus L. Cultivated in Egypt. Bull. Pharm. Sci. Assiut 2004, 27, 161–169. [Google Scholar] [CrossRef]
- Amin, H.I.M.; Amin, A.A.; Tosi, S.; Mellerio, G.G.; Hussain, F.H.S.; Picco, A.M.; Vidari, G. Chemical composition and antifungal activity of essential oils from flowers, leaves, rhizomes, and bulbs of the wild iraqi Kurdish plant Iris Persica. Nat. Prod. Commun. 2017, 12, 441–444. [Google Scholar] [CrossRef]
- Mizuno, T.; Okuyama, Y.; Iwashina, T. Flavonoids from Iris sanguinea var. tobataensis and Chemotaxonomic and Molecular Phylogenetic Comparisons with Iris sanguinea var. sanguinea. Bull. Natl. Museum Nat. Sci. Ser. B Bot. 2018, 44, 135–145. [Google Scholar]
- Xie, G.-Y.; Zhu, Y.; Shu, P.; Qin, X.-Y.; Wu, G.; Wang, Q.; Qin, M.-J. Phenolic metabolite profiles and antioxidants assay of three Iridaceae medicinal plants for traditional Chinese medicine “She-gan” by on-line HPLC–DAD coupled with chemiluminescence (CL) and ESI-Q-TOF-MS/MS. J. Pharm. Biomed. Anal. 2014, 98, 40–51. [Google Scholar] [CrossRef]
- Alperth, F.; Mitić, B.; Mayer, S.; Maleš, Ž.; Kunert, O.; Hruševar, D.; Bucar, F. Metabolic profiling of rhizomes of native populations of the strictly endemic Croatian species Iris adriatica. Plant Biosyst. 2019, 153, 317–324. [Google Scholar] [CrossRef]
- Ma, Y.; Li, H.; Lin, B.; Wang, G.; Qin, M. C-glycosylflavones from the leaves of Iris tectorum Maxim. Acta Pharm. Sin. B 2012, 2, 598–601. [Google Scholar] [CrossRef]
- Moein, M.R.; Khan, S.I.; Ali, Z.; Ayatollahi, S.A.; Kobarfard, F.; Nasim, S.; Choudhary, M.I.; Khan, I.A. Flavonoids from Iris songarica and their Antioxidant and Estrogenic Activity. Planta Med. 2008, 74, 1492–1495. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.I.; Nur-e-Alam, M.; Baig, I.; Akhtar, F.; Khan, A.M.; Ndögnii, P.Ö.; Badarchiin, T.; Purevsuren, G.; Nahar, N.; Atta-ur-Rahman. Four New Flavones and a New Isoflavone from Iris bungei. J. Nat. Prod. 2001, 64, 857–860. [Google Scholar] [CrossRef]
- Thiers, B. New York Botanical Garden—Index Herbariorum. Available online: https://sweetgum.nybg.org/science/ih/ (accessed on 31 July 2023).
- Boukamp, P.; Petrussevska, R.T.; Breitkreutz, D.; Hornung, J.; Markham, A.; Fusenig, N.E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 1988, 106, 761–771. [Google Scholar] [CrossRef]
- Recio, R.; Lerena, P.; Pozo, E.; Calderón-Montaño, J.M.; Burgos-Morón, E.; López-Lázaro, M.; Valdivia, V.; Pernia Leal, M.; Mouillac, B.; Organero, J.Á.; et al. Carbohydrate-Based NK1R Antagonists with Broad-Spectrum Anticancer Activity. J. Med. Chem. 2021, 64, 10350–10370. [Google Scholar] [CrossRef] [PubMed]
- Guillén-Mancina, E.; Jiménez-Alonso, J.J.; Calderón-Montaño, J.M.; Jiménez-González, V.; Díaz-Ortega, P.; Burgos-Morón, E.; López-Lázaro, M. Artificial Diets with Selective Restriction of Amino Acids and Very Low Levels of Lipids Induce Anticancer Activity in Mice with Metastatic Triple-Negative Breast Cancer. Cancers 2023, 15, 1540. [Google Scholar] [CrossRef] [PubMed]
Extract | Plant Name | Family | Part Used | Voucher Number (SEV) | Origin | IC50 (Resazurin) (Mean ± SEM, µg/mL) | Selectivity Index (Mean ± SEM) | |
---|---|---|---|---|---|---|---|---|
A549 (Cancer) | HaCaT (Non-Malignant) | |||||||
1 | Acoelorraphe wrightii (Griseb. & H.Wendl.) H.Wendl. ex Becc. * | Arecaceae | Leaf | 289245 | Sevilla | 352.8 ± 44.1 | 41.6 ± 5.3 | 0.1 ± 0.0 |
2 | Aegilops geniculata Roth | Poaceae | Whole plant | 289701 | Sevilla | 272.5 ± 25.3 | 338.6 ± 18.4 | 1.6 ± 0.8 |
3 | Alkanna tinctoria (L.) Tausch | Boraginaceae | Aerial part with flowers | 289283 | Sevilla | 308.3 ± 121.7 | 220.8 ± 13.7 | 1.0 ± 0.3 |
4 | Alyssum simplex Rudolphi | Brassicaceae | Whole plant | 289284 | Sevilla | >1000 | >1000 | N.D. |
5 | Amaryllis belladonna L. * | Amaryllidaceae | Root | 289734 | Sevilla | 8.5 ± 2.0 | 20.4 ± 3.5 | 3.3 ± 0.9 |
6 | Arisarum simorrhinum Durieu | Araceae | Aerial parts with flowers | 288075 | Sevilla | >1000 | >1000 | N.D. |
7 | Aristolochia paucinervis Pomel | Aristolochiaceae | Aerial part with flowers | 289282 | Sevilla | 19.1 ± 5.1 | 21.7 ± 2.1 | 1.5 ± 0.5 |
8 | Arum italicum Mill. subsp. italicum | Araceae | Aerial parts | 288072 | Sevilla | 43.8 ± 2.7 | >1000 | >22.8 |
9 | Bartsia trixago L. | Orobanchaceae | Aerial part with flowers | 289294 | Sevilla | 353.6 ± 16.7 | 380.6 ± 17.9 | 0.9 ± 0.2 |
10 | Bolboschoenus maritimus (L.) Palla | Cyperaceae | Aerial part with flowers | 289287 | Sevilla | 247.1 ± 20.2 | 248.2 ± 16.0 | 1.0 ± 0.1 |
11 | Brachychiton populneus R.Br. * | Malvaceae | Aerial parts with fruits | 289251 | Sevilla | 270.8 ± 62.0 | 75.4 ± 14.1 | 0.5 ± 0.2 |
12 | Briza maxima L. | Poaceae | Aerial part | 289290 | Sevilla | 472.4 ± 98.0 | 350.8 ± 20.7 | 0.6 ± 0.2 |
13 | Butia capitata (Mart.) Becc. * | Arecaceae | Leaf | 289801 | Sevilla | 110.0 ± 40.1 | 37.1 ± 3.0 | 0.5 ± 0.2 |
14 | Catalpa bignoniodes Walter * | Bignoniaceae | Leaf | 289259 | Sevilla | 65.9 ± 25.6 | 96.4 ± 53.1 | 1.9 ± 1.2 |
15 | Ceiba speciosa (A.St.-Hil.) Ravenna * | Malvaceae | Aerial part | 289249 | Sevilla | 230.5 ± 61.0 | 38.2 ± 4.8 | 0.2 ± 0.1 |
16 | Celtis australis L. | Cannabaceae | Fruits | 289272 | Sevilla | >1000 | >1000 | N.D. |
17 | Celtis australis L. | Cannabaceae | Aerial part | 289272 | Sevilla | 394.8 ± 94.3 | 255.3 ± 55.2 | 0.7 ± 0.2 |
18 | Centranthus calcitrapae (L.) Dufr. | Valerianaceae | Aerial part with flowers | 289705 | Sevilla | 572.8 ± 118.1 | 210.9 ± 32.9 | 0.5 ± 0.1 |
19 | Cerinthe major L. | Boraginaceae | Aerial parts with flowers | 288089 | Sevilla | 170.8 ± 48.2 | 167.6 ± 52.4 | 1.5 ± 0.8 |
20 | Ceterach officinarum Willd. subsp. officinarum | Aspleniaceae | Aerial parts | 288074 | Sevilla | 179.1 ± 39.2 | 148.6 ± 42.4 | 1.4 ± 0.8 |
21 | Chamaerops humilis L. | Arecaceae | Leaves | 289731 | Huelva | 318.1 ± 20.8 | 538.1 ± 174.5 | 1.7 ± 0.5 |
22 | Chamaerops humilis L. | Arecaceae | Fruits | 289731 | Huelva | 235.7 ± 122.7 | 488.0 ± 264.1 | 1.7 ± 0.3 |
23 | Cuscuta campestris Yunck. | Cuscuteae | Aerial part with flowers | 289223 | Sevilla | 103.5 ± 43.6 | 181.5 ± 75.2 | 1.8 ± 0.5 |
24 | Dipcadi serotinum (L.) Medik. | Hyacinthaceae | Whole plant | 289805 | Huelva | 347.9 ± 34.9 | 261.4 ± 31.2 | 0.8 ± 0.1 |
25 | Fedia cornucopiae (L.) Gaertn. | Caprifoliaceae | Whole plant | 288077 | Sevilla | 388.5 ± 186.4 | 590.8 ± 487.9 | 1.0 ± 0.9 |
26 | Firmiana simplex (L.) W.Wight * | Malvaceae | Leaf | 289258 | Sevilla | 412.9 ± 72.3 | 379.1 ± 29.2 | 0.7 ± 0.3 |
27 | Gynandriris sisyrinchium (L.) Parl. | Iridaceae | Whole plant | 289804 | Sevilla | 0.6 ± 0.1 | 2.2 ± 0.4 | 4.5 ± 1.2 |
28 | Gynandriris sisyrinchium (L.) Parl. | Iridaceae | Flowers | 289804 | Sevilla | ˂ 0.1 | 0.2 ± 0.1 | >2.8 |
29 | Heliotropium europaeum L. | Boraginaceae | Aerial part with flowers | 289273 | Sevilla | 257.2 ± 39.2 | 270.2 ± 41.8 | 1.3 ± 0.3 |
30 | Iris germanica L. | Iridaceae | Root | 289800 | Sevilla | 35.4 ± 3.9 | 255.2 ± 34.7 | 7.4 ± 1.1 |
31 | Jacaranda mimosifolia D.Don * | Bignoniaceae | Flowers | 289270 | Sevilla | 226.1 ± 41.0 | 338.8 ± 23.5 | 1.7 ± 0.4 |
32 | Jasminum fruticans L. | Oleaceae | Fruits | 288065 | Sevilla | 338.7 ± 1.7 | 471.9 ± 33.7 | 1.4 ± 0.1 |
33 | Jasminum fruticans L. | Oleaceae | Aerial parts | 288065 | Sevilla | 217.7 ± 42.3 | 262.7 ± 25.9 | 0.4 ± 0.1 |
34 | Juncus acutus L. subsp. acutus | Juncaceae | Aerial part with fruits | 289277 | Sevilla | 268.2 ± 92.2 | 228.8 ± 55.2 | 0.7 ± 0.2 |
35 | Juno planifolia (Mill.) Asch. | Iridaceae | Aerial parts with flowers | 289232 | Sevilla | 14.2 ± 2.7 | 76.5 ± 31.4 | 7.5 ± 3.5 |
36 | Koelreuteria paniculata Laxm. * | Sapindaceae | Leaf | 289246 | Sevilla | 30.4 ± 1.1 | 31.3 ± 2.0 | 1.0 ± 0.1 |
37 | Lagerstroemia indica L. * | Lythraceae | Aerial part | 289253 | Sevilla | 178.8 ± 71.1 | 205.0 ± 61.1 | 1.5 ± 0.9 |
38 | Lagerstroemia speciosa (L.) Pers. * | Lythraceae | Leaf | 289256 | Sevilla | 17.3 ± 2.7 | 25.1 ± 2.3 | 1.8 ± 0.5 |
39 | Lagunaria patersonia (Andrews) G. Don * | Malvaceae | Leaf | 289257 | Sevilla | 544.9 ± 143.1 | 475.2 ± 24.9 | 1.0 ± 0.2 |
40 | Linaria viscosa (L.) Chaz. | Veronicaceae | Aerial parts with flowers | 289231 | Sevilla | 151.8 ± 43.4 | 297.4 ± 11.6 | 2.8 ± 1.1 |
41 | Liquidambar styraciflua L. * | Altingiaceae | Aerial part | 289260 | Sevilla | 20.1 ± 1.9 | 23.5 ± 4.9 | 1.2 ± 0.3 |
42 | Lolium rigidum Gaudin | Poaceae | Aerial parts | 289697 | Sevilla | >1000 | >1000 | N.D. |
43 | Lomelosia simplex (Desf.) Raf. subsp. dentata (Jord. & Fourr.) Greuter & Burde | Dipsacaceae | Aerial part with flowers | 289708 | Huelva | 36.5 ± 2.6 | 375.8 ± 11.4 | 8.2 ± 2.9 |
44 | Lonicera implexa Aiton | Caprifoliaceae | Leaves | 288068 | Sevilla | 254.5 ± 17.9 | 164.2 ± 55.6 | 0.6 ± 0.2 |
45 | Maclura pomifera (Raf.) C.K.Schneid. * | Moraceae | Aerial part | 289252 | Sevilla | 496.9 ± 222.4 | 112.7 ± 56.3 | 0.4 ± 0.2 |
46 | Mandragora autumnalis Bertol. | Solanaceae | Flower and fruits | 288076 | Sevilla | 369.5 ± 42.1 | >1000 | >2.7 |
47 | Mandragora autumnalis Bertol. | Solanaceae | Whole plant | 288076 | Sevilla | 201.9 ± 30.7 | 645.7 ± 51.4 | 3.5 ± 0.7 |
48 | Morus nigra L. | Moraceae | Fruits | 289288 | Sevilla | >1000 | >1000 | N.D. |
49 | Muscari comosum (L.) Mill. | Hyacinthaceae | Aerial parts with flowers | 289234 | Sevilla | 331.4 ± 16.3 | 310.1 ± 4.6 | 0.9 ± 0.0 |
50 | Nonea vesicaria (L.) Rchb. | Boraginaceae | Whole plant | 288078 | Sevilla | 273.8 ± 36.9 | 315.5 ± 4.2 | 1.2 ± 0.2 |
51 | Oenothera rosea L’Hér. ex Aiton * | Onagraceae | Aerial parts with flowers | 289250 | Sevilla | 40.3 ± 19.1 | 29.6 ± 6.9 | 1.9 ± 1.4 |
52 | Ophrys scolopax Cav. | Orchidaceae | Aerial part with flowers | 289286 | Sevilla | 321.7 ± 25.4 | 303.5 ± 12.2 | 1.0 ± 0.1 |
53 | Ophrys speculum Link | Orchidaceae | Whole plant | 289281 | Sevilla | 415.1 ± 108.8 | 297.5 ± 20.4 | 0.8 ± 0.2 |
54 | Ornithogalum baeticum Boiss. * | Hyacinthaceae | Whole plant | 289280 | Sevilla | 22.0 ± 5.3 | 52.5 ± 11.8 | 3.3 ± 1.7 |
55 | Orobanche crenata Forssk. | Orobanchaceae | Aerial parts with flowers | 289235 | Sevilla | 328.6 ± 45.7 | 313.5 ± 36.8 | 1.0 ± 0.0 |
56 | Parentucellia viscosa (L.) Caruel | Orobanchaceae | Aerial part with flowers | 289289 | Sevilla | 414.6 ± 66.4 | 346.1 ± 14.0 | 0.7 ± 0.2 |
57 | Paronychia argentea Lam. | Caryophyllaceae | Whole plant | 289233 | Sevilla | 402.9 ± 70.8 | 263.4 ± 24.1 | 0.7 ± 0.1 |
58 | Petrorhagia nanteuilii (Burnat) P.W.Ball & Heywood | Caryophyllaceae | Aerial part with flowers | 289292 | Sevilla | 268.5 ± 11.5 | 337.8 ± 14.0 | 1.3 ± 0.1 |
59 | Photinia glabra (Thunb.) Poit. * | Rosaceae | Aerial part | 289254 | Sevilla | 233.6 ± 60.7 | 174.1 ± 35.4 | 0.9 ± 0.2 |
60 | Platanus hispanica Mill. ex Münchh. * | Platanaceae | Leaf | 289261 | Sevilla | 306.7 ± 45.4 | 315.9 ± 13.8 | 1.1 ± 0.1 |
61 | Platycapnos spicata (L.) Bernh. | Papaveraceae | Aerial parts with flowers | 288084 | Sevilla | 140.9 ± 47.6 | 308.5 ± 21.7 | 6.4 ± 4.5 |
62 | Plumbago europaea L. | Plumbaginaceae | Aerial part with flowers and fruits | 289271 | Sevilla | 1.8 ± 0.2 | 2.7 ± 0.2 | 1.6 ± 0.3 |
63 | Rhamnus alaternus L. | Rhamnaceae | Leaves | 289700 | Sevilla | 54.8 ± 3.5 | 234.2 ± 46.9 | 4.2 ± 0.8 |
64 | Rhamnus alaternus L. | Rhamnaceae | Fruits | 289700 | Sevilla | 490.7 ± 91.7 | 391.2 ± 32.5 | 0.6 ± 0.3 |
65 | Rosa canina L. | Rosaceae | Fruits | 289696 | Sevilla | 645.4 ± 59.7 | >1000 | >1.5 |
66 | Rumex conglomeratus Murray | Polygonaceae | Aerial part with flowers | 289710 | Huelva | 254.6 ± 69.1 | 207.0 ± 91.9 | 0.9 ± 0.2 |
67 | Schinus molle L. | Anacardiaceae | Aerial part | 289255 | Sevilla | 237.6 ± 69.9 | 216.5 ± 28.4 | 1.3 ± 0.3 |
68 | Scirpoides holoschoenus (L.) Soják | Cyperaceae | Aerial part with fruits | 289274 | Sevilla | 202.2 ± 54.8 | 204.1 ± 68.9 | 1.2 ± 0.6 |
69 | Scrophularia sambucifolia L. | Scrophulariaceae | Aerial part with flowers | 289285 | Sevilla | 360.7 ± 11.2 | 512.5 ± 104.6 | 1.4 ± 0.2 |
70 | Sedum amplexicaule DC. subsp. amplexicaule | Crassulaceae | Whole plant | 289293 | Sevilla | 298.2 ± 23.7 | 283.3 ± 32.2 | 1.0 ± 0.1 |
71 | Sedum mucizonia (Ortega) Raym.-Hamet | Crassulaceae | Whole plant | 289291 | Sevilla | 317.0 ± 16.8 | 332.5 ± 8.5 | 1.1 ± 0.1 |
72 | Solandra maxima (Moc. & Sessé ex Dunal) P.S.Green * | Solanaceae | Leaves | 288071 | Sevilla | 75.4 ± 15.9 | 154.2 ± 41.1 | 2.8 ± 1.1 |
73 | Solanum nigrum L. | Solanaceae | Aerial parts | 288073 | Sevilla | 36.7 ± 3.6 | 43.6 ± 7.6 | 1.1 ± 0.1 |
74 | Swietenia mahagoni (L.) Jacq. * | Meliaceae | Leaf | 289244 | Sevilla | 52.2 ± 9.4 | 47.0 ± 1.2 | 1.0 ± 0.2 |
75 | Syagrus romanzoffiana (Cham.) Glassman * | Arecaceae | Aerial part | 289802 | Sevilla | 226.5 ± 32.9 | 310.4 ± 10.1 | 1.5 ± 0.3 |
76 | Taxodium distichum (L.) Rich. * | Cupressaceae | Aerial part | 289264 | Sevilla | 301.2 ± 22.7 | 343.4 ± 8.1 | 1.2 ± 0.1 |
77 | Thymbra capitata (L.) Cav. | Lamiaceae | Aerial part with flowers | 289278 | Sevilla | 118.4 ± 34.7 | 99.4 ± 35.7 | 0.8 ± 0.1 |
78 | Tilia tomentosa Moench. * | Malvaceae | Leaf | 289265 | Sevilla | 292.6 ± 38.5 | 345.4 ± 13.7 | 1.4 ± 0.2 |
79 | Trachycarpus fortunei (Hook.) H.Wendl. * | Arecaceae | Leaf | 289803 | Sevilla | 134.0 ± 24.8 | 162.4 ± 13.6 | 1.5 ± 0.5 |
80 | Verbena officinalis L. | Verbenaceae | Aerial part with flowers | 289275 | Sevilla | 31.5 ± 21.7 | 4.2 ± 0.7 | 0.7 ± 0.4 |
81 | Xiphion xiphium (L.) M.B. Crespo, Mart.-Azorín & Mavrodiev | Iridaceae | Flowers | 289729 | Huelva | 8.6 ± 2.1 | 250.2 ± 29.5 | 38.9 ± 8.9 |
82 | Zelkova serrata (Thunb.) Makino * | Ulmaceae | Aerial part | 289263 | Sevilla | 173.4 ± 57.4 | 187.9 ± 43.0 | 1.6 ± 0.4 |
Cisplatin | 0.4 ± 0.1 | 1.0 ± 0.3 | 2.3 ± 1.1 | |||||
5FU | 0.5 ± 0.1 (µM) | 1.0 ± 0.5 (µM) | 2.2 ± 1.5 |
Cell Line | Extract 81 | Gemcitabine | ||
---|---|---|---|---|
IC50 (Mean ± SEM, µg/mL) | S.I. (Mean ± SEM) | IC50 (Mean ± SEM, nM) | S.I. (Mean ± SEM) | |
HaCaT (non-malignant keratinocytes) | 321.3 ± 1.6 | - | 21.2 ± 8.1 | - |
MeWo (melanoma) | 296.5 ± 19.1 | 1.1 ± 0.2 | 2.2 ± 0.9 | 17.5 ± 7.0 |
T24 (bladder cancer) | 130.8 ± 13.5 | 2.6 ± 0.3 | 3.2 ± 0.2 | 11.0 ± 0.1 |
KATO III (gastric cancer) | 305.4 ± 17.1 | 1.1 ± 0.1 | 1.4 ± 0.4 | 35.7 ± 12.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-González, V.; Benítez, G.; Pastor, J.E.; López-Lázaro, M.; Calderón-Montaño, J.M. Evaluation of Anticancer Activity of 76 Plant Species Collected in Andalusia (Spain) against Lung Cancer Cells. Plants 2023, 12, 3275. https://doi.org/10.3390/plants12183275
Jiménez-González V, Benítez G, Pastor JE, López-Lázaro M, Calderón-Montaño JM. Evaluation of Anticancer Activity of 76 Plant Species Collected in Andalusia (Spain) against Lung Cancer Cells. Plants. 2023; 12(18):3275. https://doi.org/10.3390/plants12183275
Chicago/Turabian StyleJiménez-González, Víctor, Guillermo Benítez, Julio Enrique Pastor, Miguel López-Lázaro, and José Manuel Calderón-Montaño. 2023. "Evaluation of Anticancer Activity of 76 Plant Species Collected in Andalusia (Spain) against Lung Cancer Cells" Plants 12, no. 18: 3275. https://doi.org/10.3390/plants12183275
APA StyleJiménez-González, V., Benítez, G., Pastor, J. E., López-Lázaro, M., & Calderón-Montaño, J. M. (2023). Evaluation of Anticancer Activity of 76 Plant Species Collected in Andalusia (Spain) against Lung Cancer Cells. Plants, 12(18), 3275. https://doi.org/10.3390/plants12183275