Activation of Gossypium hirsutum ACS6 Facilitates Fiber Development by Improving Sucrose Metabolism and Transport
Abstract
:1. Introduction
2. Results
2.1. Expression Profiles of GhACS Genes in Ovules and Leaves
2.2. Effects of GhACS6.3 Overexpression on ACC Production in Ovules and Leaves
2.3. Effects of GhACS6.3-Dependent ACC Production on Fiber Initiation and Yield Components
2.4. Sucrose Content and Transcript Levels of Sucrose Transporter Genes in Leaves and Ovules
2.5. Involvement of GhACS6.3 in Sucrose Metabolism in Ovules
3. Discussion
3.1. Specificity of GhACS6.3 Activation during Fiber Initiation
3.2. Overexpression of GhACS6.3 Increases Fiber Yield Components
3.3. Increased Transcript Levels of GhACS6.3 and Increased Sucrose Transport from Leaves to Ovules
3.4. GhACS6.3 Overexpression Affects Sucrose Utilization in Ovules
4. Materials and Methods
4.1. Cotton Materials
4.2. Transcriptome Data Analysis
4.3. Statistics of Cotton Fiber Yield Components
4.4. In Vitro Ovule Culturing
4.5. Analysis of the Density of Fiber Cells on the Ovule Epidermis
4.6. RNA Analysis
4.7. Measurements of ACC Contents
4.8. Soluble Carbohydrate Analysis
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, Y.H.; Zhu, S.W.; Mao, X.Z.; Feng, J.X.; Qin, Y.M.; Zhang, L.; Cheng, J.; Wei, L.P.; Wang, Z.Y.; Zhu, Y.X. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 2006, 18, 651–664. [Google Scholar] [CrossRef]
- Wu, H.; Tian, Y.; Wan, Q.; Fang, L.; Guan, X.; Chen, J.; Hu, Y.; Ye, W.; Zhang, H.; Guo, W.; et al. Genetics and evolution of MIXTA genes regulating cotton lint fiber development. New Phytol. 2018, 217, 883–895. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Woodward, A.W.; Chen, Z.J. Gene Expression Changes and Early Events in Cotton Fibre Development. Ann. Bot. 2007, 100, 1391–1401. [Google Scholar] [CrossRef] [PubMed]
- Walford, S.A.; Wu, Y.; Llewellyn, D.J.; Dennis, E.S. GhMYB25-like: A key factor in early cotton fibre development. Plant J. 2011, 65, 785–797. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Du, J.; Wu, H.; Guan, X.; Chen, W.; Hu, Y.; Fang, L.; Ding, L.; Li, M.; Yang, D.; et al. The transcription factor MML4_D12 regulates fiber development through interplay with the WD40-repeat protein WDR in cotton. J. Exp. Bot. 2020, 71, 3499–3511. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhang, T. MIXTAs and phytohormones orchestrate cotton fiber development. Curr. Opin. Plant Biol. 2021, 59, 101975. [Google Scholar] [CrossRef]
- Jan, M.; Liu, Z.; Guo, C.; Sun, X. Molecular Regulation of Cotton Fiber Development: A Review. Int. J. Mol. Sci. 2022, 23, 5004. [Google Scholar] [CrossRef]
- Wan, Q.; Guan, X.; Yang, N.; Wu, H.; Pan, M.; Liu, B.; Fang, L.; Yang, S.; Hu, Y.; Ye, W.; et al. Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development. New Phytol. 2016, 210, 1298–1310. [Google Scholar] [CrossRef]
- Ruan, Y.L. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annu. Rev. Plant Biol. 2014, 65, 33–67. [Google Scholar] [CrossRef]
- Eom, J.S.; Chen, L.Q.; Sosso, D.; Julius, B.T.; Lin, I.W.; Qu, X.Q.; Braun, D.M.; Frommer, W.B. SWEETs, transporters for intracellular and intercellular sugar translocation. Curr. Opin. Plant Biol. 2015, 25, 53–62. [Google Scholar] [CrossRef]
- Yadav, U.P.; Evers, J.F.; Shaikh, M.A.; Ayre, B.G. Cotton phloem loads from the apoplast using a single member of its nine-member sucrose transporter gene family. J. Exp. Bot. 2022, 73, 848–859. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.L.; Llewellyn, D.J.; Furbank, R.T. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 2003, 15, 952–964. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.-L.; Chourey, P.S. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds. Plant Physiol. 1998, 118, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.M.; Brill, E.; Llewellyn, D.J.; Furbank, R.T.; Ruan, Y.L. Overexpression of a Potato Sucrose Synthase Gene in Cotton Accelerates Leaf Expansion, Reduces Seed Abortion, and Enhances Fiber Production. Mol. Plant 2012, 5, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Li, X.; Li, Y.; Ali, F.; Li, F.; Wang, Z. Dynamic roles and intricate mechanisms of ethylene in epidermal hair development in Arabidopsis and cotton. New Phytol. 2021, 234, 375–391. [Google Scholar] [CrossRef]
- Wang, H.; Mei, W.; Qin, Y.; Zhu, Y. 1-Aminocyclopropane-1-carboxylic acid synthase 2 is phosphorylated by calcium-dependent protein kinase 1 during cotton fiber elongation. Acta Biochim. Biophys. Sin. 2011, 43, 654–661. [Google Scholar] [CrossRef]
- Xiao, G.; Zhao, P.; Zhang, Y. A Pivotal Role of Hormones in Regulating Cotton Fiber Development. Front. Plant Sci. 2019, 10, 87. [Google Scholar] [CrossRef]
- Adams, D.O.; Yang, S.F. Methionine Metabolism in Apple Tissue. Plant Physiol. 1977, 60, 892–896. [Google Scholar] [CrossRef]
- Adams, D.O.; Yang, S. Ethylene biosynthesis: Identification of 1-aminocyclopropane-1carboxylic acid as an intermediate in the conversion of methionine to ethylene. Biochemistry 1979, 76, 170–174. [Google Scholar] [CrossRef]
- Boller, T.; Herner, R.C.; Kende, H. Assay for and Enzymatic Formation of an Ethylene Precursor, 1-Aminocyclopropane-l-Carboxylic Acid. Planta 1979, 145, 293–303. [Google Scholar] [CrossRef]
- Hamilton, A.J.; Bouzayen, M.; Grierson, D. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Plant Biol. 1991, 88, 7434–7437. [Google Scholar] [CrossRef]
- Ververidis, P.; John, P. Complete recovery in vitro of ethylene-forming enzyme activity. Phytochemistry 1991, 30, 725–727. [Google Scholar] [CrossRef]
- Li, J.; Zou, X.; Chen, G.; Meng, Y.; Ma, Q.; Chen, Q.; Wang, Z.; Li, F. Potential Roles of 1-Aminocyclopropane-1-carboxylic Acid Synthase Genes in the Response of Gossypium Species to Abiotic Stress by Genome-Wide Identification and Expression Analysis. Plants 2022, 11, 1524. [Google Scholar] [CrossRef]
- Gamalero, E.; Glick, B.R. Bacterial Modulation of Plant Ethylene Levels. Plant Physiol. 2015, 169, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Tsuchisaka, A.; Theologis, A. Unique and Overlapping Expression Patterns among the Arabidopsis 1-Amino-Cyclopropane-1-Carboxylate Synthase Gene Family Members. Plant Physiol. 2004, 136, 2982–3000. [Google Scholar] [CrossRef] [PubMed]
- Tsuchisaka, A.; Yu, G.; Jin, H.; Alonso, J.M.; Ecker, J.R.; Zhang, X.; Gao, S.; Theologis, A. A Combinatorial Interplay Among the 1-Aminocyclopropane-1-Carboxylate Isoforms Regulates Ethylene Biosynthesis in Arabidopsis thaliana. Genetics 2009, 183, 979–1003. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Hu, Y.; Jiang, W.; Fang, L.; Guan, X.; Chen, J.; Zhang, J.; Saski, C.A.; Scheffler, B.E.; Stelly, D.M.; et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat. Biotechnol. 2015, 33, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ruan, Y.L.; Zhou, N.; Wang, F.; Guan, X.; Fang, L.; Shang, X.; Guo, W.; Zhu, S.; Zhang, T. Suppressing a Putative Sterol Carrier Gene Reduces Plasmodesmal Permeability and Activates Sucrose Transporter Genes during Cotton Fiber Elongation. Plant Cell 2017, 29, 2027–2046. [Google Scholar] [CrossRef]
- Zou, C.; Lu, C.; Shang, H.; Jing, X.; Cheng, H.; Zhang, Y.; Song, G. Genome-Wide Analysis of the Sus Gene Family in Cotton. J. Integr. Plant Biol. 2013, 55, 643–653. [Google Scholar] [CrossRef]
- Song, Q.W.; Gao, W.T.; Du, C.H.; Sun, W.J.; Wang, J.; Zuo, K.J. GhXB38D represses cotton fibre elongation through ubiquitination of ethylene biosynthesis enzymes GhACS4 and GhACO1. Plant Biotechnol. J. 2023. early view. [Google Scholar] [CrossRef]
- Qin, H.; Guo, W.; Zhang, Y.-M.; Zhang, T. QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theor. Appl. Genet. 2008, 117, 883–894. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.; Wu, Y.; Yang, Y.; Llewellyn, D.J.; Dennis, E.S. The MYB transcription factor GhMYB25 regulates early fibre and trichome development. Plant J. 2009, 59, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.L.; Llewellyn, D.J.; Furbank, R.T. The Control of Single-Celled Cotton Fiber Elongation by Developmentally Reversible Gating of Plasmodesmata and Coordinated Expression of Sucrose and K+ Transporters and Expansin. Plant Cell 2001, 13, 47–60. [Google Scholar] [PubMed]
- Qin, A.; Aluko, O.O.; Liu, Z.; Yang, J.; Hu, M.; Guan, L.; Sun, X. Improved cotton yield: Can we achieve this goal by regulating the coordination of source and sink? Front. Plant Sci. 2023, 14, 1136636. [Google Scholar] [CrossRef] [PubMed]
- Mangi, N.; Nazir, M.F.; Wang, X.; Iqbal, M.S.; Sarfraz, Z.; Jatoi, G.H.; Mahmood, T.; Ma, Q.; Shuli, F. Dissecting Source-Sink Relationship of Subtending Leaf for Yield and Fiber Quality Attributes in Upland Cotton (Gossypium hirsutum L.). Plants 2021, 10, 1147. [Google Scholar] [CrossRef]
- Jia, M.Z.; Li, Z.F.; Han, S.; Wang, S.; Jiang, J. Effect of 1-aminocyclopropane-1-carboxylic acid accumulation on Verticillium dahliae infection of upland cotton. BMC Plant Biol. 2022, 22, 386. [Google Scholar] [CrossRef] [PubMed]
- Beasley, C.A.; Ting, I.P. The Effects of Plant Growth Substances on in Vitro Fiber Development from Fertilized Cotton Ovules. Am. J. Bot. 1973, 60, 130–139. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
2021 | 2022 | Average | ||
---|---|---|---|---|
Bolls per plant | Control | 35.5 ± 1.7 | 38.7 ± 1.6 | 37.1 ± 2.3 |
GhACS6.3-OE(#4) | 45.4 ± 2.4 ** | 42.2 ± 1.7 * | 43.8 ± 2.6 ** | |
Boll weight (g) | Control | 4.5 ± 0.2 | 4.6 ± 0.3 | 4.5 ± 0.3 |
GhACS6.3-OE(#4) | 5.4 ± 0.2 * | 5.8 ± 0.2 ** | 5.6 ± 0.3 * | |
LI (g) | Control | 7.6 ± 0.2 | 7.3 ± 0.2 | 7.5 ± 0.2 |
GhACS6.3-OE(#4) | 8.3 ± 0.3 * | 7.9 ± 0.3 * | 8.1 ± 0.3 * | |
SI (g) | Control | 8.8 ± 0.3 | 9.3 ± 0.3 | 9.0 ± 0.4 |
GhACS6.3-OE(#4) | 9.4 ± 0.2 ** | 9.7 ± 0.2 * | 9.5 ± 0.3 * | |
Lint percentage (%) | Control | 46.3 ± 1.1 | 44.1 ± 1.0 | 45.2 ± 1.5 |
GhACS6.3-OE(#4) | 46.8 ± 1.0 * | 45.1 ± 1.1 ** | 46.0 ± 1.4 ** | |
Plant height (cm) | Control | 119.8 ± 9.9 | 113.7 ± 7.7 | 116.8 ± 9.4 |
GhACS6.3-OE(#4) | 122.5 ± 11.5 | 114.8 ± 8.8 | 118.7 ± 10.9 | |
Fruit branches | Control | 17.5 ± 1.5 | 17.4 ± 1.7 | 17.5 ± 1.6 |
GhACS6.3-OE(#4) | 17.9 ± 1.5 | 18.2 ± 1.2 * | 18.0 ± 1.3 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, C.; Li, L.; Han, S.; Jia, M.; Jiang, J. Activation of Gossypium hirsutum ACS6 Facilitates Fiber Development by Improving Sucrose Metabolism and Transport. Plants 2023, 12, 3530. https://doi.org/10.3390/plants12203530
Geng C, Li L, Han S, Jia M, Jiang J. Activation of Gossypium hirsutum ACS6 Facilitates Fiber Development by Improving Sucrose Metabolism and Transport. Plants. 2023; 12(20):3530. https://doi.org/10.3390/plants12203530
Chicago/Turabian StyleGeng, Chen, Leilei Li, Shuan Han, Mingzhu Jia, and Jing Jiang. 2023. "Activation of Gossypium hirsutum ACS6 Facilitates Fiber Development by Improving Sucrose Metabolism and Transport" Plants 12, no. 20: 3530. https://doi.org/10.3390/plants12203530
APA StyleGeng, C., Li, L., Han, S., Jia, M., & Jiang, J. (2023). Activation of Gossypium hirsutum ACS6 Facilitates Fiber Development by Improving Sucrose Metabolism and Transport. Plants, 12(20), 3530. https://doi.org/10.3390/plants12203530