Conservation and Global Distribution of Onion (Allium cepa L.) Germplasm for Agricultural Sustainability
Abstract
:1. Introduction
2. Onion Genetic Resources
2.1. Onion Wild Relatives and Landraces
2.1.1. Onion Wild Relatives
2.1.2. Landraces of Onions
2.2. Onion Cultivars and Breeding Lines
2.2.1. Commercial Varieties
2.2.2. Breeding Lines
3. Intraspecific Classification of Onion
4. Ex Situ Conservation Efforts for Onion Genetic Resources
4.1. Seed Genebanks
4.2. Tissue Culture or In Vitro Conservation of Onions
4.3. Cryopreservation
4.4. Field Genebanks
5. Collecting and Conservation Status of Global Onion Genetic Resources
6. International and National Seed Banks and Germplasm Repositories of Onion
6.1. Europe
6.2. North America
6.3. Asia
6.4. Africa
6.5. South America
6.6. Oceania
Institute | Acronym | Institute Code | Country | No. of Accessions | Major Allium spp. | Reference |
---|---|---|---|---|---|---|
ICAR—National Bureau of Plant Genetic Resources (Directorate of Onion and Garlic Research) | ICAR-NBPGR (ICAR-DOR) | IND1457 | India | 2606 | A. cepa, A. sativum, A. fistulosum, A. ampeloprasum, A. chinense, A. tuberosum | [29,51,104] |
All-Russian Institute of Plant Genetic Resources | VIR | RUS001 | Russia | 1888 | Allium | [29,104] |
National Institute of Agrobiological Sciences | NIAS | JPN003 | Japan | 1352 | Allium | [90,95,104] |
USDA National Plant Germplasm System (NPGS) | USDA-NPGS | USA003 | USA | 1304 | A. cepa and wild spp. | [29,51,104] |
Leibniz Institute of Plant Genetics and Crop Plant Research | IPK | DEU146 | Germany | 1264 | A. cepa, A. sativum, A. fistulosum, A. ampeloprasum, A. proliferum, A. chinense | [51,104] |
AVRDC—The world Vegetable Center | AVRDC | TWN001 | Taiwan | 1129 | A. ampeloprasum, A. sativum, A. cepa, and A. ascalonicum | [29,95,104] |
Royal Botanic Gardens | RBG | GBR004 | UK | 1100 | Allium | [29,104] |
The Western Regional (W6) Plant Introduction Station (WRPIS) of the National Plant Germplasm System (NPGS) | W6/WRPIS | USA022 | USA | 1066 | Allium | [104] |
Science andAdvice for Scottish Agriculture | SASA | GBR165 | UK | 1005 | Allium | [104] |
Warwick Crop Center/Warwick Genetic Resources Unit | Warwick GRU | GBR006 | UK | 1755 | Allium | [29,95] |
Research Institute for Plant Production | CZE003 | Czech Republic | Unknown | Allium | [95] | |
The Center for Plant Diversity (formally Research Centre for Agrobiodiversity) | CPD (Formally, RCA) | HUN003 | Hungary | 380 | A. cepa A. sativum, ampeloprasum, A. fistulosum | [95] |
Center for Genetic Resources | (CGN) | NLD037 | The Netherlands | Unkown | Allium cepa, Allium ampeloprasum, Wild Allium species | [95] |
Centre for Plant Breeding and Reproduction Research (CPRO-DLO), Department of Vegetable and Fruit Crops, Wageningen | CPRO-DLO | - | The Netherlands | 11 | A. ampeloprasum | [51] |
TheNordicgenebank | NorGen | Unknown | Nordic countries | >80 | A. sativum, welsh onion, potato onion | [65] |
Institute for Plant Genetic Resources, Sadovo | IPGR | BGR001 | Bulgaria | 618 | A cepa, A. sativum | [51] |
Plant Genetic Resources Laboratory of Research Institute of Vegetable Crops, Skierniewice | InHort | POL030 | Poland | 144 | A cepa | [51] |
Crop Research Institute, Prague | Unknown | Czech Republic | 157 | A. sativum | [51] | |
Vegetable Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Beijing | VCGRGE | Unknown | China | 591 | A. sativum, A. tuberosum | [51] |
National Agrobiodiversity Center (NAAS), RDA, Suwon | RDA-NAAS | Unknown | Republic of Korea | 1158 | A. sativum | [51] |
European Cooperative Programme for Plant Genetic Resources | ECPGR | - | Germany | 14,400 | Allium | [29] |
7. High-Throughput Phenotyping and Molecular Approaches in Onion Germplasm Characterization and Evaluation
7.1. High-Throughput Phenotyping
7.2. Molecular Marker Application
8. Gaps in Global Onion Genetic Resources Collection
8.1. Underrepresentation of Onion Wild Relatives
8.2. Regional and Local Diversity
8.3. Limited Access to Traditional Cultivars
8.4. Conservation of Genetic Erosion Hotspots
8.5. Characterization and Evaluation Efforts
8.6. Limited Resources for Conservation
8.7. Collaboration and Data Sharing
9. Countrywide Onion Genetic Resource Collection and Conservation Efforts
9.1. Inventory of Onion Germplasm
9.2. Documentation of Onion Cultivar Diversity
9.3. Evaluation of Onion Genetic Erosion
9.4. Gap Analysis and Prioritization
9.5. Conservation Strategies and Initiatives
9.6. International Collaboration
10. Conclusions, Recommendations, and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fu, J.; Zhang, H.; Guo, F.; Ma, L.; Wu, J.; Yue, M.; Zheng, X.; Qiu, Z.; Li, L. Identification and characterization of abundant repetitive sequences in Allium cepa. Sci. Rep. 2019, 9, 16756. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.; Gao, L.; Liu, B.; Yang, Y.; Kong, S.; Sun, Y.; Yang, Y.; Wu, X. Complete chloroplast genome sequences of four Allium species: Comparative and phylogenetic analyses. Sci. Rep. 2019, 9, 12250. [Google Scholar] [CrossRef] [PubMed]
- Havey, M.J. Onion breeding. Plant Breed. Rev. 2018, 42, 39–85. [Google Scholar] [CrossRef]
- Kiani, Z.; Mashayekhi, K.; Golubkina, N.; Mousavizadeh, S.J.; Nezhad, K.Z.; Caruso, G. Agronomic, physiological, genetic and phytochemical characteristics of onion varieties influenced by daylength requirements. Agriculture 2023, 13, 697. [Google Scholar] [CrossRef]
- Fayos, O.; Echávarri, B.; Vallés, M.P.; Mallor, C.; Garcés-Claver, A.; Castillo, A.M. A simple and efficient method for onion pollen preservation: Germination, dehydration, storage conditions, and seed production. Sci. Hortic. 2022, 305, 111358. [Google Scholar] [CrossRef]
- Khade, Y.P.; Salunkhe, S.R.; Manjunathagowda, D.C.; Sinhasane, S.R.; MahidarGowd, T.Y.; Mahajan, V.; Singh, M. Molecular characterization of short-day onion genotypes by intron length polymorphic (ILP) markers. Genet. Resour. Crop Evol. 2022, 69, 2077–2086. [Google Scholar] [CrossRef]
- Yusupov, Z.; Deng, T.; Volis, S.; Khassanov, F.; Makhmudjanov, D.; Tojibaev, K.; Sun, H. Phylogenomics of Allium section Cepa (Amaryllidaceae) provides new insights on domestication of onion. Plant Divers. 2021, 43, 102–110. [Google Scholar] [CrossRef]
- Manjunathagowda, D.C.; Muthukumar, P.; Gopal, J.; Prakash, M.; Bommesh, J.C.; Nagesh, G.C.; Megharaj, K.C.; Manjesh, G.N.; Anjanappa, M. Male sterility in onion (Allium cepa L.): Origin: Origin, evolutionary status, and their prospectus. Genet. Resour. Crop Evol. 2021, 68, 421–439. [Google Scholar] [CrossRef]
- Mehta, I. Origin and history of onions. IOSR J. Humanit. Soc. Sci. 2017, 22, 7–10. [Google Scholar]
- Lyngkhoi, F.; Saini, N.; Gaikwad, A.B.; Thirunavukkarasu, N.; Verma, P.; Silvar, C.; Yadav, S.; Khar, A. Genetic diversity and population structure in onion (Allium cepa L.) accessions based on morphological and molecular approaches. Physiol. Mol. Biol. Plants 2021, 27, 2517–2532. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Średnicka-Tober, D.; Barański, M.; Hallmann, E.; Góralska-Walczak, R.; Kopczyńska, K.; Rembiałkowska, E.; Górski, J.; Leifert, C.; Rempelos, L. The effect of different fertilization regimes on yield, selected nutrients, and bioactive compounds profiles of onion. Agronomy 2021, 11, 883. [Google Scholar] [CrossRef]
- Taglienti, A.; Araniti, F.; Piscopo, A.; Tiberini, A. Characterization of volatile organic compounds in ‘rossa di tropea’ onion by means of headspace solid-phase microextraction gas chromatography–mass spectrometry (HS/SPME GC–MS) and Sensory Analysis. Agronomy 2021, 11, 874. [Google Scholar] [CrossRef]
- Havey, M.J.; Ghavami, F. Informativeness of single nucleotide polymorphisms and relationships among onion populations from important world production regions. J. Am. Soc. Hortic. Sci. 2018, 143, 34–44. [Google Scholar] [CrossRef]
- Benke, A.P.; Mahajan, V.; Manjunathagowda, D.C.; Mokat, D.N. Interspecific hybridization in Allium crops: Status and prospectus. Genet. Resour. Crop Evol. 2022, 69, 1–9. [Google Scholar] [CrossRef]
- Jo, J.; Purushotham, P.M.; Han, K.; Lee, H.-R.; Nah, G.; Kang, B.-C. Development of a genetic map for onion (Allium cepa L.) using reference-free genotyping-by-sequencing and SNP assays. Front. Plant Sci. 2017, 8, 1606. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Onion Production, Area and Productivity. 2021. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 12 September 2023).
- Cramer, C.S.; Mandal, S.; Sharma, S.; Nourbakhsh, S.S.; Goldman, I.; Guzman, I. Recent advances in onion genetic improvement. Agronomy 2021, 11, 482. [Google Scholar] [CrossRef]
- Villano, C.; Esposito, S.; Carucci, F.; Iorizzo, M.; Frusciante, L.; Carputo, D.; Aversano, R. High-throughput genotyping in onion reveals structure of genetic diversity and informative SNPs useful for molecular breeding. Mol. Breed. 2019, 39, 5. [Google Scholar] [CrossRef]
- Ren, F.; Zhou, S. Phenolic components and health beneficial properties of onions. Agriculture 2021, 11, 872. [Google Scholar] [CrossRef]
- Ahmed, M.; Hayat, R.; Ahmad, M.; Ul-Hassan, M.; Kheir, A.M.; Ul-Hassan, F.; Ur-Rehman, M.H.; Shaheen, F.A.; Raza, M.A.; Ahmad, S. Impact of climate change on dryland agricultural systems: A review of current status, potentials, and further work need. Int. J. Plant Prod. 2022, 16, 341–363. [Google Scholar] [CrossRef]
- Su, Y.; Gabrielle, B.; Makowski, D. The impact of climate change on the productivity of conservation agriculture. Nat. Clim. Chang. 2021, 11, 628–633. [Google Scholar] [CrossRef]
- Priyanka, V.; Kumar, R.; Dhaliwal, I.; Kaushik, P. Germplasm conservation: Instrumental in agricultural biodiversity—A review. Sustainability 2021, 13, 6743. [Google Scholar] [CrossRef]
- Idhan, A. Adaptation of Fourteen Varieties of Red Onion (Allium ascalonicum L.) in The Plateau. J. Agric. Environ. Stud. 2022, 3, 50–57. [Google Scholar] [CrossRef]
- Mondal, R.; Kumar, A. Crop Germplasm: Molecular and Physiological Perspective towards Achieving Global Crop Sustainability. Prepr. Crop Germplasm Glob. Sustain. 2021, 2021070359. [Google Scholar] [CrossRef]
- Chin, H.F.; Quek, P.; Sinniah, U.R. Seed Banks for Future Generation. In Conservation of Tropical Plant Species; Springer: New York, NY, USA, 2021; pp. 43–63. [Google Scholar] [CrossRef]
- Mondal, R.; Kumar, A.; Gnanesh, B.N. Crop germplasm: Current challenges, physiological-molecular perspective, and advance strategies towards development of climate-resilient crops. Heliyon 2023, 9, e12973. [Google Scholar] [CrossRef] [PubMed]
- Hanson, J.; Ellis, R.H. Progress and challenges in ex situ conservation of forage germplasm: Grasses, herbaceous legumes and fodder trees. Plants 2020, 9, 446. [Google Scholar] [CrossRef] [PubMed]
- Agic, R.; Popsimonova, G.; Vasić, M.; Varga, J.G.; Todorovic, V.; Neykov, S.; Balliu, A.; Matotan, Z.; Karic, L.; Calin, M.; et al. Collecting of onion (Allium cepa L.) and leek (Allium porrum L.) landaraces in south eastern europe for further ex-situ conservation 2015. Available online: https://www.researchgate.net/publication/311081345 (accessed on 19 August 2023).
- Khosa, J.S.; McCallum, J.; Dhatt, A.S.; Macknight, R.C. Enhancing onion breeding using molecular tools. Plant Breed. 2015, 135, 9–20. [Google Scholar] [CrossRef]
- Gedam, P.A.; Thangasamy, A.; Shirsat, D.V.; Ghosh, S.; Bhagat, K.P.; Sogam, O.A.; Gupta, A.J.; Mahajan, V.; Soumia, P.S.; Salunkhe, V.N.; et al. Screening of onion (Allium cepa L.) genotypes for drought tolerance using physiological and yield based indices through multivariate analysis. Front. Plant Sci. 2021, 12, 600371. [Google Scholar] [CrossRef] [PubMed]
- Cramer, C.S.; Singh, N.; Kamal, N.; Pappu, H.R. Screening onion plant introduction accessions for tolerance to onion thrips and iris yellow spot. HortScience 2014, 49, 1253–1261. [Google Scholar] [CrossRef]
- Taş, K.; Balkaya, A. Determination of morphological variation by principal component analysis and characterization of the Capsicum chinense genetic resources. Ekin J. Crop Breed. Genet. 2021, 7, 86–105. [Google Scholar]
- McCallum, J.; Thomson, S.; Pither-Joyce, M.; Kenel, F.; Clarke, A.; Havey, M.J. Genetic Diversity Analysis and Single-nucleotide Polymorphism Marker Development in Cultivated Bulb Onion Based on Expressed Sequence Tag–Simple Sequence Repeat Markers. J. Am. Soc. Hortic. Sci. 2008, 133, 810–818. [Google Scholar] [CrossRef]
- Gurushidze, M.; Mashayekhi, S.; Blattner, F.R.; Friesen, N.; Fritsch, R.M. Phylogenetic relationships of wild and cultivated species of Allium section Cepa inferred by nuclear rDNA ITS sequence analysis. Plant Syst. Evol. 2007, 269, 259–269. [Google Scholar] [CrossRef]
- Packia, L.; Viveka, N.C.J. Phenotypic and genetic diversity of South Indian Allium sp. (A.cepa and A.sativum) by molecular fingerprinting to select the superior germplasm. Indian J. Appl. Res. 2011, 4, 21–24. [Google Scholar] [CrossRef]
- Neelam, S.; Vinod, K.; Medagam, T.R.; Venkateshwaran, K. Phenotypic diversity and genetic variation within a collection of onion Allium cepa L. germplasm from Peninsular India. Electron. J. Plant Breed. 2014, 5, 743–751. [Google Scholar]
- Mallor, G.C.; Carravedo, F.M.; Estopañán, M.G.; Mallor, G.F. Characterization of genetic resources of onion (Allium cepa L.) from the Spanish secondary centre of diversity. Span. J. Agric. Res. 2011, 9, 144–155. [Google Scholar] [CrossRef]
- Mousavizadeh, S.A.; Mahmoud, T.; Mohammad, M.; Mohammadi, S.A.; Masiha, S. Diversity in Iranian onion landraces using RAPD markers. J. Agric. Sci. 2006, 16, 265–272. [Google Scholar]
- Manjunathagowda, D.C. Genetic enhancement of onion germplasm through population improvement. Plant Physiol. Rep. 2022, 27, 73–80. [Google Scholar] [CrossRef]
- Keusgen, M.; Fritsch, R.M.; Hisoriev, H.; Kurbonova, P.A.; Khassanov, F.O. Wild Allium species (Alliaceae) used in folk medicine of Tajikistan and Uzbekistan. J. Ethnobiol. Ethnom. 2006, 2, 18. [Google Scholar] [CrossRef]
- Gowd, T.Y.M.; Deo, C.; Manjunathagowda, D.C.; Mahajan, V.; Bhutia, N.D.; Singh, B. Allelic variability and transferability of atp6 gene among Allium species. Genet. Resour. Crop Evol. 2022, 70, 281–287. [Google Scholar] [CrossRef]
- Rivera, A.; Mallor, C.; Garcés-Claver, A.; García-Ulloa, A.; Pomar, F.; Silvar, C. Assessing the genetic diversity in onion (Alliumcepa L.) landraces from northwest Spain and comparison with the European variability. N. Z. J. Crop Hortic. Sci. 2016, 44, 103–120. [Google Scholar] [CrossRef]
- Kisha, T.J.; Cramer, C.S. Determining Redundancy of Short-day Onion Accessions in a Germplasm Collection Using Microsatellite and Targeted Region Amplified Polymorphic Markers. J. Am. Soc. Hortic. Sci. 2011, 136, 129–134. [Google Scholar] [CrossRef]
- Korpelainen, H. The Role of Home Gardens in Promoting Biodiversity and Food Security. Plants 2023, 12, 2473. [Google Scholar] [CrossRef] [PubMed]
- Chuda, A. Hybridization and molecular characterization of F1 Allium cepa× Allium roylei plants. Acta Biol. Crac. Ser. Bot. 2012, 54, 25–31. [Google Scholar] [CrossRef]
- Chuda, A.; Grzebelus, E.; Adamus, A. Experiments of backcrossing of interspecific F1 A. cepa× A. roylei hybrids with Allium cepa. Acta Hortic. 2012, 969, 113–116. [Google Scholar] [CrossRef]
- Chuda, A.; Klosowska, K.; Adamus, A. Morphological, cytological and embryological characterization of F1 A.cepa× A.roylei hybrids. Acta Biol.Crac. Ser. Bot. 2015, 57, 98–105. [Google Scholar] [CrossRef]
- Araki, N.; Masuzaki, S.-I.; Tsukazaki, H.; Yaguchi, S.; Wako, T.; Tashiro, Y.; Yamauchi, N.; Shigyo, M. Development of microsatellite markers in cultivated and wild species of sections Cepa and Phyllodolon in Allium. Euphytica 2009, 173, 321–328. [Google Scholar] [CrossRef]
- van Raamsdonk, L.W.D.; Ensink, W.; van Heusden, A.W.; Vrielink-van Ginkel, M.; Kik, C. Biodiversity assessment based on cpDNA and crossability analysis in selected species of Allium subgenus Rhizirideum. Theor. Appl. Genet. 2003, 107, 1048–1058. [Google Scholar] [CrossRef] [PubMed]
- Budylin, M.; Kan, L.Y.; Romanov, V.; Khrustaleva, L. GISH study of advanced generation of the interspecific hybrids between Allium cepa L. and Allium fistulosum L. with relative resistance to downy mildew. Russ. J. Genet. 2014, 50, 387–394. [Google Scholar] [CrossRef]
- Pandey, A.; Malav, P.K.; Semwal, D.; Chander, S.; Gowthami, R.; Rai, K. Repository of Allium Genetic Resources at ICAR-NBPGR: Prospects and Challenges for Collection and Conservation. Indian J. Plant Genet. Resour. 2022, 35, 185–190. [Google Scholar] [CrossRef]
- Scholten, O.E.; van Kaauwen, M.P.; Shahin, A.; Hendrickx, P.M.; Keizer, L.; Burger, K.; van Heusden, A.W.; van der Linden, C.G.; Vosman, B. SNP-markers in Allium species to facilitate introgression breeding in onion. BMC Plant Biol. 2016, 16, 187. [Google Scholar] [CrossRef]
- Casañas, F.; Simó, J.; Casals, J.; Prohens, J. Toward an evolved concept of landrace. Front. Plant Sci. 2017, 8, 145. [Google Scholar] [CrossRef]
- Corrado, G.; Rao, R. Towards the genomic basis of local adaptation in landraces. Diversity 2017, 9, 51. [Google Scholar] [CrossRef]
- Azeez, M.A.; Adubi, A.O.; Durodola, F.A. Landraces and crop genetic improvement. In Rediscovery of Landraces as a Resource for the Future; IntechOpen: London, UK, 2018. [Google Scholar]
- Romo-Pérez, M.; Weinert, C.; Häußler, M.; Egert, B.; Frechen, M.; Trierweiler, B.; Kulling, S.; Zörb, C. Metabolite profiling of onion landraces and the cold storage effect. Plant Physiol. Biochem. 2020, 146, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Sofi, P.A.; Zargar, S.M.; Mir, R.A.; Salgotra, R.K. Role of genebanks in maintaining crop genetic resources. In Rediscovery of Genetic and Genomic Resources for Future Food Security; Springer: Singapore, 2020; pp. 211–224. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Barros, L.; Ferreira, I.C.; Ntatsi, G. Morphological, nutritional and chemical description of “Vatikiotiko”, an onion local landrace from Greece. Food Chem. 2015, 182, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Wohleb, C.H.; Waters, T.D. Yield, quality, and storage characteristics of onion cultivars in the Columbia basin of Washington in 2012–14. HortTechnology 2016, 26, 230–243. [Google Scholar] [CrossRef]
- Scholten, O.E.; van Heusden, A.W.; Khrustaleva, L.I.; Burger-Meijer, K.; Mank, R.A.; Antonise, R.G.C.; Harrewijn, J.L.; Van Haecke, W.; Oost, E.H.; Peters, R.J.; et al. The long and winding road leading to the successful introgression of downy mildew resistance into onion. Euphytica 2007, 256, 345–353. [Google Scholar] [CrossRef]
- Fritsch, R.M.; Friesen, N. Evolution, domestication and taxonomy. In Allium Crop Science: Recent Advances; Rabinowitch, H.D., Currah, L., Eds.; CAB International: Wallingford, UK, 2002; pp. 5–30. [Google Scholar]
- Lee, J.-H.; Robin, A.; Natarajan, S.; Jung, H.-J.; Nou, I.-S. Varietal identification of open-pollinated onion cultivars using a nanofluidic array of single nucleotide polymorphism (SNP) markers. Agronomy 2018, 8, 179. [Google Scholar] [CrossRef]
- Bağcı, A.; Balkaya, A.; Karaağaç, O.; Kandemir, D. Phenotypic diversity of red and white onion genetic resources collected from different countries. Ekin J. 2022, 8, 86–100. [Google Scholar]
- Vetrivel, M.; Amutha, R.; Kalarani, M.K.; Paramaguru, P.; Rajanbabu, V. Screening of big onion varieties for sodicity tolerance at Cauvery Delta Zone in South India. Int. J. Plant Soil Sci. 2022, 34, 818–826. [Google Scholar] [CrossRef]
- Leino, M.W.; Solberg, S.Ø.; Tunset, H.M.; Fogelholm, J.; Strese, E.-M.K.; Hagenblad, J. Patterns of exchange of multiplying onion (Allium cepa L. Aggregatum-Group) in Fennoscandian Home Gardens. Econ. Bot. 2018, 72, 346–356. [Google Scholar] [CrossRef]
- Sathiyamurthy, V.A.T.S.; Harish, S.N.A.T. Review on Aggregatum Onion (Allium cepa L. var. aggregatum Don.). Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1649–1667. [Google Scholar] [CrossRef]
- Vetrivel, M.; Amutha, R.; Kalarani, M.K.; Paramaguru, P.; Rajanbabu, V. Screening of aggregatum onion varieties for sodicity tolerance. Int. J. Environ. Clim. Chang. 2022, 12, 3254–3263. [Google Scholar] [CrossRef]
- Rabinowitch, H.D. Shallot (Allium cepa L. Aggregatum Group) breeding. In Advances in Plant Breeding Strategies: Vegetable Crops; Springer: Berlin/Heidelberg, Germany, 2022; pp. 99–154. [Google Scholar] [CrossRef]
- Jones, H.A.; Mann, L.K. Onions and Their Allies: Botany, Cultivation and Utilization; Leonard Hill: London, UK; Interscience: New York, NY, USA, 1963; 285p. [Google Scholar]
- Karaağaç, O.; Balkaya, A. Phenotypic diversity of red and white onion genetic resources collected from different countries. Ekin J. Crop Breed. Genet. 2017, 23, 8–15. [Google Scholar]
- Pandotra, P.; Gupta, S. Biotechnological approaches for conservation of plant genetic resources and traditional knowledge. In Plant Genetic Resources and Traditional Knowledge for Food Security; Salgotra, R.K., Gupta, B.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Ebert, A.W.; Engels, J.M.M. Plant Biodiversity and Genetic Resources Matter! Plants 2020, 9, 1706. [Google Scholar] [CrossRef] [PubMed]
- Thrupp, L.A. Linking agricultural biodiversity and food security: The valuable role of agrobiodiversity for sustainable agriculture. Int. Aff. 2000, 76, 265–281. [Google Scholar] [CrossRef] [PubMed]
- Solberg, S.Ø.; Yndgaard, F.; Andreasen, C.; von Bothmer, R.; Loskutov, I.G.; Asdal, Å. Long-term storage and longevity of orthodox seeds: A Systematic Review. Front. Plant Sci. 2020, 11, 1007. [Google Scholar] [CrossRef] [PubMed]
- González-Pérez, S.; Mallor, C.; Garcés-Claver, A.; Merino, F.; Taboada, A.; Rivera, A.; Pomar, F.; Perovic, D.; Silvar, C. Exploring genetic diversity and quality traits in a collection of onion (Allium cepa L.) landraces from north-west Spain. ABI Genet. 2015, 47, 885–900. [Google Scholar] [CrossRef]
- Pirata, M. Fitogenetic Resources Conservation in Seed Banks—Review. Rev. Cienc. Agrar. 2020, 43, 343–351. [Google Scholar]
- Chauhan, R.; Singh, V.; Quraishi, A. In vitro conservation through slow-growth storage. In Synthetic Seeds; Springer: Cham, Switzerland, 2019; pp. 397–416. [Google Scholar] [CrossRef]
- Panis, B.; Nagel, M.; Van den Houwe, I. Challenges and prospects for the conservation of crop genetic resources in field genebanks, in in vitro collections and/or in liquid nitrogen. Plants 2020, 9, 1634. [Google Scholar] [CrossRef]
- Espinosa-Leal, C.A.; Puente-Garza, C.A.; García-Lara, S. In vitro plant tissue culture: Means for production of biological active compounds. Planta 2018, 248, 1–18. [Google Scholar] [CrossRef]
- Rajasekharan, P.E.; Sahijram, L. In vitro conservation of plant germplasm. In Plant Biology and Biotechnology; Bahadur, B., VenkatRajam, M., Sahijram, L., Krishnamurthy, K.V., Eds.; Volume II: Plant Genomics and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Keller, E.R.J.; Kik, C. Allium genetic resources. In Allium Genomes; Springer: Berlin/Heidelberg, Germany, 2018; pp. 23–52. [Google Scholar] [CrossRef]
- Murray, K.A.; Gibson, M.I. Chemical approaches to cryopreservation. Nat. Rev. Chem. 2022, 6, 579–593. [Google Scholar] [CrossRef]
- Pandav, A.K.; Saha, K.; Rajasekharan, P.E. Onion (Allium cepa L.) Pollen Cryopreservation Protocol. In Pollen Cryopreservation Protocols; Rajasekharan, P., Rohini, M., Eds.; Humana: New York, NY, USA, 2023; Springer Protocols Handbooks. [Google Scholar] [CrossRef]
- Mišianiková, A.; Zubrická, D.; Petijová, L.; Bruňáková, K.; Čellárová, E. Effect of cryoprotectant solution and of cooling rate on crystallization temperature in cryopreserved Hypericumperforatum cell suspension cultures. Cryo-Lett. 2016, 37, 173–187. [Google Scholar]
- Jaiswal, A.N.; Vagga, A. Cryopreservation: A Review Article. Cureus 2022, 14, e31564. [Google Scholar] [CrossRef] [PubMed]
- Normah, M.N.; Sulong, N.; Reed, B.M. Cryopreservation of shoot tips of recalcitrant and tropical species: Advances and strategies. Cryobiology 2019, 87, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Engels, J.M.M.; Thormann, I. Main Challenges and Actions Needed to Improve Conservation and Sustainable Use of Our Crop Wild Relatives. Plants 2020, 9, 968. [Google Scholar] [CrossRef] [PubMed]
- Semwal, D.P.; Pandey, A.; Ahlawat, S.P. Genetic resources of genus Allium in India: Collection status, distribution and diversity mapping using GIS tools. Indian J. Plant Genet. Resour. 2021, 34, 206–215. [Google Scholar] [CrossRef]
- Negi, K.S. Allium species in Himalayas and their uses with special reference to Uttaranchal. Ethnobotany 2006, 18, 53–66. [Google Scholar]
- Reed, B.M.; Engelmann, F.; Dulloo, M.E.; Engels, J.M.M. Technical Guidelines for The Management of Field and In Vitro Germplasm Collections; International Plant Genetics Resources Institute: Rome, Italy, 2004. [Google Scholar]
- Keller, E.R.J.; Zanke, C.D.; Blattner, F.R.; Kik, C.; Stavělíková, H.; Zámečník, J.; Esnault, F.; Kotlińska, T.; Solberg, S.; Miccolis, V. EURALLIVEG: Establishment of a European core collection by cryopreservation and virus elimination in garlic. Acta Hortic. 2012, 969, 319–327. [Google Scholar] [CrossRef]
- Anđelković, V.; Cvejić, S.; Jocić, S.; Kondić-Špika, A.; MarjanovićJeromela, A.; Mikić, S.; Prodanović, S.; Radanović, A.; Savić Ivanov, M.; Trkulja, D.; et al. Use of plant genetic resources in crop improvement—Example of Serbia. Genet. Resour. Crop Evol. 2020, 67, 1935–1948. [Google Scholar] [CrossRef]
- Anjula, P.A.P.; Pradheep, K.; Negi, K.S. Onion and related taxa: Ecogeographical distribution and genetic resources in the Indian subcontinent. In Plant Biodiversity: Monitoring, Assessment and Conservation; CABI: Wallingford, UK, 2016; pp. 429–442. [Google Scholar] [CrossRef]
- Galluzzi, G.; Halewood, M.; Noriega, I.L.; Vernooy, R. Twenty-five years of international exchanges of plant genetic resources facilitated by the CGIAR genebanks: A case study on global interdependence. Biodivers. Conserv. 2016, 25, 1421–1446. [Google Scholar] [CrossRef]
- Thormann, I.; Engels, J.M.M.; Halewood, M. Are the old International Board for Plant Genetic Resources (IBPGR) base collections available through the Plant Treaty’s multilateral system of access and benefit sharing? A review. Genet. Resour. Crop Evol. 2019, 66, 291–310. [Google Scholar] [CrossRef]
- ECPGR 2009. A Strategic Framework for the Implementation of a European Genebank Integrated System (AEGIS). A Policy Guide. European Cooperative Programme for Plant Genetic Resources (ECPGR); Bioversity International: Rome, Italy, 2009. [Google Scholar]
- Maggioni, L.; Keller, J.; Astley, D. European Collections of Vegetatively Propagated Allium; Report of a Workshop; European Cooperative Programme for Crop Genetic Resources Networks: Gatersleben, Germany, 2001; pp. 21–22. [Google Scholar]
- Mallor, C.; Arnedo-Andrés, M.S.; Garcés-Claver, A. Assessing the genetic diversity of Spanish Allium cepa landraces for onion breeding using microsatellite markers. Sci. Hortic. 2014, 170, 24–31. [Google Scholar] [CrossRef]
- Rivera–Martínez, A.; Fernández–Paz, J.; Andrés–Ares, J.L. Evaluation of local onion lines from North–West Spain. Span. J. Agric. Res. 2005, 3, 90–97. [Google Scholar] [CrossRef]
- Ruņǵis, D.; Leino, M.W.; Lepse, L.; Goreta Ban, S.; de Vahl, E.; Annamaa, K.; Põldma, P.; Suojala-Ahlfors, T.; Juškevičienė, D.; Kik, C. Genetic characterization of European potato onion (Allium cepa var Aggregatum G. Don) collections. Genet. Resour. Crop Evol. 2021, 68, 657–665. [Google Scholar] [CrossRef]
- Leino, M.W.; Hagenblad, J. Potatoonion—The missing link to onion cultivationin the past? Bull. Trädgårdshistoriskforskning 2014, 27, 17–19. [Google Scholar]
- NordGen Annual Review. 2019. Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:norden:org:diva-5973 (accessed on 12 September 2023).
- Ebert, A.W. Vegetable Genetic Resources for Food and Nutrition Security under Climate Change. In Food Security and Climate Change; John Wiley & Sons Ltd.: Schwaebisch Gmuend, Germany, 2018; pp. 289–318. [Google Scholar] [CrossRef]
- Loskutov, I.G. Vavilov Institute (VIR): Historical aspects of international cooperation for plant genetic resources. Genet. Resour. Crop Evol. 2020, 67, 2237–2253. [Google Scholar] [CrossRef]
- Dzyubenko, N.I. Vavilov’s collection of worldwide crop genetic resources in the 21st Century. Biopreserv Biobank 2018, 16, 377–383. [Google Scholar] [CrossRef]
- Mandal, S.; Cramer, C.S. Screening of USDA Onion Germplasm for Fusarium Basal Rot Resistance. Horticulturae 2021, 7, 174. [Google Scholar] [CrossRef]
- Johnson, R.C. Genebanks Pay Big Dividends to Agriculture, the Environment, and Human Welfare. PLoS Biol. 2008, 6, e148. [Google Scholar] [CrossRef]
- Kamala, V.; Gupta, A.J.; Sivaraj, N.; Pandravada, S.R.; Sunil, N.; Varaprasad, K.S.; Lawande, K.E. Diversity analysis of onion germplasm collections from Northern Telangana Region of Andhra Pradesh. Indian J. Plant Genet. Resour. 2011, 24, 163–171. [Google Scholar]
- Rouamba, A.; Currah, L. Collections of shortday onion germplasm in West Africa: A survey. Genet. Resour. Crop Evol. 1998, 45, 81–85. [Google Scholar] [CrossRef]
- Ferreira, R.R.; Santos, C.A.F. Partial success of marker-assisted selection of ‘A’ and ‘B’ onion lines in Brazilian germplasm. Sci. Hortic. 2018, 242, 110–115. [Google Scholar] [CrossRef]
- Cunha Alves, A.A.; Azevedo, V.C.R. Embrapa Network for Brazilian Plant Genetic Resources Conservation. Biopreserv. Biobank. 2018, 16, 350–360. [Google Scholar] [CrossRef] [PubMed]
- McCallum, J.A.; Grant, D.G.; McCartney, E.P.; Scheffer, J.; Shaw, M.L.; Butler, R.C. Genotypic and environmental variation in bulb composition of New Zealand adapted onion (Allium cepa) germplasm. N. Z. J. Crop Hortic. Sci. 2001, 29, 149–158. [Google Scholar] [CrossRef]
- Jayaswall, K.; Bhandawat, A.; Sharma, H.; Yadav, V.K.; Mahajan, V.; Singh, M. Characterization of Allium germplasms for conservation and sustainable management using SSR markers. Indian J. Tradit. Knowl. 2019, 18, 193–199. [Google Scholar]
- Pandey, A.; Pandey, R.; Negi, K.S.; Radhamani, J. Realizing value of genetic resources of Allium in India. Genet. Resour. Crop Evol. 2008, 55, 985–994. [Google Scholar] [CrossRef]
- Xiao, Q.; Bai, X.; Zhang, C.; He, Y. Advanced high-throughput plant phenotyping techniques for genome-wide association studies: A review. J. Adv. Res. 2022, 35, 215–230. [Google Scholar] [CrossRef] [PubMed]
- Zhihong, M.; Yuhan, M.; Liang, G.; Chengliang, L. Smartphone-Based Visual Measurement and Portable Instrumentation for Crop Seed Phenotyping. IFAC-Pap. 2016, 49, 259–264. [Google Scholar] [CrossRef]
- Ligterink, W.; Hilhorst, H.W.M. High-Throughput Scoring of Seed Germination. Plant Horm. 2017, 1497, 57–72. [Google Scholar] [CrossRef]
- Baek, J.; Lee, E.; Kim, N.; Kim, S.L.; Choi, I.; Ji, H.; Chung, Y.S.; Choi, M.-S.; Moon, J.-K.; Kim, K.-H. High Throughput Phenotyping for Various Traits on Soybean Seeds Using Image Analysis. Sensors 2020, 20, 248. [Google Scholar] [CrossRef]
- Yang, W.; Feng, H.; Zhang, X.; Zhang, J.; Doonan, J.H.; Batchelor, W.D.; Xiong, L.; Yan, J. Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives. Mol. Plant 2020, 13, 187–214. [Google Scholar] [CrossRef]
- Islam, M.N.; Nielsen, G.; Stærke, S.; Kjær, A.; Jørgensen, B.; Edelenbos, M. Novel non-destructive quality assessment techniques of onion bulbs: A comparative study. J. Food Sci. Technol. 2018, 55, 3314–3324. [Google Scholar] [CrossRef] [PubMed]
- Duran, C.; Appleby, N.; Edwards, D.; Batley, J. Molecular genetic markers: Discovery, applications, data storage and visualisation. Curr. Bioinform. 2009, 4, 16–27. [Google Scholar] [CrossRef]
- Alonso-Blanco, C.; Méndez-Vigo, B. Genetic architecture of naturally occurring quantitative traits in plants: An updated synthesis. Curr. Opin. Plant Biol. 2014, 18, 37–43. [Google Scholar] [CrossRef] [PubMed]
- McCallum, J.; Leite, D.; Pither-Joyce, M.; Havey, M.J. Expressed sequence markers for genetic analysis of bulb onion (Allium cepa). Theor. Appl. Genet. 2001, 103, 979–991. [Google Scholar] [CrossRef]
- Ohara, T.; Song, Y.S.; Tsukazaki, H.; Wako, T.; Nunome, T.; Kojima, A. Genetic mapping of AFLP markers in Japanese bunching onion (Allium fistulosum). Euphytica 2005, 144, 255–263. [Google Scholar] [CrossRef]
- Alam, M.S.; Islam, M.A.; Kumar Nath, U. Rapd markers based genetic diversity analysis of onion (Allium cepa) germplasm. Int. J. Sci. Res. 2023, 12, 1–5. [Google Scholar] [CrossRef]
- Baldwin, S.; Pither-Joyce, M.; Wright, K.; Chen, L.; McCallum, J. Development of robust genomic simple sequence repeat markers for estimation of genetic diversity within and among bulb onion (Allium cepa L.) population. Mol. Breed. 2012, 30, 1401–1411. [Google Scholar] [CrossRef]
- Singh, D.P.; Dhillon, T.S.; Singh, R. Present status and future opportunities in onion research: A review. Int. J. Chem. Stud. 2018, 6, 656–665. [Google Scholar]
- Khar, A.; Zimik, M.; Verma, P.; Singh, H.; Mangal, M.; Singh, M.; Gupta, A. Molecular marker-based characterization of cytoplasm and restorer of male sterility (Ms) locus in commercially grown onions in India. Mol. Biol. Rep. 2022, 49, 5535–5545. [Google Scholar] [CrossRef]
- Sharma, N.; Pandey, R.; Gowthami, R. In vitro conservation and cryopreservation of threatened medicinal plants of India. In Conservation and Utilization of Threatened Medicinal Plants; Springer: Cham, Switzerland, 2020; pp. 181–228. [Google Scholar] [CrossRef]
- Kik, C. Allium genetic resources with particular reference to onion. Acta Hortic. 2008, 770, 135–138. [Google Scholar] [CrossRef]
- Liao, N.; Hu, Z.; Miao, J.; Hu, X.; Lyu, X.; Fang, H.; Zhou, Y.-M.; Mahmoud, A.; Deng, G.; Meng, Y.-Q.; et al. Chromosome-level genome assembly of bunching onion illuminates genome evolution and flavor formation in Allium crops. Nat. Commun. 2022, 13, 6690. [Google Scholar] [CrossRef]
- Crop Genetic Resources: An Economic Appraisal/EIB-2 Economic Research Service/USDA. Available online: https://www.ers.usda.gov/publications/pub-details/?pubid=44131 (accessed on 12 September 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochar, K.; Kim, S.-H. Conservation and Global Distribution of Onion (Allium cepa L.) Germplasm for Agricultural Sustainability. Plants 2023, 12, 3294. https://doi.org/10.3390/plants12183294
Ochar K, Kim S-H. Conservation and Global Distribution of Onion (Allium cepa L.) Germplasm for Agricultural Sustainability. Plants. 2023; 12(18):3294. https://doi.org/10.3390/plants12183294
Chicago/Turabian StyleOchar, Kingsley, and Seong-Hoon Kim. 2023. "Conservation and Global Distribution of Onion (Allium cepa L.) Germplasm for Agricultural Sustainability" Plants 12, no. 18: 3294. https://doi.org/10.3390/plants12183294
APA StyleOchar, K., & Kim, S. -H. (2023). Conservation and Global Distribution of Onion (Allium cepa L.) Germplasm for Agricultural Sustainability. Plants, 12(18), 3294. https://doi.org/10.3390/plants12183294