Automatic Evaluation of Soybean Seed Traits Using RGB Image Data and a Python Algorithm
Abstract
:1. Introduction
2. Results
2.1. General Distribution and Fit of Plot
2.2. Error Calculation
2.3. Seed Number
3. Discussion
4. Materials and Methods
4.1. Image Acquisition and Thresholding
4.2. Programing Language
4.3. Validation and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, S.-H.; Jo, J.W.; Wang, X.; Shin, M.-J.; Hur, O.S.; Ha, B.-K.; Hahn, B.-S. Diversity characterization of soybean germplasm seeds using image analysis. Agronomy 2022, 12, 1004. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, S.; Wang, Z.; Yuan, Y.; Zhang, Z.; Liang, Q.; Yang, X.; Duan, Z.; Liu, Y.; Kong, F. Progress in soybean functional genomics over the past decade. Plant Biotechnol. J. 2022, 20, 256–282. [Google Scholar] [CrossRef]
- Liu, D.; Ning, X.; Li, Z.; Yang, D.; Li, H.; Gao, L. Discriminating and elimination of damaged soybean seeds based on image characteristics. J. Stored Prod. Res. 2015, 60, 67–74. [Google Scholar] [CrossRef]
- Daniel, I.O.; Adeboye, K.A.; Oduwaye, O.O.; Porbeni, J. Digital Seed Morpho-metric Characterization of Tropical Maize. Int. J. Plant Breed. Genet. 2012, 6, 245–251. [Google Scholar] [CrossRef]
- Kesavan, M.; Song, J.T.; Seo, H.S. Seed size: A priority trait in cereal crops. Physiol. Plant. 2013, 147, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Seiwa, K.; Kikuzawa, K. Importance of seed size for the establishment of seedlings of five deciduous broad-leaved tree species. Vegetatio 1996, 123, 51–64. [Google Scholar] [CrossRef]
- Jiménez-Alfaro, B.; Silveira, F.A.O.; Fidelis, A.; Poschlod, P.; Commander, L.E. Seed germination traits can contribute better to plant community ecology. J. Veg. Sci. 2016, 27, 637–645. [Google Scholar] [CrossRef]
- Li, Y.; Jia, J.; Zhang, L.; Khattak, A.M.; Sun, S.; Gao, W.; Wang, M. Soybean seed counting based on pod image using two-column convolution neural network. IEEE Access 2019, 7, 64177–64185. [Google Scholar] [CrossRef]
- Attipoe, J.Q.; Khan, W.; Tayade, R.; Steven, S.; Islam, M.S.; Lay, L.; Ghimire, A.; Kim, H.; Sereyvichea, M.; Propey, T. Evaluating the Effectiveness of Calcium Silicate in Enhancing Soybean Growth and Yield. Plants 2023, 12, 2190. [Google Scholar] [CrossRef]
- Hoyos-Villegas, V.; Houx, J.H.; Singh, S.K.; Fritschi, F.B. Ground-based digital imaging as a tool to assess soybean growth and yield. Crop Sci. 2014, 54, 1756–1768. [Google Scholar] [CrossRef]
- Lay, L.; Lee, H.S.; Tayade, R.; Ghimire, A.; Chung, Y.S.; Yoon, Y.; Kim, Y. Evaluation of Soybean Wildfire Prediction via Hyperspectral Imaging. Plants 2023, 12, 901. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.S.; Lee, U.; Heo, S.; Silva, R.R.; Na, C.-I.; Kim, Y. Image-based machine learning characterizes root nodule in soybean exposed to silicon. Front. Plant Sci. 2020, 11, 520161. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.; Lee, E.; Kim, N.; Kim, S.L.; Choi, I.; Ji, H.; Chung, Y.S.; Choi, M.-S.; Moon, J.-K.; Kim, K.-H. High throughput phenotyping for various traits on soybean seeds using image analysis. Sensors 2020, 20, 248. [Google Scholar] [CrossRef]
- Baek, I.; Kusumaningrum, D.; Kandpal, L.M.; Lohumi, S.; Mo, C.; Kim, M.S.; Cho, B.-K. Rapid measurement of soybean seed viability using Kernel-based multispectral image analysis. Sensors 2019, 19, 271. [Google Scholar] [CrossRef]
- Whan, A.P.; Smith, A.B.; Cavanagh, C.R.; Ral, J.-P.F.; Shaw, L.M.; Howitt, C.A.; Bischof, L. GrainScan: A low cost, fast method for grain size and colour measurements. Plant Methods 2014, 10, 23. [Google Scholar] [CrossRef]
- Tanabata, T.; Shibaya, T.; Hori, K.; Ebana, K.; Yano, M. SmartGrain: High-throughput phenotyping software for measuring seed shape through image analysis. Plant Physiol. 2012, 160, 1871–1880. [Google Scholar] [CrossRef]
- Quantitative Plant. Available online: https://www.quantitative-plant.org/software (accessed on 1 July 2023).
- Zhao, G.; Quan, L.; Li, H.; Feng, H.; Li, S.; Zhang, S.; Liu, R. Real-time recognition system of soybean seed full-surface defects based on deep learning. Comput. Electron. Agric. 2021, 187, 106230. [Google Scholar] [CrossRef]
- Wu, W.; Zhou, L.; Chen, J.; Qiu, Z.; He, Y. GainTKW: A measurement system of thousand kernel weight based on the android platform. Agronomy 2018, 8, 178. [Google Scholar] [CrossRef]
- Miranda, M.C.D.C.; Aono, A.H.; Pinheiro, J.B. A novel image-based approach for soybean seed phenotyping using machine learning techniques. Crop Sci. 2022. [Google Scholar] [CrossRef]
- Song, C.; Yu, C.; Xing, Y.; Li, S.; He, H.; Yu, H.; Feng, X. Algorith for acquiring multi-phenotype parameters of soybean seed based on OpenCV. Trans. Chin. Soc. Agric. Eng. 2022, 38, 156–163. [Google Scholar]
- Lin, W.; Shu, L.; Zhong, W.; Lu, W.; Ma, D.; Meng, Y. Online classification of soybean seeds based on deep learning. Eng. Appl. Artif. Intell. 2023, 123, 106434. [Google Scholar] [CrossRef]
- Shahin, M.A.; Symons, S.J.; Schepdael, L.V.; Tahir, A.R. Three-dimensional seed shape and size measurement with orthogonal cameras. In 2006 ASAE Annual Meeting; American Society of Agricultural and Biological Engineers: Saint Joseph, MI, USA, 2006; p. 1. [Google Scholar]
- Shahin, M.A.; Symons, S.J.; Wang, N. Predicting dehulling efficiency of lentils based on seed size and shape characteristics measured with image analysis. Qual. Assur. Saf. Crops Foods 2012, 4, 9–16. [Google Scholar] [CrossRef]
- Sankaran, S.; Wang, M.; Vandemark, G.J. Image-based rapid phenotyping of chickpeas seed size. Eng. Agric. Environ. Food 2016, 9, 50–55. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, Y.; Yong, K.; Zhu, M.; Wang, Y.; Wang, X.; Li, W.; Wei, X.; Huang, X. Rice seed size measurement using a rotational perception deep learning model. Comput. Electron. Agric. 2023, 205, 107583. [Google Scholar] [CrossRef]
- Duan, L.; Yang, W.; Huang, C.; Liu, Q. A novel machine-vision-based facility for the automatic evaluation of yield-related traits in rice. Plant Methods 2011, 7, 44. [Google Scholar] [CrossRef] [PubMed]
- Mussadiq, Z.; Laszlo, B.; Helyes, L.; Gyuricza, C. Evaluation and comparison of open source program solutions for automatic seed counting on digital images. Comput. Electron. Agric. 2015, 117, 194–199. [Google Scholar] [CrossRef]
- Lobet, G. Image analysis in plant sciences: Publish then perish. Trends Plant Sci. 2017, 22, 559–566. [Google Scholar] [CrossRef]
- Next Instruments. Available online: http://www.nextinstruments.net/index.php/products/seedcount (accessed on 1 August 2023).
- Yang, S.; Zheng, L.; He, P.; Wu, T.; Sun, S.; Wang, M. High-throughput soybean seeds phenotyping with convolutional neural networks and transfer learning. Plant Methods 2021, 17, 50. [Google Scholar] [CrossRef] [PubMed]
Parameters | Actual | SmartGrain | WinDIAS | ||||||
---|---|---|---|---|---|---|---|---|---|
RSE% | RMSE% | MAE% | RSE% | RMSE% | MAE% | RSE% | RMSE% | MAE% | |
Length | 0.198 | 0.295 | 0.229 | 0.189 | 0.484 | 0.446 | 0.209 | 0.249 | 0.194 |
Width | 0.243 | 0.366 | 0.292 | 0.200 | 0.326 | 0.282 | 0.418 | 0.484 | 0.362 |
Aspect ratio | 0.042 | 0.049 | 0.034 | 0.330 | 0.039 | 0.028 | 0.054 | 0.066 | 0.050 |
PA | ---- | ---- | ---- | 0.799 | 3.849 | 3.730 | 1.815 | 2.080 | 1.526 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghimire, A.; Kim, S.-H.; Cho, A.; Jang, N.; Ahn, S.; Islam, M.S.; Mansoor, S.; Chung, Y.S.; Kim, Y. Automatic Evaluation of Soybean Seed Traits Using RGB Image Data and a Python Algorithm. Plants 2023, 12, 3078. https://doi.org/10.3390/plants12173078
Ghimire A, Kim S-H, Cho A, Jang N, Ahn S, Islam MS, Mansoor S, Chung YS, Kim Y. Automatic Evaluation of Soybean Seed Traits Using RGB Image Data and a Python Algorithm. Plants. 2023; 12(17):3078. https://doi.org/10.3390/plants12173078
Chicago/Turabian StyleGhimire, Amit, Seong-Hoon Kim, Areum Cho, Naeun Jang, Seonhwa Ahn, Mohammad Shafiqul Islam, Sheikh Mansoor, Yong Suk Chung, and Yoonha Kim. 2023. "Automatic Evaluation of Soybean Seed Traits Using RGB Image Data and a Python Algorithm" Plants 12, no. 17: 3078. https://doi.org/10.3390/plants12173078
APA StyleGhimire, A., Kim, S. -H., Cho, A., Jang, N., Ahn, S., Islam, M. S., Mansoor, S., Chung, Y. S., & Kim, Y. (2023). Automatic Evaluation of Soybean Seed Traits Using RGB Image Data and a Python Algorithm. Plants, 12(17), 3078. https://doi.org/10.3390/plants12173078