Resistance of Modern Russian Winter Wheat Cultivars to Yellow Rust
Abstract
:1. Introduction
2. Results
2.1. Resistance Study at the Seedling Test
2.2. Detecting Yellow Rust Resistance Genes Using Molecular Markers
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Seedling Tests
4.3. DNA Extraction, PCR Amplification and Electrophoresis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Filip, E.; Woronko, K.; Stępień, E.; Czarniecka, N. An overview of factors affecting the functional quality of common wheat (Triticum aestivum L.). Int. J. Mol. Sci. 2023, 24, 7524. [Google Scholar] [CrossRef]
- The International Wheat Genome Sequencing Consortium (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 2014, 345, 1251788. [Google Scholar] [CrossRef]
- Medvedeva, A. Consumer Goods Production in Russia 2020: Crop Area Structure and Yields. AgroXXI Agro-Industrial Portal. 2021. Available online: https://www.agroxxi.ru/analiz-rynka-selskohozjaistvennyh-tovarov/proizvodstvo-zerna-v-rossii-2020-struktura-posevnyh-ploschadei-i-urozhainost.html (accessed on 22 August 2022). (In Russian).
- Afonin, A.N.; Greene, S.L.; Dzyubenko, N.I.; Frolov, A.N. (Eds.) Interactive Agricultural Ecological Atlas of Russia and Neighboring Countries. Economic Plants and Their Diseases, Pests and Weeds. 2008. Available online: http://www.agroatlas.ru (accessed on 22 August 2022). (In Russian).
- McIntosh, R.A.; Wellings, C.R.; Park, R.F. Wheat Rusts: An Atlas of Resistance Genes; CSIRO: Canberra, Australia, 1995. [Google Scholar]
- Ali, S.; Hodson, D. Wheat rust surveillance: Field disease scoring and sample collection for phenotyping and molecular genotyping. Methods Mol. Biol. 2017, 1659, 3–11. [Google Scholar] [CrossRef]
- Lan, C.; Randhawa, M.S.; Huerta-Espino, J.; Singh, R.P. Genetic analysis of resistance to wheat rusts genotyping. Methods Mol. Biol. 2017, 1659, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Roelfs, A.P.; Singh, R.P.; Saari, E.E. Rust Diseases of Wheat: Concepts and Methods of Disease Management; CIMMYT: México-Veracruz, Mexico, 1992. [Google Scholar]
- Mboup, M.; Bahri, B.; Leconte, M.; De Vallavieille-Pope, C.; Kaltz, O.; Enjalbert, J. Genetic structure and local adaptation of European wheat yellow rust populations: The role of temperature-specific adaptation. Evol. Appl. 2012, 5, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Milus, E.A.; Kristensen, K.; Hovmøller, M.S. Evidence for increased aggressiveness in a recent widespread strain of Puccina striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology 2009, 99, 89–94. [Google Scholar] [CrossRef] [PubMed]
- De Vallavieille-Pope, C.; Ali, S.; Leconte, M.; Enjalbert, J.; Delos, M.; Rouzet, J. Virulence dynamics and regional structuring of Puccinia striiformis f. sp. tritici in France between 1984 and 2009. Plant Dis. 2012, 96, 131–140. [Google Scholar] [CrossRef]
- Hovmøller, M.S.; Walter, S.; Bayles, R.A.; Hubbard, A.; Flath, K.; Sommerfeldt, N.; Leconte, M.; Czembor, P.; Rodriguez-Algaba, J.; Thach, T.; et al. Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathol. 2016, 65, 402–411. [Google Scholar] [CrossRef]
- Sharma-Poudyal, D.; Chen, X.M.; Wan, A.M.; Zhan, G.M.; Kang, Z.S.; Cao, S.Q.; Jin, S.L.; Morgounov, A.; Akin, B.; Mert, Z.; et al. Virulence characterization of international collections of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici. Plant Dis. 2013, 97, 379–386. [Google Scholar] [CrossRef]
- Kokhmetova, A.; Sharma, R.; Rsaliyev, S.; Galymbek, K.; Baymagambetova, K.; Ziyaev, Z.; Morgounov, A. Evaluation of Central Asian wheat germplasm for stripe rust resistance. Plant Genet. Resour. 2018, 16, 178–184. [Google Scholar] [CrossRef]
- Chen, X.; Wang, M.; Wan, A.; Bai, Q.; Li, M.; López, P.F.; Maccaferri, M.; Mastrangelo, M.; Barnes, C.; Fabricio, D.; et al. Virulence characterization of Puccinia striiformis f. sp. tritici collections from six countries in 2013 to 2020. Can. J. Plant Pathol. 2021, 43, 308–322. [Google Scholar] [CrossRef]
- Wellings, C.R. Puccinia striiformis in Australia: A review of the incursion, evolution, and adaptation of stripe rust in the period 1979–2006. Aust. J. Agric. Res. 2007, 58, 567–575. [Google Scholar] [CrossRef]
- Sanin, S.S. Agricultural plant disease control—The main factor of the crop production intensification. Plant Prot. News. 2010, 1, 3–14. (In Russian) [Google Scholar]
- Gultyaeva, E.; Shaydayuk, E.; Gannibal, P.H.; Kosman, E. Analysis of host-specific differentiation of Puccinia striiformis in the South and North-West of the European Part of Russia. Plants 2021, 10, 2497. [Google Scholar] [CrossRef]
- Ivanova, Y.N.; Rosenfread, K.K.; Stasyuk, A.I.; Skolotneva, E.S.; Silkova, O.G. Raise and characterization of a bread wheat hybrid line (Tulaykovskaya 10 × Saratovskaya 29) with chromosome 6Agi2 introgressed from Thinopyrum intermedium. Vavilov J. Genet. Breed. 2021, 25, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Druzhin, A.E. Effect of climate change on the structure of populations of spring wheat pathogens in the Volga region. Agrar. Report. South-East 2010, 1, 31–36. (In Russian) [Google Scholar]
- Zeleneva, Y.V.; Sudnikova, V.P.; Buchneva, G.N. Immunological characteristics of soft winter wheat varieties in conditions of the CBR. Proc. Kuban State Agrar. Univ. 2022, 96, 95–99. [Google Scholar] [CrossRef]
- Perronne, R.; Dubs, F.; de Vallavieille-Pope, C.; Leconte, M.; du Cheyron, P.; Cadot, V.; Vidal, T.; Enjalbert, J. Spatiotemporal changes in varietal resistance to wheat yellow rust in France reveal an increase in field resistance level during the period 1985–2018. Phytopathology 2021, 111, 1602–1612. [Google Scholar] [CrossRef]
- Yang, R.C.; Peng, F.Y.; Hu, Z.Q. Inferring defense-related gene families in Arabidopsis and wheat. BMC Genom. 2017, 18, 980. [Google Scholar] [CrossRef]
- McIntosh, R.A.; Dubcovsky, J.; Rogers, W.J.; Xia, X.C.; Raupp, W.J.V. Catalogue of Gene Symbols for Wheat: 2022 Supplement. Annu. Wheat Newsl. 2022, 68, 68–81. Available online: https://wheat.pw.usda.gov/ggpages/awn/68/AWN (accessed on 22 August 2023).
- McIntosh, R.A.; Yamazaki, Y.; Dubcovsky, J.; Rogers, J.; Morris, C.; Appels, R.; Xia, X.C. Catalogue of Gene Symbols for Wheat: 2013–2014 Supplement. Available online: https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2013.pdf (accessed on 22 August 2022).
- McIntosh, R.A.; Dubcovsky, J.; Rogers, W.J.; Morris, C.; Xia, X.C. Catalogue of Gene Symbols for Wheat: 2017 Supplement. Available online: https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf (accessed on 22 August 2023).
- Brar, G.S.; Kutcher, H.R. Race characterization of Puccinia striiformis f. sp. tritici, the cause of wheat stripe rust, in Saskatchewan and Southern Alberta, Canada and virulence comparison with races from the United States. Plant Dis. 2016, 100, 1744–1753. [Google Scholar] [CrossRef] [PubMed]
- Bouvet, L.; Holdgate, S.; James, L.; Thomas, J.; Mackay, I.J.; Cockram, J. The evolving battle between yellow rust and wheat: Implications for global food security. Theor. Appl. Genet. 2022, 135, 741–753. [Google Scholar] [CrossRef] [PubMed]
- Ye, B.; Singh, R.P.; Yuan, C.; Liu, D.; Randhawa, M.S.; Huerta-Espino, J.; Bhavani, S.; Lagudah, E.; Lan, C. Three co-located resistance genes confer resistance to leaf rust and stripe rust in wheat variety Borlaug 100. Crop J. 2022, 10, 490–497. [Google Scholar] [CrossRef]
- MasWheat. Stripe Rust Resistance Genes. Available online: https://maswheat.ucdavis.edu/protocols (accessed on 22 August 2023).
- Kokhmetova, A.; Rsaliyev, A.; Malysheva, A.; Atishova, M.; Kumarbayeva, M.; Keishilov, Z. Identification of stripe rust resistance genes in common wheat cultivars and breeding lines from Kazakhstan. Plants 2021, 10, 2303. [Google Scholar] [CrossRef]
- Rani, R.; Singh, R.; Yadav, N.R. Evaluating stripe rust resistance in Indian wheat genotypes and breeding lines using molecular markers. Comptes Rendus Biol. 2019, 342, 154–174. [Google Scholar] [CrossRef] [PubMed]
- Gangwar, P.; Kumar, S.; Bhardwaj, S.C.; Prasad, P.; Kashyap, P.L.; Khan, H.; Singh, G.P.; Savadi, S. Virulence and molecular diversity among Puccinia striiformis f. sp. tritici pathotypes identified in India between 2015 and 2019. Crop Prot. 2021, 148, 105717. [Google Scholar] [CrossRef]
- Characteristics of Plant Varieties Included in Public Register of Breeding Achievements in 2018 for the First Time and Approved for Use: Official Publication; FGBNU «Rosinformagrotekh»: Moscow, Russia, 2019; 460p, Available online: https://gossortrf.ru/publication/opisaniya-selektsionnykh-dostizheniy.php (accessed on 22 August 2023). (In Russian)
- Characteristics of Plant Varieties Included in Public Register of Breeding Achievements in 2020 for the First Time and Approved for Use: Official Publication; FGBNU «Rosinformagrotekh»: Moscow, Russia, 2020; 490p, Available online: https://gossortrf.ru/publication/opisaniya-selektsionnykh-dostizheniy.php (accessed on 22 August 2023). (In Russian)
- Characteristics of Plant Varieties Included in Public Register of Breeding Achievements in 2021 for the First Time and Approved for Use: Official Publication; FGBNU «Rosinformagrotekh»: Moscow, Russia, 2021; 404p, Available online: https://gossortrf.ru/publication/opisaniya-selektsionnykh-dostizheniy.php (accessed on 22 August 2023). (In Russian)
- Characteristics of Plant Varieties Included in Public Register of Breeding Achievements in 2022 for the First Time and Approved for Use: Official Publication; FGBNU «Rosinformagrotekh»: Moscow, Russia, 2022; 504p, Available online: https://gossortrf.ru/publication/opisaniya-selektsionnykh-dostizheniy.php (accessed on 22 August 2023). (In Russian)
- Catalogue of National Center of Grain Named, P.P. Lukyanenko; EDVI: Krasnodar, Russia, 2022; 152p. (In Russian) [Google Scholar]
- Gultyaeva, E.; Shaydayuk, E.; Kosman, E. Virulence diversity of Puccinia striiformis f. sp. tritici in common wheat in Russian regions in 2019–2021. Agriculture 2022, 12, 1957. [Google Scholar] [CrossRef]
- Feng, L.; Xu, S.; Zhang, L.; Miao, Q.; Zhai, Q.; Li, N. SSR marker of wheat stripe rust resistance gene Yr2. J. Trit. Crops 2005, 25, 17–19. [Google Scholar]
- Weng, Y.; Azhaguvel, P.; Devkota, R.N.; Rudd, J.C. PCR based markers for detection of different sources of 1AL.1RS and 1BL.1RS wheat-rye translocations in wheat background. Plant Breed. 2007, 126, 482–486. [Google Scholar] [CrossRef]
- Helguera, M.; Khan, I.A.; Kolmer, J.; Lijavetzky, D.; Zhong-qi, L.; Dubcovsky, J. PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop. Sci. 2003, 43, 1839–1847. [Google Scholar] [CrossRef]
- Lagudah, E.S.; McFadden, H.; Singh, R.P.; Huerta-Espino, J.; Bariana, H.S.; Spielmeyer, W. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor. Appl. Genet. 2006, 114, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Trethowan, R. Breeding spring bread wheat for irrigated and rainfed production systems of developing world. In Breeding Major Food Staples; Kang, M., Priyadarshan, P.M., Eds.; Blackwell: Ames, IA, USA, 2007; pp. 109–140. [Google Scholar]
- Chawla, V. Genetic diversity of bread wheat genotypes (Triticum aestivum L.) revealed by microsatellite SSR markers for leaf and stripe rust resistance. J. Pharmacogn. Phytochem. 2019, 8, 86–93. [Google Scholar] [CrossRef]
- Herrera-Foessel, S.A.; Singh, R.P.; Lan, C.X.; Huerta-Espino, J.; Calvo-Salazar, V.; Bansal, U.K.; Bariana, H.S.; Lagudah, E.S. Yr60, a gene conferring moderate resistance to stripe rust in wheat. Plant Dis. 2015, 99, 508–511. [Google Scholar] [CrossRef]
- Volkova, G.V.; Shulyakovskaya, L.N.; Kudinova, O.A.; Matveeva, I.P. Yellow rust of wheat on Kuban. Plant Prot. Quar. 2018, 4, 22. (In Russian) [Google Scholar] [CrossRef]
- Shahin, A.A. Occurrence of new races and virulence changes of the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) in Egypt. Arch. Phytopathol. Plant Prot. 2020, 53, 552–569. [Google Scholar] [CrossRef]
- Amil, R.E.; Ali, S.; Bahri, B.; Leconte, M.; de Vallavieille-Pope, C.; Nazari, K. Pathotype diversification in the invasive PstS2 clonal lineage of Puccinia striiformis f. sp. tritici causing yellow rust on durum and bread wheat in Lebanon and Syria in 2010–2011. Plant Pathol. 2020, 69, 618–630. [Google Scholar] [CrossRef]
- Hovmøller, M.S.; Patpour, M.; Rodriguez-Algaba, J.; Thach, T.; Sørensen, C.K.; Justesen, A.F.; Hansen, J.G. GRRC Report of Yellow and Stem Rust Genotyping and Race Analyses 2021. Available online: https://agro.au.dk/fileadmin/www.grcc.au.dk/International_Services/Pathotype_YR_results/GRRC_Annual_Report2021.pdf (accessed on 25 August 2022).
- Chen, W.; Wellings, C.; Chen, X.; Kang, Z.; Liu, T. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Mol. Plant Pathol. 2014, 15, 433–446. [Google Scholar] [CrossRef]
- Wellings, C.R. Global status of stripe rust: A review of historical and current threats. Euphytica 2011, 179, 129–141. [Google Scholar] [CrossRef]
- Mago, R.; Spielmeyer, W.; Lawrence, G.J.; Lagudah, E.S.; Ellis, J.G.; Pryor, A. Identification and mapping of molecular markers linked to rust resistance genes located on chromo-some 1RS of rye using wheat-rye translocation lines. Theor. Appl. Genet. 2002, 104, 1317–1324. [Google Scholar] [CrossRef]
- Li, J.; Shi, L.; Wang, X.; Zhang, N.; Wei, X.; Zhang, L.; Yang, W.; Liu, D. Leaf rust resistance of 35 wheat cultivars (lines). J. Plant Pathol. Microbiol. 2018, 9, 1. [Google Scholar] [CrossRef]
- Dyck, P.L. Inheritance of leaf rust and stem rust resistance in ‘Roblin’ wheat. Genome 1992, 36, 289–293. [Google Scholar] [CrossRef]
- Singh, R.P. Association between gene Lr34 for leaf rust resistance and leaf tip necrosis in wheat. Crop Sci. 1992, 32, 874–878. [Google Scholar] [CrossRef]
- Lagudah, E.S.; Krattinger, S.G.; Herrera-Foessel, S.; Singh, R.P.; Huerta-Espino, J.; Spielmeyer, W.; Brown-Guedira, G.; Selter, L.L.; Keller, B. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor. Appl. Genet. 2009, 119, 889–898. [Google Scholar] [CrossRef] [PubMed]
- German, S.E.; Kolmer, J.A. Effect of gene Lr34 in the enhancement of resistance to leaf rust of wheat. Theor. Appl. Genet. 1992, 84, 97–105. [Google Scholar] [CrossRef]
- Dakouri, A.; McCallum, B.D.; Radovanovic, N.; Cloutier, S. Molecular and phenotypic characterization of seedling and adult plant leaf rust resistance in a world wheat collection. Mol. Breed. 2013, 32, 663–677. [Google Scholar] [CrossRef] [PubMed]
- Coriton, O.; Jahier, J.; Leconte, M.; Huteau, V.; Trotoux, G.; Dedryver, F.; de-Vallavieille-Pope, C. Double dose efficiency of the yellow rust resistance gene Yr17 in bread wheat lines. Plant Breed. 2019, 139, 263–271. [Google Scholar] [CrossRef]
- Bayles, R.A.; Flath, K.; Hovmøller, M.S.; de Vallavieille-Pope, C. Breakdown of the Yr17 resistance to yellow rust of wheat in northern Europe —A case study by the yellow rust sub-group of COST 817. Agronomie 2000, 20, 805–811. [Google Scholar] [CrossRef]
- Pal, D.; Kumar, S.; Bhardwaj, S.C.; Harikrishna; Devate, N.B.; Patial, M.; Parmeshwarappa, S.K.V. Molecular marker aided characterization of race specific and non-race specific rust resistance genes in elite wheat (Triticum spp.) germplasm. Australas. Plant Pathol. 2022, 51, 261–272. [Google Scholar] [CrossRef]
- State Register for Selection Achievements Admitted for Usage (National List). Vol. 1.“Plant Varieties” (Official Publication); (Gosreestr, 2020, 2021, 2022); Moscow; FGBNU «Rosinformagrotekh»: Moscow, Russia, 2022; 646p, Available online: https://reestr.gossortrf.ru/ (accessed on 25 August 2023). (In Russian)
- Gassner, G.; Straib, W. Untersuchungen Über die Infektions bedingungen von Puccinia glumarum und Puccinia graminis. Arb. Biol. Reichsanst. Land-Forst-Wirtsch Berl.-Dahl. 1932, 16, 609–629. [Google Scholar]
- Dorokhov, D.B.; Cloquet, E. A Rapid and economic technique for RAPD analysis of plant genomes Fast and economical technology of RAPD analysis of plant genomes. Russ. J. Genet. 1997, 33, 358–365. [Google Scholar]
- MasWheat. Stripe Rust Resistance Gene Yr5. Available online: https://maswheat.ucdavis.edu/protocols/Yr5 (accessed on 25 August 2023).
- Bariana, H.S.; Brown, G.N.; Ahmed, N.U.; Khatkar, S.; Conner, R.L.; Wellings, C.R.; Haley, S.; Sharp, P.J.; Laroche, A. Characterisation of Triticum vavilovii-derived stripe rust resistance using genetic, cytogenetic and molecular analyses and its marker-assisted selection. Theor. Appl. Genet. 2002, 104, 315–320. [Google Scholar] [CrossRef] [PubMed]
- MasWheat. Stripe Rust Resistance Gene Yr15. Available online: https://maswheat.ucdavis.edu/protocols/Yr15 (accessed on 25 August 2023).
- Zhang, X.; Han, D.; Zeng, Q.; Duan, Y.; Yuan, F.; Shi, J.; Wang, Q.; Wu, J.; Huang, L.; Kang, Z. Fine mapping of wheat stripe rust resistance gene Yr26 based on collinearity of wheat with Brachypodium distachyon and rice. PLoS ONE 2013, 8, e57885. [Google Scholar] [CrossRef] [PubMed]
Wheat Accession | Yr Gene | NW | NC_D | NC_Kr | NC_R | WS |
---|---|---|---|---|---|---|
Yr1/6*Avocet S | Yr1 | 0 | 3 | 3 | 3 | 3 |
Yr5/6*Avocet S | Yr5 | 0 | 0 | 0 | 0 | 0 |
Yr6/6*Avocet S | Yr6 | 3 | 3 | 3 | 3 | 3 |
Yr7/6*Avocet S | Yr7 | 2; | 1–2; | 2–3; | 3 | 2; |
Yr8/6*Avocet S | Yr8 | 2–3; | 3 | 3 | 3 | 3 |
Yr9/6*Avocet S | Yr9 | 3 | 3 | 3 | 3 | 3 |
Yr10/6*Avocet S | Yr10 | 0 | 0 | 0 | 0 | 0 |
Yr15/6*Avocet S | Yr15 | 0 | 0 | 0 | 0 | 0 |
Yr17/6*Avocet S | Yr17 | 2–3 | 3 | 0–1; | 1–2; | 0 |
Yr18/6*Avocet S | Yr18 | 3 | 3 | 3 | 3 | 3 |
Yr24/6*Avocet S | Yr24 | 2; | 0–1; | 0–1; | 0–1; | 0; |
Yr26/6*Avocet S | Yr26 | 2; | 0–1; | 0–1; | 0–1; | 0; |
YrSP/6*Avocet S | YrSp | 0 | 0 | 0 | 0 | 0 |
Yr27/6*Avocet S | Yr27 | 2–3; | 3 | 0; | 0–2; | 3 |
Chinese 166 | Yr1 | 0 | 3 | 3 | 3 | 3 |
Lee | Yr7, Yr+ | 3 | 3–4 | 3 | 3 | 3 |
Heines Kolben | Yr6, Yr2 | 3–4 | 3–4 | 3 | 3 | 3 |
Vilmorin 23 | Yr3, Yr+ | 2–3 | 2–3 | 3 | 3 | 3 |
Moro | Yr10, YrMor | 0; | 0 | 0 | 0 | 0 |
Strubes Dickkopf | YrSD, Yr25, Yr+ | 2 | 2 | 2–3 | 3 | 3 |
Suwon 92/Omar | YrSu, Yr+ | 3–4 | 3 | 3–4 | 3 | 3 |
Hybrid 46 | Yr4, Yr+ | 2 | 3 | 3–4 | 3 | 2; |
Reichersberg 42 | Yr7, Yr+ | 3 | 2–3 | 3–4 | 3 | 2; |
Heines Peko | Yr2, Yr6, Yr25, Yr+ | 3–4 | 2; | 3–4 | 3 | 3 |
Nord Desprez | Yr3, YrND, Yr+ | 0–1; | 0 | 2; | 2; | 2; |
Compair | Yr8, Yr19 | 3–4 | 0–2; | 2; | 2 | 3 |
Carstens V | Yr32, Yr25, Yr+ | 0–1; | 2–3 | 3–4 | 3 | 2; |
Spaldings Prolific | YrSP, Yr+ | 0 | 0 | 0 | 0 | 0 |
Heines VII | Yr2, Yr25, Yr+ | 2–3 | 2–3 | 2–3 | 3 | 2–3; |
Jupateco S, Avocet S | susceptible check | 3–4 | 3–4 | 3–4 | 3–4 | 3–4 |
Cultivar | Production Region 1 | Field Resistance 2 | Puccinia striiformis Infection Types | Yr Genes | ||||
---|---|---|---|---|---|---|---|---|
NW 3 | NC_D | NC_Kr | NC_R | WS | ||||
2019 | ||||||||
Arsenal | NC, LV | R | 2; | 3 | 3 | 3 | 3 | Yr18 |
Bazal’t 2 | LV | - | 3–4 | 3 | 2+–3 | 3 | 3 | Yr18 |
Bodryy | C | - | 3 | 3 | 2+–3 | 3 | 0–2; | |
Donmira | NC | - | 3 | 3 | 3 | 3 | 3 | |
Etyud | NC, LV | R | 2+–3 | 0–1 | 2+–3 | 2+–3 | 3− | Yr18 |
Felitsiya | C | - | 2–3 | 3 | 3 | 3 | 3 | Yr18 |
Gerda | NC | R | 3 | 3 | 3 | 3 | 1–2; | |
Iridas | NC | - | 2–3 | 3 | 0; | 0–1 | 0 | Yr9 |
Kavalerka | NC | R | 3 | 3 | 3 | 3 | 3 | |
Korona | NC | - | 3 | 3 | 3 | 3 | 3 | Yr9, Yr18 |
Markiz | NC | R | 3–4 | 3 | 2 | 2 | 0–2; | Yr17 |
Shef | NC | - | 2+–3 | 2+–3 | 2+–3 | 2+–3 | 0 | Yr18 |
Stat’ | LV | R | 2–3 | 3 | 3 | 3 | 0 | Yr18 |
STRG 8060 15 | CCh | - | 3 | 2–3 | 3 | 3 | 3 | |
Timiryazevka 150 | CCh, NC, LV | R | 2 | 1–2; | 1–2; | 2 | 2; | Yr9 |
Videya | NC | R | 3 | 3 | 3 | 3 | 0 | Yr9 |
2020 | ||||||||
Akapella | CCh, NC | MR | 2; | 0–1 | 2 | 2 | 0 | Yr18 |
Akhmat | CC, NC | R | 3 | 3 | 2+–3 | 3 | 0 | Yr9 |
Al’ternativa | MV | - | 3 | 3 | 2–3 | 3 | 3 | |
Anastasiya | LV | - | 3 | 2 | 2 | 2 | 1–2; | |
Armada | CCh, NC | R | 3 | 3 | 3 | 3 | 2–3 | Yr9 |
Barynya | NC | - | 3 | 2+–3 | 3–4 | 3 | 3 | |
Bylina Dona | NC | - | 3 | 3 | 1–2; | 2 | 3− | |
Donskaya step’ | NC, LV | - | 3 | 3 | 2+–3 | 3 | 3 | |
Gomer | CCh, NC | YR | 2;–3 | 3 | 0–1; | 0–1 | 0; | Yr17 |
Paritet | LV | - | 3 | 3 | 3 | 3 | 2+–3 | Yr9, Yr18 |
Sekletiya | NC, LV | - | 3 | 2+–3 | 3 | 3 | 3–4 | Yr18 |
Tsefey | CCh | - | 3 | 2+–3 | 2+–3 | 3 | 3 | |
Vol’nitsa | NC | MR | 0 | 2- | 0;–1 | 0–1 | 0–1; | Yr18 |
Vol’nyy Don | NC | - | 3 | 3 | 3–4 | 3 | 3 | Yr18 |
V’yuga | MV | - | 2+–3 | 0 | 1–2; | 2 | 2+–3 | Yr18 |
Yelanchik | NC, LV | R | 2 | 2 | 1–2 | 2 | 0–1; | |
Yelanskaya | LV | - | 3 | 3 | 3 | 3 | 3 | |
Zhavoronok | NC, LV | - | 3 | 3 | 3 | 3 | 3 | Yr18 |
2021 | ||||||||
Al’bireo | CCh | - | 2; | 2+–3 | 3 | 2+–3 | 3–4 | Yr18 |
Bogema | NC | - | 2+–3 | 2+–3 | 3 | 2+–3 | 1;–2 | |
Bumba | NC | MS | 2; | 3 | 2+–3 | 3 | 0; | |
Galateya | C | - | 0; | 2 | 2 | 2; | 0–1 | |
Khamdan | NC, LV | YR | 2 | 2 | 2 | 2 | 2; | Yr18 |
Klassika | CCh, NC, LV | R | 3 | 3 | 3 | 2; | 3–4 | |
Krasnoobskaya ozimaya | WS | R | 3 | 3 | 3 | 3 | 3–4 | |
Moskovskaya 82 | VV, CCh | - | 3 | 3 | 2 | 2; | 0 | |
Nemchinovskaya 85 | C, VV, CCh | - | 3 | 3 | 0; | 0–1; | 0; | Yr17 |
Partner | NC | - | 2+–3 | 3 | 3 | 3 | 2 | Yr18 |
Polina | NC | MR | 0–1; | 2; | 2; | 1–2; | 0–2; | Yr9 |
Rifey | U | - | 2+–3 | 2+–3 | 2+–3 | 2+–3 | 1–2; | Yr18 |
Rossyp’ | NC, LV | MS | 2+–3 | 3 | 2+–3 | 2+–3 | 1–2; | Yr9 |
Sharm | NC | R | 2; | 2 | 2; | 2+; | 2 | |
Status | NC, LV | - | 2; | 2; | 2+–3; | 2+–3 | 0 | Yr9, Yr18 |
Stil’ 18 | CCh, NC, LV | R | 2+–3 | 3 | 2+–3 | 3–4 | 2+–3 | |
Taygeta | CCh, MV | - | 2; | 3 | 2; | 2 | 2 | Yr18 |
Yubiley Dona | NC, LV | MR | 2; | 2 | 2 | 1–2; | 2 | |
2022 | ||||||||
Agrofak 100 | CCh, NC | R | 3–4 | 3 | 3 | 3 | 2+–3 | |
Ambar | CCh, NC | - | 3 | 3 | 3 | 3 | 3–4 | Yr9 |
Batya | CCh, NC, LV | - | 3–4 | 3 | 3 | 3–4 | 3 | |
En Foton | CCh | - | 3–4 | 2 | 0 | 0–1 | 2 | Yr18 |
En Mars | CCh | - | 3–4 | 1–2; | 3 | 3 | 3–4 | |
Estafeta | MV | - | 3–4 | 2+–3 | 3- | 2+–3 | 2+–3 | |
Fyodor | CCh, NC | R: YR | 2 | 0 | 0–1; | 2 | 2; | Yr9 |
Leo | NC | - | 1–2; | 2+–3 | 2+–3 | 2+–3 | 2+–3 | Yr9 |
Mig | CCh, NC | MR:YR | 3–4 | 3 | 3 | 3 | 3 | |
Morets | NC, LV | R | 3 | 3 | 2+–3 | 2+–3 | 3 | Yr18 |
Pal’mira 18 | CCh, NC, MV | MR | 2 | 0 | 0 | 0–1; | 2 | Yr18 |
Podruga | LV, U | - | 2; | 0 | 2; | 2; | 2; | Yr18 |
Shkola | CCh, NC, MV, LV | MR | 3 | 3 | 2–3 | 3 | 2–3 | 1AL.1RS |
Sirena | CCh | - | 2; | 0 | 0–1; | 2 | 0–1; | |
Studencheskaya niva | LV | - | 3–4 | 3 | 3 | 2+–3 | 2+–3 | Yr18 |
Timiryazevskaya yubileynaya | CCh | - | 3–4 | 3 | 0–1; | 1–2; | 3–4 | |
Vladi | C, VV | - | 3–4 | 3 | 3 | 3–4 | 2–3 | |
Volodya | CCh, NC, MV | - | 3–4 | 3 | 0 | 0–2; | 3 | |
Zarechnaya | CCh | - | 3–4 | 3 | 3 | 3–4 | 2–3 | 1AL.1RS |
Zodiak | NC | - | 3 | 2+–3 | 3 | 3 | 3 |
Gene | Marker | Primer Sequence | References |
---|---|---|---|
Yr2 | Wmc364 | ATCACAATGCTGGCCCTAAAAC CAGTGCCAAAATGTCGAAAGTC | [40] |
Yr5 | STS7/8 | GTACAATTCACCTAGAGT GCAAGTTTTCTCCCTATT | [66] |
STS9/10 | AAAGAATACTTTAATGAA CAAACTTATCAGGATTAC | ||
Yr7 | CFD77 | CTGCTTCAGGGATTGGAGAG GTTTCCTGGGCTAAACCACA | [32] |
Yr9 | SCM9 | TGAСААСССССТТТСССТCGT ТСАTCGACGСТАAGGAGGАССС | [41] |
Yr10 | Xpsp3000 | GCAGACCTGTGTCATTGGTC GATATAGTGGCAGCAGGATACG | [67] |
Yr15 | Xbarc8 | GCGGGAATCATGCATAGGAAAACAGAA GCGGGGGCGAAACATACACATAAAAACA | [68] |
Yr17 | Ventriup LN2 | AGGGGCTACTGACCAAGGCT TGCAGCTACAGCAGTATGTACACAAAA | [42] |
Yr18 | csLV34 | GTTGGTTAAGACTGGTGATGG TGCTTGCTATTGCTGAATAGT | [43] |
Yr24 | Barc181 | CGCTGGAGGGGGTAAGTCATCAC CGCAAATCAAGAACACGGGAGAAAGAA | [32,69] |
Yr25 | Xgwm6 | CGTATCACCTCCTAGCTAAACTAG AGCCTTATCATGACCCTACCTT | [32,45] |
Yr60 | Wmc776 | CCATGACGTGACAACGCAG ATTGCAGGCGCGTTGGTA | [46] |
Wmc313 | GCAGTCTAATTATCTGCTGGCG GGGTCCTTGTCTACTCATGTCT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gultyaeva, E.; Shaydayuk, E. Resistance of Modern Russian Winter Wheat Cultivars to Yellow Rust. Plants 2023, 12, 3471. https://doi.org/10.3390/plants12193471
Gultyaeva E, Shaydayuk E. Resistance of Modern Russian Winter Wheat Cultivars to Yellow Rust. Plants. 2023; 12(19):3471. https://doi.org/10.3390/plants12193471
Chicago/Turabian StyleGultyaeva, Elena, and Ekaterina Shaydayuk. 2023. "Resistance of Modern Russian Winter Wheat Cultivars to Yellow Rust" Plants 12, no. 19: 3471. https://doi.org/10.3390/plants12193471
APA StyleGultyaeva, E., & Shaydayuk, E. (2023). Resistance of Modern Russian Winter Wheat Cultivars to Yellow Rust. Plants, 12(19), 3471. https://doi.org/10.3390/plants12193471