Chemical Profiling and Antioxidant and Anti-Amyloid Capacities of Salvia fruticosa Extracts from Greece
Abstract
:1. Introduction
2. Results
2.1. Salvia fruticosa Extracts Exhibit Noteworthy Total Phenolic (TPC) and Flavonoid (TFC) Contents
2.2. Salvia fruticosa Extracts Are Rich in Carnosic Acid and Carnosol
2.3. Salvia fruticosa Fractions Demonstrate a Considerable Antioxidant Potential
2.3.1. DPPH· Assay
2.3.2. FRAP Assay
2.3.3. DCFDA Assay
2.4. Salvia fruticosa Fractions Are Cytotoxic above a Concentration Limit
2.5. Various Salvia fruticosa Fractions Exhibit Neuroprotective Activity
3. Discussion
3.1. Phytochemical Composition
3.2. Antioxidant Capacity
3.3. Anti-Neurotoxic Potential
3.4. Medicinal Perspective of Salvia fruticosa Fractions
4. Materials and Methods
4.1. Chemicals
4.2. Plant Material
4.3. Plant Extracts
4.4. DPPH· Assay
4.5. FRAP Assay
4.6. Estimation of Total Phenolic Content
4.7. Estimation of Total Flavonoid Content
4.8. Calculation of Total Soluble Sugar Content
4.9. Total Soluble Protein Content Calculation
4.10. Establishing Standards and Samples
4.11. Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry (UPLC-MS/MS)
4.11.1. Liquid Chromatography (LC) Conditions
4.11.2. MS/MS Conditions
4.11.3. Optimization of UPLC and MS Conditions
4.11.4. Method Validation
4.11.5. Linearity, Accuracy, and Precision of the Methodology
4.12. Peptides Preparation
4.13. Cell Culture
4.14. DCFDA Assay
4.15. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) Assay
4.16. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Breijyeh, Z.; Karaman, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020, 25, 5789. [Google Scholar] [CrossRef] [PubMed]
- Tönnies, E.; Trushina, E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 57, 1105–1121. [Google Scholar] [CrossRef] [PubMed]
- Briggs, R.; Kennelly, S.P.; O’Neill, D. Drug treatments in Alzheimer’s disease. Clin. Med. J. R. Coll. Physicians 2016, 16, 247–253. [Google Scholar] [CrossRef]
- Barenholtz Levy, H. Accelerated Approval of Aducanumab: Where Do We Stand Now? Ann. Pharmacother. 2021, 56, 736–739. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, H.; Li, R.; Sterling, K.; Song, W. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future. Signal. Transduct. Target. Ther. 2023, 8, 248. [Google Scholar] [CrossRef]
- Dey, A.; Bhattacharya, R.; Mukherjee, A.; Pandey, D.K. Natural products against Alzheimer’s disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol. Adv. 2017, 35, 178–216. [Google Scholar] [CrossRef]
- Chatzopoulou, F.M.; Makris, A.M.; Argiriou, A.; Degenhardt, J.; Kanellis, A.K. EST analysis and annotation of transcripts derived from a trichome-specific cDNA library from Salvia fruticosa. Plant Cell Rep. 2010, 29, 523–534. [Google Scholar] [CrossRef]
- Kyriakou, S.; Tragkola, V.; Plioukas, M.; Anestopoulos, I.; Chatzopoulou, P.S.; Sarrou, E.; Trafalis, D.T.; Deligiorgi, M.V.; Franco, R.; Pappa, A.; et al. Chemical and Biological Characterization of the Anticancer Potency of Salvia fruticosa in a Model of Human Malignant Melanoma. Plants 2021, 10, 2472. [Google Scholar] [CrossRef]
- Jaradat, N.; Abdallah, S.; Al-Maharik, N.; Altamimi, M.; Hawash, M.; Qneibi, M.; Khair, A.A.; Zetawi, A.; Jabarin, L. Constituents, Antibacterial Adhesion, Cytotoxic and in Vitro Metastasis Blocking Properties of Salvia fruticosa Essential Oils from Three Palestinian Localities. Chem. Biodivers. 2022, 19, e202100872. [Google Scholar] [CrossRef]
- Fadladdin, Y.A.J. Antischistosomal Activity of Origanum majorana, Ziziphus spina-christi, and Salvia fruticosa Plant Extracts on Hamster Infected with Schistosoma haematobium. Biomed. Res. Int. 2021, 2021, 5545331. [Google Scholar] [CrossRef]
- Sarrou, E.; Martens, S.; Chatzopoulou, P. Metabolite profiling and antioxidative activity of Sage (Salvia fruticosa Mill.) under the influence of genotype and harvesting period. Ind. Crops Prod. 2016, 94, 240–250. [Google Scholar] [CrossRef]
- Perfumi, M.; Arnold, N.; Tacconi, R. Hypoglycemic activity of Salvia fruticosa Mill. from Cyprus. J. Ethnopharmacol. 1991, 34, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Boukhary, R.; Raafat, K.; Ghoneim, A.I.; Aboul-Ela, M.; El-Lakany, A. Anti-Inflammatory and Antioxidant Activities of Salvia fruticosa: An HPLC Determination of Phenolic Contents. Evid. Based Complement. Altern. Med. 2016, 2016, 7178105. [Google Scholar] [CrossRef] [PubMed]
- Gkioni, M.D.; Zeliou, K.; Dimaki, V.D.; Trigas, P.; Lamari, F.N. GC-MS and LC-DAD-MS Phytochemical Profiling for Characterization of Three Native Salvia Taxa from Eastern Mediterranean with Antiglycation Properties. Molecules 2022, 28, 93. [Google Scholar] [CrossRef] [PubMed]
- Mervić, M.; Štefan, M.B.; Kindl, M.; Blažeković, B.; Marijan, M.; Vladimir-Knežević, S. Comparative Antioxidant, Anti-Acetylcholinesterase and Anti-α-Glucosidase Activities of Mediterranean Salvia Species. Plants 2022, 11, 625. [Google Scholar] [CrossRef]
- Ververis, A.; Savvidou, G.; Ioannou, K.; Nicolaou, P.; Christodoulou, K.; Plioukas, M. Greek Sage Exhibits Neuroprotective Activity against Amyloid Beta-Induced Toxicity. Evid.-Based Complement. Altern. Med. 2020, 2020, 2975284. [Google Scholar] [CrossRef] [PubMed]
- Gürbüz, P.; Dokumacı, A.H.; Gündüz, M.G.; Perez, C.; Göger, F.; Paksoy, M.Y.; Yerer, M.B.; Demirezer, O. In vitro biological activity of Salvia fruticosa Mill. infusion against amyloid β-peptide-induced toxicity and inhibition of GSK-3 β, CK-1 δ, and BACE-1 enzymes relevant to Alzheimer’s disease. Saudi Pharm. J. SPJ Off. Publ. Saudi Pharm Soc. 2021, 29, 236–243. [Google Scholar] [CrossRef]
- Ali-Shtayeh, M.S.; Yaniv, Z.; Mahajna, J. Ethnobotanical survey in the Palestinian area: A classification of the healing potential of medicinal plants. J. Ethnopharmacol. 2000, 73, 221–232. [Google Scholar] [CrossRef]
- Yaniv, Z.; Dafni, A.; Friedman, J.; Palevitch, D. Plants used for the treatment of diabetes in Israel. J. Ethnopharmacol. 1987, 19, 145–151. [Google Scholar] [CrossRef]
- Gali-Muhtasib, H.; Hilan, C.; Khater, C. Traditional uses of Salvia libanotica (East Mediterranean sage) and the effects of its essential oils. J. Ethnopharmacol. 2000, 71, 513–520. [Google Scholar] [CrossRef]
- Karousou, R.; Deirmentzoglou, S. The herbal market of Cyprus: Traditional links and cultural exchanges. J. Ethnopharmacol. 2011, 133, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Jaradat, N.A.; Ayesh, O.I.; Anderson, C. Ethnopharmacological survey about medicinal plants utilized by herbalists and traditional practitioner healers for treatments of diarrhea in the West Bank/Palestine. J. Ethnopharmacol. 2016, 182, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Cvetkovikj, I.; Stefkov, G.; Karapandzova, M.; Kulevanova, S. Essential oil composition of Salvia fruticosa Mill. populations from Balkan Peninsula. Maced. Pharm. Bull. 2015, 61, 19–26. [Google Scholar] [CrossRef]
- Pirintsos, S.A.; Bariotakis, M.; Kampa, M.; Sourvinos, G.; Lionis, C.; Castanas, E. The Therapeutic Potential of the Essential Oil of Thymbra capitata (L.) Cav., Origanum dictamnus L. and Salvia fruticosa Mill. And a Case of Plant-Based Pharmaceutical Development. Front. Pharmacol. 2020, 11, 522213. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, D.; Hu, J.; Jia, Q.; Xu, W.; Su, D.; Song, H.; Xu, Z.; Cui, J.; Zhou, M.; et al. A clinical and mechanistic study of topical borneol-induced analgesia. EMBO Mol. Med. 2017, 9, 802. [Google Scholar] [CrossRef]
- Vartiainen, O. The anthelmintic effects of thymol and p-cymene; a pharmacological and clinical study, with special consideration of the fish tapeworm disease. Ann. Med. Intern. Fenn. 1950, 39, 1–87. [Google Scholar]
- Duijker, G.; Bertsias, A.; Symvoulakis, E.K.; Moschandreas, J.; Malliaraki, N.; Derdas, S.P.; Tsikalas, G.K.; Katerinopoulos, H.E.; Pirintsos, S.A.; Sourvinos, G.; et al. Reporting effectiveness of an extract of three traditional Cretan herbs on upper respiratory tract infection: Results from a double-blind randomized controlled trial. J. Ethnopharmacol. 2015, 163, 157. [Google Scholar] [CrossRef]
- Anastasaki, M.; Bertsias, A.; Pirintsos, S.A.; Castanas, E.; Lionis, C. Post-market outcome of an extract of traditional Cretan herbs on upper respiratory tract infections: A pragmatic, prospective observational study. BMC Complement. Altern. Med. 2017, 17, 466. [Google Scholar] [CrossRef]
- Gleiznys, D.; Gleiznys, A.; Abraškevičiute, L.; Vitkauskiene, A.; Šaferis, V.; Sakalauskiene, J. Interleukin-10 and Interleukin-1β Cytokines Expression in Leukocytes of Patients with Chronic Peri-Mucositis. Med. Sci. Monit. 2019, 25, 7471. [Google Scholar] [CrossRef]
- Simos, Y.V.; Zerikiotis, S.; Lekkas, P.; Athinodorou, A.-M.; Zachariou, C.; Tzima, C.; Assariotakis, A.; Peschos, D.; Tsamis, K.; Halabalaki, M.; et al. Oral Supplementation with Hydroxytyrosol Synthesized Using Genetically Modified Escherichia coli Strains and Essential Oils Mixture: A Pilot Study on the Safety and Biological Activity. Microorganisms 2023, 11, 770. [Google Scholar] [CrossRef]
- Huang, D.; Boxin, O.U.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Armendáriz-Barragán, B.; Zafar, N.; Badri, W.; Galindo-Rodríguez, S.A.; Kabbaj, D.; Fessi, H.; Elaissari, A. Plant extracts: From encapsulation to application. Expert Opin. Drug Deliv. 2016, 13, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, V.; Gardeli, C.; Mallouchos, A.; Papaioannou, M.; Komaitis, M. Variation of the chemical profile and antioxidant behavior of Rosmarinus officinalis L. and Salvia fruticosa Miller grown in Greece. J. Agric. Food Chem. 2008, 56, 7254–7264. [Google Scholar] [CrossRef] [PubMed]
- Torun, M.; Dincer, C.; Topuz, A.; Sahin–Nadeem, H.; Ozdemir, F. Aqueous extraction kinetics of soluble solids, phenolics and flavonoids from sage (Salvia fruticosa Miller) leaves. J. Food Sci. Technol. 2015, 52, 2797. [Google Scholar] [CrossRef] [PubMed]
- Skoula, M.; Abbes, J.E.; Johnson, C.B. Genetic variation of volatiles and rosmarinic acid in populations of Salvia fruticosa mill growing in Crete. Biochem. Syst. Ecol. 2000, 28, 551–561. [Google Scholar] [CrossRef]
- Karalija, E.; Dahija, S.; Tarkowski, P.; Zeljković, S.Ć. Influence of Climate-Related Environmental Stresses on Economically Important Essential Oils of Mediterranean Salvia sp. Front. Plant. Sci. 2022, 13, 864807. [Google Scholar] [CrossRef]
- Kumari, P.; Ujala; Bhargava, B. Phytochemicals from edible flowers: Opening a new arena for healthy lifestyle. J. Funct. Foods 2021, 78, 104375. [Google Scholar] [CrossRef]
- Loussouarn, M.; Krieger-Liszkay, A.; Svilar, L.; Bily, A.; Birtić, S.; Havaux, M. Carnosic Acid and Carnosol, Two Major Antioxidants of Rosemary, Act through Different Mechanisms. Plant Physiol. 2017, 175, 1381. [Google Scholar] [CrossRef]
- Adomako-Bonsu, A.G.; Chan, S.L.; Pratten, M.; Fry, J.R. Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: Importance of physico-chemical characteristics. Toxicol. Vitr. 2017, 40, 248–255. [Google Scholar] [CrossRef]
- Xu, J.G.; Hu, Q.P.; Liu, Y. Antioxidant and DNA-protective activities of chlorogenic acid isomers. J. Agric. Food Chem. 2012, 60, 11625–11630. [Google Scholar] [CrossRef]
- Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant Properties of Ferulic Acid and Its Possible Application. Ski. Pharmacol. Physiol. 2018, 31, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.W. Protective effect of apigenin against oxidative stress-induced damage in osteoblastic cells. Int. J. Mol. Med. 2014, 33, 1327–1334. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.A.; Piao, M.J.; Ryu, Y.S.; Hyun, Y.J.; Park, J.E.; Shilnikova, K.; Zhen, A.X.; Kang, H.K.; Koh, Y.S.; Jeong, Y.J.; et al. Luteolin induces apoptotic cell death via antioxidant activity in human colon cancer cells. Int. J. Oncol. 2017, 51, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Zagórska-Dziok, M.; Bujak, T.; Ziemlewska, A.; Nizioł-Łukaszewska, Z. Positive Effect of Cannabis sativa L. Herb Extracts on Skin Cells and Assessment of Cannabinoid-Based Hydrogels Properties. Molecules 2021, 26, 802. [Google Scholar] [CrossRef]
- Pattarachotanant, N.; Tencomnao, T. Citrus hystrix Extracts Protect Human Neuronal Cells against High Glucose-Induced Senescence. Pharmaceuticals 2020, 13, 283. [Google Scholar] [CrossRef]
- Roy, P.; Bag, S.; Chakraborty, D.; Dasgupta, S. Exploring the Inhibitory and Antioxidant Effects of Fullerene and Fullerenol on Ribonuclease A. ACS Omega 2018, 3, 12270–12283. [Google Scholar] [CrossRef]
- López-González, D.; Ferradás, Y.; Araniti, F.; Graña, E.; Hermida-Ramón, J.M.; González, M.V.; Teijeira, M.; Rey, M.; Reigosa, M.; Sanchez-Moreiras, A.M.; et al. Trans-cinnamaldehyde-related overproduction of benzoic acid and oxidative stress on Arabidopsis thaliana. Front. Plant. Sci. 2023, 14, 1157309. [Google Scholar] [CrossRef]
- Chang, K.; Zeng, N.; Ding, Y.; Zhao, X.; Gao, C.; Li, Y.; Wang, H.; Liu, X.; Niu, Y.; Sun, Y.; et al. Cinnamaldehyde causes developmental neurotoxicity in zebrafish via the oxidative stress pathway that is rescued by astaxanthin. Food Funct. 2022, 13, 13028–13039. [Google Scholar] [CrossRef]
- Gannon, N.P.; Schnuck, J.K.; Mermier, C.M.; Conn, C.A.; Vaughan, R.A. trans-Cinnamaldehyde stimulates mitochondrial biogenesis through PGC-1α and PPARβ/δ leading to enhanced GLUT4 expression. Biochimie 2015, 119, 45–51. [Google Scholar] [CrossRef]
- Angelopoulou, E.; Paudel, Y.N.; Piperi, C.; Mishra, A. Neuroprotective potential of cinnamon and its metabolites in Parkinson’s disease: Mechanistic insights, limitations, and novel therapeutic opportunities. J. Biochem. Mol. Toxicol. 2021, 35, e22720. [Google Scholar] [CrossRef]
- Ataie, Z.; Mehrani, H.; Ghasemi, A.; Farrokhfall, K. Cinnamaldehyde has beneficial effects against oxidative stress and nitric oxide metabolites in the brain of aged rats fed with long-term, high-fat diet. J. Funct. Foods 2019, 52, 545–551. [Google Scholar] [CrossRef]
- Zhu, R.; Liu, H.; Liu, C.; Wang, L.; Ma, R.; Chen, B.; Li, L.; Niu, J.; Fu, M.; Zhang, D.; et al. Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacol. Res. 2017, 122, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Abu-Dahab, R.; Afifi, F.; Kasabri, V.; Majdalawi, L.; Naffa, R. Comparison of the antiproliferative activity of crude ethanol extracts of nine salvia species grown in Jordan against breast cancer cell line models. Pharmacogn. Mag. 2012, 8, 319–324. [Google Scholar] [CrossRef]
- Sivropoulou, A.; Nikolaou, C.; Papanikolaou, E.; Kokkini, S.; Lanaras, T.; Arsenakis, M. Antimicrobial, Cytotoxic, and Antiviral Activities of Salvia fructicosa Essential Oil. J. Agric. Food Chem. 1997, 45, 3197–3201. [Google Scholar] [CrossRef]
- Sevindik, N.; Rencuzogullari, E. The genotoxic and antigenotoxic effects of Salvia fruticosa leaf extract in human blood lymphocytes. Drug Chem. Toxicol. 2014, 37, 295–302. [Google Scholar] [CrossRef]
- Koutsoulas, A.; Čarnecká, M.; Slanina, J.; Tóth, J.; Slaninová, I. Characterization of phenolic compounds and antiproliferative effects of salvia pomifera and Salvia fruticosa extracts. Molecules 2019, 24, 2921. [Google Scholar] [CrossRef] [PubMed]
- Chun, K.-S.; Kundu, J.; Chae, I.G.; Kundu, J.K. Carnosol: A Phenolic Diterpene with Cancer Chemopreventive Potential. J. Cancer Prev. 2014, 19, 103. [Google Scholar] [CrossRef] [PubMed]
- Ozgun, G.S.; Ozgun, E. The cytotoxic concentration of rosmarinic acid increases MG132-induced cytotoxicity, proteasome inhibition, autophagy, cellular stresses, and apoptosis in HepG2 cells. Hum. Exp. Toxicol. 2020, 39, 514–523. [Google Scholar] [CrossRef]
- Caesar, L.K.; Cech, N.B. Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Nat. Prod. Rep. 2019, 36, 869. [Google Scholar] [CrossRef]
- Liu, W.Y.; Li, Y.; Li, Y.; Xu, L.Z.; Jia, J.P. Carnosic Acid Attenuates AβOs-Induced Apoptosis and Synaptic Impairment via Regulating NMDAR2B and Its Downstream Cascades in SH-SY5Y Cells. Mol. Neurobiol. 2023, 60, 133–144. [Google Scholar] [CrossRef]
- Chen, Y.; Qin, Q.; Zhao, W.; Luo, D.; Huang, Y.; Liu, G.; Kuang, Y.; Cao, Y.; Chen, Y. Carnosol Reduced Pathogenic Protein Aggregation and Cognitive Impairment in Neurodegenerative Diseases Models via Improving Proteostasis and Ameliorating Mitochondrial Disorders. J. Agric. Food Chem. 2022, 70, 10490–10505. [Google Scholar] [CrossRef] [PubMed]
- Mirza, F.J.; Amber, S.; Sumera; Hassan, D.; Ahmed, T.; Zahid, S. Rosmarinic acid and ursolic acid alleviate deficits in cognition, synaptic regulation and adult hippocampal neurogenesis in an Aβ1-42-induced mouse model of Alzheimer’s disease. Phytomedicine 2021, 83, 153490. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.-J.; Teng, Y.-S.; Chen, C.-M.; Sun, Y.-C.; Hsieh-Li, H.M.; Chang, K.-H.; Lee-Chen, G.-J. A Neuroprotective Action of Quercetin and Apigenin through Inhibiting Aggregation of Aβ and Activation of TRKB Signaling in a Cellular Experiment. Biomol. Ther. 2023, 31, 285–297. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-M.; Kim, B.C.; Cho, Y.-H.; Choi, K.-H.; Chang, J.; Park, M.-S.; Kim, M.-K.; Cho, K.-H.; Kim, J.K. Effects of Flavonoid Compounds on β-amyloid-peptide-induced Neuronal Death in Cultured Mouse Cortical Neurons. Chonnam. Med. J. 2014, 50, 45. [Google Scholar] [CrossRef]
- Gao, L.; Li, X.; Meng, S.; Ma, T.; Wan, L.; Xu, S. Chlorogenic Acid Alleviates Aβ25-35-Induced Autophagy and Cognitive Impairment via the mTOR/TFEB Signaling Pathway. Drug Des. Devel. Ther. 2020, 14, 1705–1716. [Google Scholar] [CrossRef]
- Yi-Bin, W.; Xiang, L.; Bing, Y.; Qi, Z.; Fei-Tong, J.; Minghong, W.; Xiangxiang, Z.; Le, K.; Yan, L.; Ping, S.; et al. Inhibition of the CEBPβ-NFκB interaction by nanocarrier-packaged Carnosic acid ameliorates glia-mediated neuroinflammation and improves cognitive function in an Alzheimer’s disease model. Cell. Death Dis. 2022, 13, 318. [Google Scholar] [CrossRef]
- Eldar-Finkelman, H.; Martinez, A. GSK-3 Inhibitors: Preclinical and Clinical Focus on CNS. Front. Mol. Neurosci. 2011, 4, 32. [Google Scholar] [CrossRef]
- Adler, P.; Mayne, J.; Walker, K.; Ning, Z.; Figeys, D. Therapeutic Targeting of Casein Kinase 1Î/ϵ in an Alzheimer’s Disease Mouse Model. J. Proteome Res. 2019, 18, 3383–3393. [Google Scholar] [CrossRef]
- Hu, X.; Zhou, X.; He, W.; Yang, J.; Xiong, W.; Wong, P.; Wilson, C.G.; Yan, R. BACE1 Deficiency Causes Altered Neuronal Activity and Neurodegeneration. J. Neurosci. 2010, 30, 8819. [Google Scholar] [CrossRef]
- Huang, W.J.; Zhang, X.; Chen, W.W. Role of oxidative stress in Alzheimer’s disease (review). Biomed. Rep. 2016, 4, 519–522. [Google Scholar] [CrossRef]
- Allan Butterfield, D.; Boyd-Kimball, D. Oxidative Stress, Amyloid-β Peptide, and Altered Key Molecular Pathways in the Pathogenesis and Progression of Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 62, 1345–1367. [Google Scholar] [CrossRef] [PubMed]
- Elmann, A.; Mordechay, S.; Rindner, M.; Larkov, O.; Elkabetz, M.; Ravid, U. Protective effects of the essential oil of Salvia fruticosa and its constituents on astrocytic susceptibility to hydrogen peroxide-induced cell death. J. Agric. Food Chem. 2009, 57, 6636–6641. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.P.P.; Trindade, M.A.; Tonin, F.G.; Lima, C.G.; Pugine, S.M.P.; Munekata, P.E.S.; Lorenzo, J.M.; de Melo, M.P. Evaluation of antioxidant capacity of 13 plant extracts by three different methods: Cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers. J. Food Sci. Technol. 2016, 53, 451. [Google Scholar] [CrossRef]
- Ververis, A.; Ioannou, K.; Kyriakou, S.; Violaki, N.; Panayiotidis, M.I.; Plioukas, M.; Christodoulou, K. Sideritis scardica Extracts Demonstrate Neuroprotective Activity against Aβ25–35 Toxicity. Plants 2023, 12, 1716. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Kim, J.H.; Kim, J.H.; Lee, S.; Cho, E.J. Amelioration effects of Cirsium japonicum var. maackii extract/fractions on amyloid beta25-35-induced neurotoxicity in SH-SY5Y cells and identification of the main bioactive compound. Food Funct. 2020, 11, 9651–9661. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Yao, L.; Zhou, H.; Qu, S.; Zeng, X.; Zhou, D.; Zhou, Y.; Li, X.; Liu, Z. Neuroprotection against Aβ25-35-induced apoptosis by Salvia miltiorrhiza extract in SH-SY5Y cells. Neurochem. Int. 2014, 75, 89–95. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, X.; Lin, S.; Liu, F.; Ma, J.; Han, Z.; Jia, F.; Xie, W.; Zhang, Q.; Li, X. Neuroprotective Effect of ent-Kaur-15-en-17-al-18-oic Acid on Amyloid Beta Peptide-Induced Oxidative Apoptosis in Alzheimer’s Disease. Molecules 2020, 25, 142. [Google Scholar] [CrossRef]
- Kim, M.Y.; Kim, S.; Lee, J.; Kim, J.I.; Oh, E.; Kim, S.W.; Lee, E.; Cho, K.-S.; Kim, C.-S.; Lee, M.-H. Lignan-Rich Sesame (Sesamum indicum L.) Cultivar Exhibits In Vitro Anti-Cholinesterase Activity, Anti-Neurotoxicity in Amyloid-β Induced SH-SY5Y Cells, and Produces an In Vivo Nootropic Effect in Scopolamine-Induced Memory Impaired Mice. Antioxidants 2023, 12, 1110. [Google Scholar] [CrossRef]
- Ghanemi, A. Cell cultures in drug development: Applications, challenges and limitations. Saudi Pharm. J. SPJ 2015, 23, 453. [Google Scholar] [CrossRef]
- Parejo, I.; Codina, C.; Petrakis, C.; Kefalas, P. Evaluation of scavenging activity assessed by Co(II)/EDTA-induced luminol chemiluminescence and DPPH· (2,2-diphenyl-1-picrylhydrazyl) free radical assay. J. Pharmacol. Toxicol. Methods 2000, 44, 507–512. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Monties, B.; Janin, G. Tannins in Wood: Comparison of Different Estimation Methods. J. Agric. Food Chem. 1989, 37, 1324–1329. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Spyridopoulou, K.; Kyriakou, S.; Nomikou, A.; Roupas, A.; Ermogenous, A.; Karamanoli, K.; Moyankova, D.; Dijilianov, D.; Galanis, A.; Panayiotidis, M.I.; et al. Chemical Profiling, Antiproliferative and Antimigratory Capacity of Haberlea rhodopensis Extracts in an In Vitro Platform of Various Human Cancer Cell Lines. Antioxidants 2022, 11, 2305. [Google Scholar] [CrossRef]
- Zhu, Y.; Yin, Q.; Yang, Y. Comprehensive Investigation of Moringa oleifera from Different Regions by Simultaneous Determination of 11 Polyphenols Using UPLC-ESI-MS/MS. Molecules 2020, 25, 676. [Google Scholar] [CrossRef]
- Harron, D.W.G. Technical Requirements for Registration of Pharmaceuticals for Human Use: The ICH Process. In The Textbook of Pharmaceutical Medicine; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Wang, H.; Joseph, J.A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 1999, 27, 612–616. [Google Scholar] [CrossRef]
- van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell sensitivity assays: The MTT assay. Methods Mol. Biol. 2011, 731, 237–245. [Google Scholar] [CrossRef]
SFW1 | SFDE | SFEA | SFB | SFW2 | |
---|---|---|---|---|---|
Total Phenolic Content (μg of gallic acid eq/g of dry extract) Linear Range: 0–500 μg/mL; y = 0.0052x + 0.018, R2 = 0.9981 | 219.95 ± 3.32 e | 159.98 ± 4.95 c | 189.45 ± 7.65 d | 86.21 ± 2.21 b | 50.98 ± 1.88 a |
Total Flavonoid Content (μg of catechin eq/g of dry extract) Linear Range: 0–500 μg/mL; y = 0.0028x − 0.36, R2 = 0.9991 | 713.26 ± 8.15 d | 226.14 ± 13.48 b | 168.21 ± 14.14 a | 179.21 ± 6.35 a | 654.21 ± 5.11 c |
Total Soluble Protein Content (mg of BSA eq/g of dry extract) Linear Range: 0–2 mg/mL; y = 0.6851x + 0.1345, R2 = 0.9958 | 129.67 ± 5.47 d | n.d. | 0.32 ± 0.02 a | 5.98 ± 0.98 b | 66.21 ± 2.25 c |
Total Soluble Sugar Content (nM of mannose eq/g of dry extract) Linear Range: 0–100 nM; y = 0.01645x + 0.1578, R2 = 0.9999 | 197.13 ± 6.32 c | n.d. | n.d. | 62.31 ± 4.87 a | 85.61 ± 4.23 b |
SFW1 | SFDE | SFEA | SFB | SFW2 | |
---|---|---|---|---|---|
Benzoic acid derivatives (μg/g of dry extract) | |||||
m-hydroxy benzoic acid | 3.59 ± 0.09 c | 0.89 ± 0.06 a | 1.54 ± 0.09 b | 4.19 ± 0.16 c | 6.18 ± 0.04 d |
p-hydroxy benzoic acid | n.d. | 1.21 ± 0.11 a | 14.98 ± 0.81 c | 5.26 ± 0.11 b | n.d. |
Protocatechuic acid | 24.59 ± 1.12 c | 0.87 ± 0.06 a | 3.14 ± 0.01 b | n.d. | n.d. |
Vanillin | 14.59 ± 1.03 c | n.d. | 23.36 ± 1.56 d | 5.69 ± 0.01 b | 0.21 ± 0.01 a |
p-hydroxy benzaldehyde | 16.69 ± 1.01 b | n.d. | 1.13 ± 0.01 a | n.d. | n.d. |
Gentisic acid | 30.36 ± 2.51 c | n.d. | 3.48 ± 0.12 b | 1.11 ± 0.01 a | 4.16 ± 0.02 b |
Gallic acid derivatives (μg/g of dry extract) | |||||
Gallic acid | 98.15 ± 4.89 d | 12.21 ± 1.01 a | 17.11 ± 0.98 b | n.d. | 25.59 ± 1.12 c |
Ethyl gallate | 3.69 ± 0.26 c | 0.36 ± 0.02 a | 8.36 ± 0.36 d | 0.49 ± 0.01 b | n.d. |
Syringic acid | 7.89 ± 0.69 c | 0.24 ± 0.04 a | 13.21 ± 1.07 d | 0.36 ± 0.01 b | n.d. |
Ellagic acid | 10.21 ± 0.09 b | n.d. | n.d. | 0.13 ± 0.01 a | n.d. |
Cinnamic acid derivatives (μg/g of dry extract) | |||||
Ferulic acid | 159.26 ± 10.21 d | 19.29 ± 1.36 b | 2.21 ± 0.63 a | 63.12 ± 2.31 c | n.d. |
Ferulic acid ethyl ester | 69.98 ± 2.45 b | 13.39 ± 1.02 a | 79.89 ± 4.94 c | n.d. | n.d. |
Ferulic acid methyl ester | n.d. | 0.020 ± 0.001 a | 16.26 ± 1.35 b | n.d. | n.d. |
Caffeic acid | 78.98 ± 3.65 d | 14.23 ± 1.11 b | 23.32 ± 1.59 c | 5.59 ± 0.04 a | n.d. |
Dihydro caffeic acid | 1.36 ± 0.65 a | 3.91 ± 0.14 b | 2.21 ± 0.10 a | n.d. | n.d. |
trans-cinnamaldehyde | n.d. | 6.24 ± 0.37 c | 1.21 ± 0.01 b | 0.020 ± 0.001 a | n.d. |
trans-cinnamyl alcohol | 6.69 ± 0.41 b | 0.67 ± 0.01 a | n.d. | n.d. | n.d. |
m-coumaric acid | 0.36 ± 0.04 a | n.d. | n.d. | 10.48 ± 0.81 b | 0.25 ± 0.01 a |
p-coumaric acid | n.d. | 1.69 ± 0.13 b | 0.040 ± 0.001 a | 3.69 ± 0.06 c | 1.00 ± 0.01 b |
Rosmarinic acid | 226.98 ± 11.98 d | n.d. | 3.36 ± 0.20 a | 14.98 ± 1.03 c | 6.21 ± 0.36 b |
Chlorogenic acid | 189.98 ± 12.27 c | n.d. | 1.59 ± 0.11 a | 25.12 ± 2.01 b | 1.02 ± 0.01 a |
Neochlorogenic acid | 67.98 ± 3.14 d | 5.98 ± 0.04 b | 54.23 ± 2.23 c | 3.37 ± 0.24 a | 3.25 ± 0.02 a |
4-O-caffeoylquinic acid | 12.69 ± 1.07 c | n.d. | 4.12 ± 0.22 b | 1.11 ± 0.01 a | n.d. |
Coumarin derivatives (μg/g of dry extract) | |||||
Coumarin | 79.87 ± 3.32 b | n.d. | n.d. | 5.31 ± 0.23 a | n.d. |
m-hydroxycoumarin | n.d. | 2.64 ± 0.11 a | 19.95 ± 1.12 b | n.d. | n.d. |
p-hydroxycoumarin | 2.21 ± 0.01 a | n.d. | 6.99 ± 0.21 b | 1.98 ± 0.13 a | n.d. |
7- hydroxycoumarin | 5.69 ± 0.13 c | n.d. | 3.21 ± 0.13 b | 0.55 ± 0.07 a | n.d. |
Osthol | 6.19 ± 0.12 b | n.d. | n.d. | 0.010 ± 0.00 a | n.d. |
Phenolic derivative (μg/g of dry extract) | |||||
Eugenol | 0.16 ± 0.00 a | n.d. | 0.69 ± 0.04 b | n.d. | n.d. |
Furanocoumarin derivatives (μg/g of dry extract) | |||||
Isopimpinellin | n.d. | n.d. | n.d. | 0.99 ± 0.06 | n.d. |
Xanthotoxin | n.d. | 2.21 ± 0.13 a | 4.46 ± 0.21 b | n.d. | n.d. |
Xanthotoxol | n.d. | n.d. | 5.69 ± 0.13 | n.d. | n.d. |
Flavanone derivatives (μg/g of dry extract) | |||||
2′-hydroxyflavanone | 1.36 ± 0.08 | n.d. | n.d. | n.d. | n.d. |
7-hydroxyflavanone | 2.36 ± 0.10 c | 0.32 ± 0.01 a | n.d. | 0.99 ± 0.05 b | 3.32 ± 0.11 c |
4′-methoxyflavanone | 2.21 ± 0.10 b | n.d. | n.d. | 0.18 ± 0.01 a | n.d. |
Naringin | 2.17 ± 0.11 | n.d. | n.d. | n.d. | n.d. |
Flavone derivatives (μg/g of dry extract) | |||||
Apigenin | 150.98 ± 9.45 c | 0.21 ± 0.01 a | n.d. | n.d. | 6.77 ± 0.21 b |
Apigenin-7-O-glucoside | 15.83 ± 0.26 b | 0.12 ± 0.01 a | n.d. | n.d. | n.d. |
Luteolin | 203.36 ± 19.50 d | 0.36 ± 0.02 a | n.d. | 2.39 ± 0.10 b | 7.13 ± 0.41 c |
Luteolin-7-O-glucoside | 150.98 ± 9.26 c | 0.21 ± 0.01 a | n.d. | n.d. | 6.77 ± 0.18 b |
Flavonol derivatives (μg/g of dry extract) | |||||
Isorhamnetin | 4.16 ± 0.23 b | n.d. | n.d. | 1.03 ± 0.01 a | 3.17 ± 0.18 b |
Quercetin | 63.25 ± 2.49 d | 2.21 ± 0.14 a | n.d. | 40.21 ± 3.14 c | 12.11 ± 0.92 b |
Quercetin-3-O-rhamnoside | 190.56 ± 12.34 e | 12.29 ± 1.09 c | 8.27 ± 0.41 d | 0.69 ± 0.05 b | 0.21 ± 0.01 a |
Quercetin-3-O-rutinoside | 3.32 ± 0.11 b | n.d. | n.d. | 0.89 ± 0.05 a | n.d. |
Quercetin-3-O-galactoside | 1.14 ± 0.01 b | n.d. | n.d. | 0.17 ± 0.01 a | 0.140 ± 0.001 a |
Myricetin-3-O-galactoside | 30.21 ± 2.15 b | n.d. | n.d. | 0.14 ± 0.01 a | n.d. |
Myricetin-3-O-rhamnoside | 36.15 ± 2.21 b | n.d. | n.d. | n.d. | 1.11 ± 0.01 a |
Kaempferol | n.d. | n.d. | n.d. | n.d. | 1.06 ± 0.10 |
Kaempferol-3-O-rhamnoside | 0.21 ± 0.01 a | n.d. | n.d. | 0.49 ± 0.03 b | n.d. |
Catechins and procyanidins (μg/g of dry extract) | |||||
Procyanidin-B2 | n.d. | 0.21 ± 0.01 a | n.d. | n.d. | 1.42 ± 0.04 b |
(−)-Epicatechin | 24.59 ± 1.01 c | 12.24 ± 0.63 b | 3.21 ± 0.14 a | n.d. | n.d. |
(Di)Terpenes (μg/g of dry extract) | |||||
Carnosic acid | 104.28 ± 9.81 c | 11.47 ± 0.69 b | 719.56 ± 53.27 d | 210.02 ± 99.80 c | 2.65 ± 0.13 a |
Carnosol | 0.32 ± 0.02 a | 94.21 ± 6.21 b | 569.98 ± 42.14 d | 314.25 ± 2.21 c | 90.48 ± 3.28 b |
Extract | SFW1 | SFDE | SFEA | SFB | SFW2 | |
---|---|---|---|---|---|---|
DPPH· | EC50 (mg dry extract/mg DPPH·) | 0.34 ± 0.02 | 0.08 ± 0.01 | 0.28 ± 0.04 | 0.30 ± 0.01 | 0.47 ± 0.01 |
AE | 2.96 | 11.79 | 3.59 | 3.37 | 2.12 | |
FRAP | μmol AAE/g | 2432.30 ± 185.96 | 3034.28 ± 76.11 | 3880.82 ± 62.38 | 2499.06 ± 109.30 | 1165.42 ± 149.29 |
μmol TEAC/g | 2610.12 ± 96.27 | 3216.10 ± 56.97 | 4229.90 ± 213.91 | 2677.32 ± 215.68 | 1237.83 ± 107.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ververis, A.; Kyriakou, S.; Ioannou, K.; Chatzopoulou, P.S.; Panayiotidis, M.I.; Plioukas, M.; Christodoulou, K. Chemical Profiling and Antioxidant and Anti-Amyloid Capacities of Salvia fruticosa Extracts from Greece. Plants 2023, 12, 3191. https://doi.org/10.3390/plants12183191
Ververis A, Kyriakou S, Ioannou K, Chatzopoulou PS, Panayiotidis MI, Plioukas M, Christodoulou K. Chemical Profiling and Antioxidant and Anti-Amyloid Capacities of Salvia fruticosa Extracts from Greece. Plants. 2023; 12(18):3191. https://doi.org/10.3390/plants12183191
Chicago/Turabian StyleVerveris, Antonis, Sotiris Kyriakou, Kristia Ioannou, Paschalina S. Chatzopoulou, Mihalis I. Panayiotidis, Michael Plioukas, and Kyproula Christodoulou. 2023. "Chemical Profiling and Antioxidant and Anti-Amyloid Capacities of Salvia fruticosa Extracts from Greece" Plants 12, no. 18: 3191. https://doi.org/10.3390/plants12183191
APA StyleVerveris, A., Kyriakou, S., Ioannou, K., Chatzopoulou, P. S., Panayiotidis, M. I., Plioukas, M., & Christodoulou, K. (2023). Chemical Profiling and Antioxidant and Anti-Amyloid Capacities of Salvia fruticosa Extracts from Greece. Plants, 12(18), 3191. https://doi.org/10.3390/plants12183191