Genomics and Physiology of Chlorophyll Fluorescence Parameters in Hordeum vulgare L. under Drought and Salt Stresses
Abstract
:1. Introduction
2. Results and Discussion
2.1. Correlation between Traits and Grouping between Lines
2.2. Correlations between Chlorophyll Fluorescence Parameters
2.3. Cluster Analysis of Barley Lines Based on Chlorophyll Fluorescence Parameters
2.4. Linkage Map Construction
2.5. Mapping Chlorophyll Fluorescence Attributes
2.5.1. Mapping of Chlorophyll Fluorescence Attributes under Normal Conditions
2.5.2. Mapping of Chlorophyll Fluorescence Attributes under Drought Stress
2.5.3. Mapping of Chlorophyll Fluorescence Attributes under Salinity Stress
3. Materials and Methods
3.1. Genetic Population
3.2. Seedling Growth
3.3. Applying Salinity Stress
3.4. Applying Drought Stress
3.5. Chlorophyll Fluorescence Attributes
3.6. Genotype Evaluations
3.7. Statistical Analysis, Linkage Map Construction, and QTL Analysis
3.7.1. Analysis of Phenotypic Data
3.7.2. Analysis of Molecular Data
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samarah, N.H. Effects of drought stress on growth and yield of barley. Agron. Sustain. Dev. 2005, 25, 145–149. [Google Scholar] [CrossRef]
- Chen, Z.; Shabala, S.; Mendham, N.; Newman, I.; Zhang, G.; Zhou, M. Combining ability of salinity tolerance on the basis of NaCl-Induced K+ flux from roots of barley. Crop Sci. 2008, 48, 1382–1388. [Google Scholar] [CrossRef]
- Mahajan, S.; Tuteja, N. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 2005, 444, 139–158. [Google Scholar] [CrossRef] [PubMed]
- Jaleel, C.A.; Manivannan, P.; Lakshmanan, G.M.A.; Gomathinayagam, M.; Panneerselvam, R. Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloids Surf. B Biointerfaces 2008, 61, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Bhusal, N.; Lee, M.; Han, A.R.; Han, A.; Kim, H.S. Responses to drought stress in Prunus sargentii and Larix kaempferi seedlings using morphological and physiological parameters. For. Ecol Manag. 2020, 465, 118099. [Google Scholar] [CrossRef]
- Salmon, Y.; Dietrich, L.; Sevanto, S.; Hölttä, T.; Dannoura, M.; Epron, D. Drought impacts on tree phloem: From cell-level responses to ecological significance. Tree Physiol. 2019, 39, 173–191. [Google Scholar] [CrossRef]
- Lu, Q.; Lu, C.; Zhang, J.; Kuang, T. Photosynthesis and chlorophylla fluorescence during flag leaf senescence of field-grown wheat plants. J. Plant Physiol. 2002, 159, 1173–1178. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Bhusal, N.; Park, I.H.; Jeong, S.; Choi, B.H.; Han, S.G.; Yoon, T.M. Photosynthetic traits and plant hydraulic dynamics in Gamhong apple cultivar under drought, waterlogging, and stress recovery periods. Sci. Hortic. 2023, 321, 112276. [Google Scholar] [CrossRef]
- Moffatt, J.M.; Sears, R.G.; Paulsen, G.M. Wheat high temperature tolerance during reproductive growth. I. Evaluation by chlorophyll fluorescence. Crop Sci. 1990, 30, 881–885. [Google Scholar] [CrossRef]
- Percival, G.C.; Henderson, A. An assessment of the freezing tolerance of urban trees using chlorophyll fluorescence. J. Hortic. Sci. Biotechnol. 2015, 78, 254–260. [Google Scholar] [CrossRef]
- Fracheboud, Y.; Leipner, J. The Application of chlorophyll fluorescence to study light, temperature, and drought stress. In Practical Applications of Chlorophyll Fluorescence in Plant Biology; Springer: Boston, MA, USA, 2003; pp. 125–150. [Google Scholar] [CrossRef]
- Bhusal, N.; Han, S.G.; Yoon, T.M. Impact of drought stress on photosynthetic response, leaf water potential, and stem sap flow in two cultivars of bi-leader apple trees (Malus × domestica Borkh.). Sci. Hortic. 2019, 246, 535–543. [Google Scholar] [CrossRef]
- Belkhodja, R.; Morales, F.; Abadia, A.; Gomez-Aparisi, J.; Abadia, J. Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). Plant Physiol. 1994, 104, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Petridis, A.; Therios, I.; Samouris, G.; Koundouras, S.; Giannakoula, A. Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiol. Biochem. 2012, 60, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Razavi, F.; Pollet, B.; Steppe, K.; van Labeke, M.C. Chlorophyll fluorescence as a tool for evaluation of drought stress in strawberry. Photosynthetica 2008, 46, 631–633. [Google Scholar] [CrossRef]
- Hussain, M.I.; Reigosa, M.J. A chlorophyll fluorescence analysis of photosynthetic efficiency, quantum yield and photon energy dissipation in PSII antennae of Lactuca sativa L. leaves exposed to cinnamic acid. Plant Physiol. Bioch. 2011, 49, 1290–1298. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef]
- Bhusal, N.; Lee, M.; Lee, H.; Adhikari, A.; Han, A.H.; Han, A.; Kim, H.S. Evaluation of morphological, physiological, and biochemical traits for assessing drought resistance in eleven tree species. Sci. Total Environ. 2021, 779, 146466. [Google Scholar] [CrossRef]
- Kosar, F.; Akram, N.A.; Ashraf, M.; Ahmad, A.; Alyemeni, M.N.; Ahmad, P. Impact of exogenously applied trehalose on leaf biochemistry, achene yield and oil composition of sunflower under drought stress. Physiol. Plant. 2020, 172, 317–333. [Google Scholar] [CrossRef]
- Jan, S.; Abbas, N.; Ashraf, M.; Ahmad, P. Roles of potential plant hormones and transcription factors in controlling leaf senescence and drought tolerance. Protoplasma 2018, 256, 313–329. [Google Scholar] [CrossRef]
- Kaya, C.; Higgs, D.; Ashraf, M.; Alyemeni, M.N.; Ahmad, P. Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper (Capsicum annuum L.) plants to iron deficiency and salt stress alone or in combination. Physiol. Plant. 2019, 168, 256–277. [Google Scholar] [CrossRef]
- Farooq, A.; Bukhari, S.A.; Akram, N.A.; Ashraf, M.; Wijaya, L.; Alyemeni, M.N.; Ahmad, P. Exogenously applied ascorbic acid-mediated changes in osmoprotection and oxidative defense system enhanced water stress tolerance in different cultivars of safflower (Carthamus tinctorious L.). Plants 2020, 9, 104. [Google Scholar] [CrossRef]
- Mibei, E.K.; Ambuko, J.; Giovannoni, J.J.; Onyango, A.N.; Owino, W.O. Carotenoid profiling of the leaves of selected African eggplant accessions subjected to drought stress. Food Sci. Nutr. 2016, 5, 113–122. [Google Scholar] [CrossRef]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the chlorophyll a fluorescence transient. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Springer: Dordrecht, The Netherlands, 2004; Volume 19, pp. 321–362. [Google Scholar] [CrossRef]
- Christen, D.; Schönmann, S.; Jermini, M.; Strasser, R.J.; Défago, G. Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environ. Exp. Bot. 2007, 60, 504–514. [Google Scholar] [CrossRef]
- Ogrodowicz, P.; Adamski, T.; Mikolajczak, K.; Kuczynska, A.; Surma, M.; Krajewski, P.; Sawikowska, A.; Gorny, A.G.; Gudys, K.; Szarejko, I.; et al. QTLs for earliness and yield-forming traits in the Lubuski x CamB barley RIL population under various water regimes. J. Appl. Genet. 2017, 58, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Tavakkoli, E.; Fatehi, F.; Coventry, S.; Rengasamy, P.; McDonald, G.K. Additive effects of Na+ and Cl− ions on barley growth under salinity stress. J. Exp. Bot. 2011, 62, 2189–2203. [Google Scholar] [CrossRef] [PubMed]
- Ahanger, M.A.; Aziz, U.; Alsahli, A.A.; Alyemeni, M.N.; Ahmad, P. Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed vigna angularis. Biomolecules 2019, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Ahanger, M.A.; Agarwal, R.M. Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L.) as influenced by potassium supplementation. Plant Physiol. Bioch. 2017, 115, 449–460. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Tittal, M.; Mir, R.A.; Agarwal, R.M. Alleviation of water and osmotic stress-induced changes in nitrogen metabolizing enzymes in Triticum aestivum L. cultivars by potassium. Protoplasma 2017, 254, 1953–1963. [Google Scholar] [CrossRef]
- Roach, T.; Krieger-Liszkay, A. Regulation of photosynthetic electron transport and photoinhibition. Curr. Protein Pept. Sci. 2014, 15, 351–362. [Google Scholar] [CrossRef]
- Yin, Z.; Meng, F.; Song, H.; He, X.; Xu, X.; Yu, D. Mapping quantitative trait loci associated with chlorophyll a fluorescence parameters in soybean (Glycine max (L.) Merr.). Planta 2010, 231, 875–885. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Baum, M.; Varshney, R.K.; Graner, A.; Grando, S.; Ceccarelli, S. QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica 2007, 163, 203–214. [Google Scholar] [CrossRef]
- Sharma, D.K.; Andersen, S.B.; Ottosen, C.-O.; Rosenqvist, E. Wheat cultivars selected for high Fv/Fmunder heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiol. Plant. 2015, 153, 284–298. [Google Scholar] [CrossRef] [PubMed]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant 2016, 38, 102. [Google Scholar] [CrossRef]
- Ahmad, P.; Ahanger, M.A.; Alam, P.; Alyemeni, M.N.; Wijaya, L.; Ali, S.; Ashraf, M. Silicon (Si) Supplementation alleviates NaCl toxicity in Mung Bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key Antioxidant Enzymes. J. Plant Growth Regul. 2018, 38, 70–82. [Google Scholar] [CrossRef]
- Ghassemi-Golezani, K.; Lotfi, R. The impact of salicylic acid and silicon on chlorophyll a fluorescence in mung bean under salt stress. Russ. J. Plant Physiol. 2015, 62, 611–616. [Google Scholar] [CrossRef]
- Maghsoudi, K.; Emam, Y.; Ashraf, M. Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance. Turk. J. Bot. 2015, 39, 625–634. [Google Scholar] [CrossRef]
- Raja, V.; Qadir, S.U.; Alyemeni, M.N.; Ahmad, P. Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. 3 Biotech 2020, 10, 208. [Google Scholar] [CrossRef]
- Guidi, L.; Lo Piccolo, E.; Landi, M. Chlorophyll fluorescence, photoinhibition and abiotic stress: Does it make any difference the fact to Be a C3 or C4 species? Front. Plant Sci. 2019, 10, 174. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, Z.; Zhu, L.; Ma, Z.; Wang, J.; Zhu, J. Exogenous melatonin improves plant iron deficiency tolerance via increased accumulation of polyamine-mediated nitric oxide. Int. J. Mol. Sci. 2016, 17, 1777. [Google Scholar] [CrossRef]
- Kaya, C.; Şenbayram, M.; Akram, N.A.; Ashraf, M.; Alyemeni, M.N.; Ahmad, P. Sulfur-enriched leonardite and humic acid soil amendments enhance tolerance to drought and phosphorus deficiency stress in maize (Zea mays L.). Sci. Rep. 2020, 10, 6432. [Google Scholar] [CrossRef] [PubMed]
- Begum, N.; Ahanger, M.A.; Su, Y.; Lei, Y.; Mustafa, N.S.A.; Ahmad, P.; Zhang, L. Improved drought tolerance by AMF inoculation in maize (Zea mays) involves physiological and bBiochemical implications. Plants 2019, 8, 579. [Google Scholar] [CrossRef] [PubMed]
- Alam, P.; Albalawi, T.H.; Altalayan, F.H.; Bakht, M.A.; Ahanger, M.A.; Raja, V.; Ashraf, M.; Ahmad, P. 24-Epibrassinolide (EBR) confers tolerance against NaCl stress in soybean plants by up-Regulating antioxidant system, ascorbate-glutathione cycle, and Gglyoxalase system. Biomolecules 2019, 9, 640. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Xie, Z.K.; Wang, Y.J.; Su, P.X.; An, L.P.; Gao, H. Effect of water stress on leaf photosynthesis, chlorophyll content, and growth of oriental lily. Russ. J. Plant Physiol. 2011, 58, 844–850. [Google Scholar] [CrossRef]
- Hazrati, S.; Tahmasebi-Sarvestani, Z.; Modarres-Sanavy, S.A.M.; Mokhtassi-Bidgoli, A.; Nicola, S. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. Plant Physiol. Biochem. 2016, 106, 141–148. [Google Scholar] [CrossRef]
- Li, J.Z.; Sjakste, T.G.; Röder, M.S.; Ganal, M.W. Development and genetic mapping of 127 new microsatellite markers in barley. Theor. Appl. Genet. 2003, 107, 1021–1027. [Google Scholar] [CrossRef]
- Ramsay, L.; Macaulay, M.; Ivanissevich, S.D.; MacLean, K.; Cardle, L.; Fuller, J.; Edwards, K.J.; Tuvesson, S.; Morgante, M.; Massari, A.; et al. A simple sequence repeat-based linkage map of barley. Genetics 2000, 156, 1997–2005. [Google Scholar] [CrossRef]
- Struss, D.; Plieske, J. The use of microsatellite markers for detection of genetic diversity in barley populations. Theor. Appl. Genet. 1998, 97, 308–315. [Google Scholar] [CrossRef]
- Thiel, T.; Michalek, W.; Varshney, R.; Graner, A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 2003, 106, 411–422. [Google Scholar] [CrossRef]
- Graner, A.; Jahoor, A.; Schondelmaier, J.; Siedler, H.; Pillen, K.; Fischbeck, G.; Wenzel, G.; Herrmann, R.G. Construction of an RFLP map of barley. Theor. Appl. Genet. 1991, 83, 250–256. [Google Scholar] [CrossRef]
- Kleinhofs, A.; Kilian, A.; Saghai Maroof, M.A.; Biyashev, R.M.; Hayes, P.; Chen, F.Q.; Lapitan, N.; Fenwick, A.; Blake, T.K.; Kanazin, V.; et al. A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor. Appl. Genet. 1993, 86, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Wenzl, P.; Li, H.; Carling, J.; Zhou, M.; Raman, H.; Paul, E.; Hearnden, P.; Maier, C.; Xia, L.; Caig, V.; et al. A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genom. 2006, 7, 206. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Stam, P.; Lindhout, P. Use of locus-specific AFLP markers to construct a high-density molecular map in barley. Theor. Appl. Genet. 2014, 96, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Jafary, H.; Szabo, L.J.; Niks, R.E. Innate nonhost immunity in barley to different heterologous rust fungi is controlled by sets of resistance genes with different and overlapping specificities. Mol. Plant Microbe Interact. 2006, 19, 1270–1279. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Marcel, T.C.; Ramsay, L.; Russell, J.; Röder, M.S.; Stein, N.; Waugh, R.; Langridge, P.; Niks, R.E.; Graner, A. A high density barley microsatellite consensus map with 775 SSR loci. Theor. Appl. Genet. 2007, 114, 1091–1103. [Google Scholar] [CrossRef]
- Rostoks, N.; Mudie, S.; Cardle, L.; Russell, J.; Ramsay, L.; Booth, A.; Svensson, J.T.; Wanamaker, S.I.; Walia, H.; Rodriguez, E.M.; et al. Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol. Genet. Genom. 2005, 274, 515–527. [Google Scholar] [CrossRef]
- Hassan, F.S.C.; Solouki, M.; Fakheri, B.A.; Nezhad, N.M.; Masoudi, B. Mapping QTLs for physiological and biochemical traits related to grain yield under control and terminal heat stress conditions in bread wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants 2018, 24, 1231–1243. [Google Scholar] [CrossRef]
- Biareh, V.; Shekari, F.; Sayfzadeh, S.; Zakerin, H.; Hadidi, E.; Beltrao, J.G.T.; Mastinu, A. Physiological and qualitative response of cucurbita pepo L. to salicylic acid under controlled water stress conditions. Horticulturae 2022, 8, 79. [Google Scholar] [CrossRef]
- Kaviani Charati, A.; Sabouri, H.; Fallahi, H.A.; Jorjani, E. QTL Mapping of spike characteristics in barley using F3 and F4 families derived from Badia × Komino cross. Plant Genet. Res. 2016, 3, 13–28. [Google Scholar] [CrossRef]
- Makhtoum, S. Mapping the Morphological Traits of Barley Using Recombinant Lines of Barley in Germination, Seedling, Vegetative and Reproductive Stages under Salinity and Drought Stress. Master’s Thesis, Gonbad Kavous University, Gonbad-e Kavus, Iran, 2020. [Google Scholar]
- Taghizadeh, Z.; Sabouri, H.; Hosseinimoghaddam, H.; Fallahi, H.A.; Katouzi, M. Genetic diversity and relationship between yield and yield components Mmorphological in F3 family of barley crosses Badia×Kavir using multivarite analysis methods. J. Crop Breed. 2019, 11, 188–197. [Google Scholar]
- Taghizadeh, Z.; Sabouri, H.; Hosseinimoghaddam, H.; Fallahi, H.A.; Katouzi, M. Mapping QTLs associated with Barley seed germination under normal and drought stress conditions. Iran. J. Seed Sci. Technol. 2019, 8, 227–239. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Naservafaei, S.; Sohrabi, Y.; Moradi, P.; Mac Sweeney, E.; Mastinu, A. Biological Response of Lallemantia iberica to Brassinolide Treatment under Different Watering Conditions. Plants 2021, 10, 496. [Google Scholar] [CrossRef]
- Yousefi, A.R.; Rashidi, S.; Moradi, P.; Mastinu, A. Germination and Seedling Growth Responses of Zygophyllum fabago, Salsola kali L. and Atriplex canescens to PEG-Induced Drought Stress. Environments 2020, 7, 107. [Google Scholar] [CrossRef]
- Zangani, E.; Afsahi, K.; Shekari, F.; Mac Sweeney, E.; Mastinu, A. Nitrogen and phosphorus addition to soil Improves seed yield, foliar stomatal Cconductance, and the photosynthetic response of rapeseed (Brassica napus L.). Agriculture 2021, 11, 483. [Google Scholar] [CrossRef]
- Allison, L.E.; Moodie, C.D. Carbonate. In Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties, Agronomy; Black, C.A., Ed.; John Wiley & Sons, Inc.: Madison, WI, USA, 1965; pp. 1379–1398. [Google Scholar]
- Lazár, D.; Pospíšil, P. Mathematical simulation of chlorophyll a fluorescence rise measured with 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea-treated barley leaves at room and high temperatures. Eur. Biophys. J. 1999, 28, 468–477. [Google Scholar] [CrossRef]
- Veihmeyer, F.J.; Henrickson, A.H. The relation of soil moisture to cultivation and plant growth. Soil Sci. 1927, 3, 498–513. [Google Scholar]
- Veihmeyer, F.J.; Henrickson, A.H. The moisture equivalent as a measure of the field capacity of soils. Soil Sci. 1931, 32, 181–193. [Google Scholar] [CrossRef]
- Marcel, T.C.; Varshney, R.K.; Barbieri, M.; Jafary, H.; de Kock, M.J.D.; Graner, A.; Niks, R.E. A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theor. Appl. Genet. 2006, 114, 487–500. [Google Scholar] [CrossRef]
- Kalendar, R.; Antonius, K.; Smýkal, P.; Schulman, A.H. iPBS: A universal method for DNA fingerprinting and retrotransposon isolation. Theor. Appl. Genet. 2010, 121, 1419–1430. [Google Scholar] [CrossRef]
- Kalendar, R.; Grob, T.; Regina, M.; Suoniemi, A.; Schulman, A. IRAP and REMAP: Two new retrotransposon-based DNA fingerprinting techniques. Theor. Appl. Genet. 1999, 98, 704–711. [Google Scholar] [CrossRef]
- Boronnikova, S.V.; Kalendar, R.N. Using IRAP markers for analysis of genetic variability in populations of resource and rare species of plants. Russ J. Genet. 2010, 46, 36–42. [Google Scholar] [CrossRef]
- Collard, B.C.Y.; Mackill, D.J. Start Codon Targeted (SCoT) Polymorphism: A simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol. Biol. Rep. 2008, 27, 86–93. [Google Scholar] [CrossRef]
- Singh, A.K.; Rana, M.K.; Singh, S.; Kumar, S.; Kumar, R.; Singh, R. CAAT box-derived polymorphism (CBDP): A novel promoter -targeted molecular marker for plants. J. Plant Biochem. Biotechnol. 2013, 23, 175–183. [Google Scholar] [CrossRef]
- Nelson, J.C. QGENE: Software for marker-based genomic analysis and breeding. Mol. Breed. 1997, 3, 239–245. [Google Scholar] [CrossRef]
- Collard, B.C.Y.; Jahufer, M.Z.Z.; Brouwer, J.B.; Pang, E.C.K. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 2005, 142, 169–196. [Google Scholar] [CrossRef]
- Sabouri, H.; Kazerani, B.; Fallahi, H.A.; Dehghan, M.A.; Alegh, S.M.; Dadras, A.R.; Katouzi, M.; Mastinu, A. Association analysis of yellow rust, fusarium head blight, tan spot, powdery mildew, and brown rust horizontal resistance genes in wheat. Physiol. Mol. Plant Pathol. 2022, 118, 101808. [Google Scholar] [CrossRef]
Fo | Minimum fluorescence |
Fv | Variable fluorescence |
FM | Maximum fluorescence |
FV/FM | Maximum quantum yield (photochemical efficiency) of primary PSII photochemistry; photochemistry in the dark-adapted state |
Fv/Fo | The ratio of maximum quantum yield of photochemistry (FV/Fm) and competitive non-photochemical processes; (Fo/Fm) of PSII in the dark-adapted state; lateral reactivity of PSII |
Area | Total complementary area between fluorescence induction (OJIP) curve and the line F = FM |
Sm | Normalized total complementary area above the OJIP transient (reflecting multiple turnover QA reduction events) or total electron carriers per RC; Sm = area/(Fm–Fo) |
Phenomenological fluxes or activities per excited cross-section | |
ABS/CSo | Absorption flux per cross-section (CS) at time zero (t = 0); ABS/CS0 = Fo |
ETo/CSo | Electron transport flux per CS at time zero (t = 0); ETo/CSo = [1 − (Fo/Fm)] (1 − Vj) Fo |
TRo/CSo | Trapped energy flux per CS at time zero (t = 0); TRo/CSo = (TR0/ABS) (ABS/CS0) = Fo [1 − (Fo/Fm)] |
DIo/CSo | Dissipated energy flux per CS at time zero (t = 0); DIo/CSo = (ABS/CS0) − (TRo/CSo) = Fo − {Fo [1 − (Fo/Fm)]} |
ABS/CSm | Light energy absorption flux per excited CS; approximated by FM; ABS/CSm = Fm |
DIo/CSm | Dissipated energy flux (non-photochemical quenching) per excited cross-section; DIo/CSm = (ABS/CSm) - (TRo/CSm) = Fm - {Fm [1 - (Fo/Fm)]}; approximated by FM |
TRo/CSm | Trapped energy flux per excited cross-section; TRo/CSm = (TRo/ABS) (ABS/CSm) = Fm [1 − (Fo/Fm)]; approximated by FM |
ETo/CSm | Electron transport flux per CS |
Election transport flux per excited cross-section; the amount of energy used for the electron transport; ETo/CSm = [1 − (Fo/Fm)] (1 − Vj) Fm; approximated by FM | |
REo/CSm | The flux of electrons from QA to final PSI acceptors per cross-section of PSII at maximum time; REo/CSo = [1 - (Fo/Fm)] (1 - Vj) [(1 - Vi)/(1 - Vj)] Fm |
Specific fluxes or activities per reaction center | |
ABS/RC | Absorption flux (for PSII antenna chls) per reaction center (RC); light energy absorbed by RC; ABS/RC = Mo·(1/VJ)·[1/(Fv/Fm)] |
ETo/RC | Electron transport flux per active reaction center at t = 0; ETo/RC = Mo·(1/VJ)·(1–VJ) |
DIo/RC | Dissipation energy flux per active reaction center at t = 0; DIo/RC = (ABS/RC)–(TRo/RC) |
TRo/RC | Trapped energy flux per reaction center (at t = 0); TRo/RC = Mo·(1/VJ) |
REo/RC | Electron flux leading to the reduction in the PSI end acceptor per reaction center; REo/RC = Mo (1/Vj) (1 − Vi) |
psi(Eo) | Quantum function of electron current |
phi(Po) | Primary photochemical quantum performance |
vj | Relative variable fluorescence at phase J of the fluorescence induction curve (2 ms); VJ = (FJ–Fo)/(Fm–Fo) |
vi | Relative variable fluorescence at phase I of the fluorescence induction curve (30 ms); VI = (FI–Fo)/(Fm–Fo) |
Dv/dto | Initial slope of relative variable fluorescence, which expresses the rate of the RCs’ closure |
DVG/dto | Expresses the excitation |
Normal | Drought | Salinity | F | Sig. | |||||
---|---|---|---|---|---|---|---|---|---|
RILs | Badia | Kavir | RILs | Badia | Kavir | RILs | |||
Area | 23,923.2 c | 2634.25 | 21,824.1 | 25,698.3 b (+7.42%) | 27,951.3 | 25,614.2 | 26,874.3 a (+12.34%) | 5.144 | 0.007 |
Fo | 21.835 c | 22.624 | 17.325 | 28.632 a (+31.13%) | 27.087 | 23.901 | 26.049 b (+19.30%) | 4.832 | 0.009 |
Fm | 151.233 a | 138.121 | 169.218 | 69.155 c (−54.28%) | 68.371 | 75.078 | 72.365 b (−52.15%) | 6.553 | 0.002 |
Fv | 129.398 a | 121.367 | 136.847 | 56.845 c (−56.07%) | 57.137 | 61.081 | 58.396 b (−54.87%) | 6.785 | 0.001 |
Fv/Fm | 0.822 a | 0.678 | 1.024 | 0.785 b (−4.50%) | 0.617 | 0.794 | 0.712 c (−13.38%) | 8.605 | 0.000 |
Fv/Fo | 8.829 a | 8.245 | 9.857 | 4.632 c (−47.54%) | 4.379 | 67.037 | 5.506 b (−62.36%) | 2.704 | 0.069 |
Vj | 0.154 b | 0.124 | 0.196 | 0.204 a (+32.47%) | 0.201 | 0.254 | 0.208 a (+35.04%) | 2.291 | 0.014 |
Vi | 0.372 a | 0.256 | 0.581 | 0.265 b (−28.76%) | 0.238 | 0.319 | 0.274 b (−26.34%) | 4.444 | 0.013 |
dVdto | 0.184 c | 0.142 | 0.196 | 0.326 a (+77.17%) | 0.208 | 0.319 | 0.253 b (+37.5%) | 5.847 | 0.003 |
Sm | 162.287 a | 153.25 | 164.078 | 87.627 c(−46.00%) | 95.429 | 63.153 | 98.365 b (−39.39%) | 2.496 | 0.085 |
ABS/RC | 1.545 c | 1.597 | 1.325 | 2.067 b (+33.79%) | 3.674 | 2.927 | 3.017 a (+95.27%) | 1.524 | 0.015 |
DIo/RC | 0.207 c | 0.235 | 0.168 | 0.304 b (+46.86%) | 0.519 | 0.345 | 0.405 a (+95.65%) | 1.068 | 0.018 |
TRo/RC | 1.337 a | 1.279 | 1.428 | 1.199 a (−10.32%) | 1.145 | 1.627 | 1.298 a (−2.917%) | 1.591 | 0.206 |
ETo/RC | 1.147 a | 1.134 | 1.217 | 1.009 a (−12.03%) | 0.964 | 1.627 | 1.043 a (−9.07%) | 0.500 | 0.307 |
ABS/CSo | 21.835 b | 22.373 | 17.965 | 27.395 a (+25.46%) | 28.090 | 23.298 | 26.049 a (+19.30%) | 4.832 | 0.009 |
DIo/CSo | 3.927 c | 4.974 | 3.457 | 5.961 a (+51.79%) | 6.974 | 3.607 | 4.965 b (+26.43%) | 3.153 | 0.045 |
TRo/CSo | 17.908 a | 15.324 | 18.473 | 9.568 c (−46.57%) | 10.258 | 13.817 | 12.685 b (−29.16%) | 5.297 | 0.006 |
ETo/CSo | 13.690 a | 11.142 | 14.374 | 6.986 c (−48.97%) | 8.634 | 9.724 | 8.965 b (−35.51%) | 5.217 | 0.006 |
ABS/CSm | 151.233 a | 143.95 | 153.278 | 69.155 c (−54.27%) | 71.259 | 78.089 | 75.962 b (−49.77%) | 6.553 | 0.002 |
DIo/CSm | 21.835 b | 23.143 | 20.765 | 28.964 b (+32.65%) | 29.033 | 21.374 | 26.049 b (+19.30%) | 4.832 | 0.109 |
TRo/CSm | 129.398 a | 125.124 | 131.089 | 56.845 b (−56.07%) | 54.234 | 62.300 | 59.362 b (−54.12%) | 6.785 | 0.001 |
ETo/CSm | 105.631 a | 104.087 | 109.143 | 98.362 b (−6.88%) | 92.674 | 96.667 | 94.049 c (−10.96%) | 6.804 | 0.001 |
REo/CSm | 74.709 a | 70.329 | 77.283 | 30.214 c (−59.56%) | 51.089 | 56.973 | 56.262 b (−24.69%) | 6.151 | 0.003 |
Statistics | Statistics Value | F | p-Value |
---|---|---|---|
Normal | |||
Pillai’s Trace | 0.768 | 42.671 | ≤0.0001 |
Wilks’ Lambda | 0.232 | 42.671 | ≤0.0001 |
Hotelling’s Trace | 3.319 | 42.671 | ≤0.0001 |
Roy’s Largest Root | 3.319 | 42.671 | ≤0.0001 |
Drought | |||
Pillai’s Trace | 0.855 | 33.619 | ≤0.0001 |
Wilks’ Lambda | 0.145 | 33.619 | ≤0.0001 |
Hotelling’s Trace | 5.898 | 33.619 | ≤0.0001 |
Roy’s Largest Root | 5.898 | 33.619 | ≤0.0001 |
Salinity | |||
Pillai’s Trace | 0.872 | 12.367 | ≤0.0001 |
Wilks’ Lambda | 0.184 | 21.106 | ≤0.0001 |
Hotelling’s Trace | 4.14 | 32.432 | ≤0.0001 |
Roy’s Largest Root | 4.066 | 65.052 | ≤0.0001 |
Traits | QTL a | Chr | Position | Flanking Markers | Distance to Closer Marker | LOD | Additive Effect | R2 | Allele Direction |
---|---|---|---|---|---|---|---|---|---|
Normal | |||||||||
ABS/RC | q ABSRCN-7 | 7 | 104 | scssr07970—HVCMA | 1.21(HVCMA) | 2.012 | 0.749 | 8.9 | BADIA |
ETo/CSo | qEToCSoN-5 | 5 | 136 | GBM1166—IRAP54-2 | 0.27(IRAP54-2) | 2.515 | 5.688 | 10.6 | KAVIR |
ETo/RC | q EToRCN-4 | 4 | 120 | ISSR13-1—ISSR16-4 | 2.74(ISSR13-1) | 2.186 | 1.115 | 9.7 | KAVIR |
Fm | qFMN-5 | 5 | 136 | GBM1166—IRAP54-2 | 0.27(IRAP54-2) | 2.216 | 61.125 | 9.4 | KAVIR |
Fv/Fo | qFVFoN-6 | 6 | 116 | HVPLASC1B—EBmac0713 | 1.23(EBmac0713) | 3.443 | −6.462 | 14.4 | BADIA |
TRo/CSm | qTRoCSmN-5 | 5 | 136 | GBM1166—IRAP54-2 | 0.27(IRAP54-2) | 2.076 | 52.317 | 8.9 | KAVIR |
dVG/dto | qdVGdtoN-2a | 2 | 38 | Scot3-D—Scot1-B | 0.25(Scot1-B) | 2.27 | 1.376 | 9.7 | KAVIR |
qdVGdtoN-2b | 2 | 60 | ISSR20-4—Bmag0115 | 0.39(ISSR20-4) | 2.228 | 0.967 | 9.5 | KAVIR | |
Drought | |||||||||
ABS/RC | q ABSRCD-2 | 2 | 48 | Scot4-C—scssr08447 | 0.64(Scot4-C) | 2.167 | −2.156 | 12 | KAVIR |
q ABSRCD-4 | 4 | 116 | ISSR30iPBS2076-5—ISSR13-1 | 0.77(ISSR30iPBS2076-5) | 2.262 | 2.573 | 12.5 | BADIA | |
q ABSRCD-7 | 7 | 84 | ISSR21-2—ISSR30-4 | 0.71(ISSR30-4) | 2.401 | −2.495 | 13.2 | KAVIR | |
Area | qAREAD-2 | 2 | 6 | ISSR16-6—Scot7-A | 0.75(ISSR16-6) | 2.336 | −8231.992 | 9.9 | KAVIR |
qAREAD-3a | 3 | 28 | Bmag0013-CAAT2-D | 1.78(CAAT2-D) | 2.384 | −5198.301 | 10.1 | KAVIR | |
qAREAD-3b | 3 | 128 | HVM27-GBM1405 | 0.41(GBM1405) | 2.512 | −3534.728 | 10.6 | KAVIR | |
qAREAD-6 | 6 | 62 | ISSR31-1—Bmag0867 | 1.77(ISSR31-1) | 2.139 | 4892.58 | 9.1 | BADIA | |
qAREAD-7 | 7 | 142 | HVM4—ISSR22-4 | 0.32(ISSR22-4) | 3.017 | −4127.683 | 12.6 | KAVIR | |
ETo/CSm | q EToCSmD-3 | 3 | 28 | Bmag0013-CAAT2-D | 1.78(CAAT2-D) | 2.23 | −28.844 | 9.5 | BADIA |
ETo/RC | qEToRCD-1 | 1 | 58 | Scot8-B—CAAT5-D | 3.06(Scot8-B) | 2.311 | 2.107 | 12.8 | KAVIR |
qEToRCD-7 | 7 | 84 | ISSR21-2—ISSR30-4 | 0.71(ISSR30-4) | 3.422 | −2.007 | 18.3 | BADIA | |
Fm | qFmD-3 | 3 | 28 | Bmag0013-CAAT2-D | 1.78(CAAT2-D) | 2.03 | −43.24 | 8.7 | BADIA |
Fv | qFVD-3 | 3 | 28 | Bmag0013-CAAT2-D | 1.78(CAAT2-D) | 2.127 | −36.668 | 9.1 | BADIA |
qFVD-6 | 6 | 94 | HVM34—Bmag0210 | 1.23(Bmag0210) | 2.364 | 32.434 | 10 | KAVIR | |
Fv/Fo | q FvFoD-2 | 2 | 86 | EBmac0415—HVM54 | 0.79(EBmac0415) | 2.148 | −9.559 | 11 | BADIA |
Sm | q SmD-2 | 2 | 26 | ISSR29-2—HvKASI | 0.24(ISSR29-2) | 2.203 | 254.947 | 9.7 | KAVIR |
TRo/RC | q EToRCD-2 | 2 | 48 | Scot4-C—scssr08447 | 0.64(Scot4-C) | 2.162 | −1.523 | 12 | BADIA |
q EToRCD-7 | 7 | 84 | ISSR21-2—ISSR30-4 | 0.71(ISSR30-4) | 2.482 | −1.792 | 13.6 | BADIA | |
phiEo | qPHIEoD-4 | 4 | 70 | ISSR47-5—ISSR48-4 | 1.15(ISSR48-4) | 2.784 | −0.226 | 11.7 | BADIA |
qPHIEoD-7 | 7 | 92 | ISSR30-4—Scot6-A | 1.25(Scot6-A) | 2.205 | −1.066 | 9.4 | BADIA | |
Salinity | |||||||||
ABS/CSo | qABSCSoS-2 | 2 | 102 | CAAT6-C—ISSR30iPBS2076-4 | 0.58(ISSR30iPBS2076-4) | 2.472 | 15.713 | 10.5 | BADIA |
qABSCSoS-7 | 7 | 126 | Bmac0047—Scot5-B | 3.87(Scot5-B) | 2.093 | 9.707 | 8.9 | BADIA | |
Area | qAREAS-7 | 7 | 126 | Bmac0047—Scot5-B | 3.87(Scot5-B) | 2.141 | 12,179.15 | 9.1 | BADIA |
ETo/CSm | qEToCSmS-7 | 7 | 126 | Bmac0047—Scot5-B | 3.87(Scot5-B) | 2.269 | 35.513 | 9.6 | KAVIR |
ETo/CSo | qEToCSoS-7 | 7 | 126 | Bmac0047—Scot5-B | 3.87(Scot5-B) | 2.295 | 5.291 | 9.8 | KAVIR |
FM | qFMS-2 | 2 | 102 | CAAT6-C—ISSR30iPBS2076-4 | 0.58(ISSR30iPBS2076-4) | 2.442 | 86.526 | 10.3 | KAVIR |
qFMS-7 | 7 | 128 | Bmac0047—Scot5-B | 1.87(Scot5-B) | 2.465 | 59.741 | 10.4 | KAVIR | |
Fo | qFoS-2 | 2 | 102 | CAAT6-C—ISSR30iPBS2076-4 | 0.58(ISSR30iPBS2076-4) | 2.472 | 15.713 | 10.5 | BADIA |
qFoS-7 | 7 | 126 | Bmac0047—Scot5-B | 1.87(Scot5-B) | 2.093 | 9.707 | 8.9 | BADIA | |
FV | qFVS-2 | 2 | 102 | CAAT6-C—ISSR30iPBS2076-4 | 0.58(ISSR30iPBS2076-4) | 2.314 | 70.813 | 9.8 | KAVIR |
qFVS-7 | 7 | 128 | Bmac0047—Scot5-B | 1.87(Scot5-B) | 2.448 | 50.004 | 10.4 | KAVIR | |
TRo/CSo | qTRoCSoS-2 | 2 | 102 | CAAT6-C—ISSR30iPBS2076-4 | 0.58(ISSR30iPBS2076-4) | 2.45 | 12.58 | 10.4 | KAVIR |
Sand (%) | Silt (%) | Clay (%) | Potassium (ppm) | Phosphorus (ppm) | N (%) | Organic Carbon (%) | Neutral Substances (%) | pH | EC (dS/m) |
---|---|---|---|---|---|---|---|---|---|
13 | 58 | 29 | 316 | 11.4 | 0.09 | 0.90 | 9.5 | 7.6 | 1.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makhtoum, S.; Sabouri, H.; Gholizadeh, A.; Ahangar, L.; Katouzi, M.; Mastinu, A. Genomics and Physiology of Chlorophyll Fluorescence Parameters in Hordeum vulgare L. under Drought and Salt Stresses. Plants 2023, 12, 3515. https://doi.org/10.3390/plants12193515
Makhtoum S, Sabouri H, Gholizadeh A, Ahangar L, Katouzi M, Mastinu A. Genomics and Physiology of Chlorophyll Fluorescence Parameters in Hordeum vulgare L. under Drought and Salt Stresses. Plants. 2023; 12(19):3515. https://doi.org/10.3390/plants12193515
Chicago/Turabian StyleMakhtoum, Somayyeh, Hossein Sabouri, Abdollatif Gholizadeh, Leila Ahangar, Mahnaz Katouzi, and Andrea Mastinu. 2023. "Genomics and Physiology of Chlorophyll Fluorescence Parameters in Hordeum vulgare L. under Drought and Salt Stresses" Plants 12, no. 19: 3515. https://doi.org/10.3390/plants12193515
APA StyleMakhtoum, S., Sabouri, H., Gholizadeh, A., Ahangar, L., Katouzi, M., & Mastinu, A. (2023). Genomics and Physiology of Chlorophyll Fluorescence Parameters in Hordeum vulgare L. under Drought and Salt Stresses. Plants, 12(19), 3515. https://doi.org/10.3390/plants12193515