Small RNAs: Promising Molecules to Tackle Climate Change Impacts in Coffee Production
Abstract
:1. Introduction
2. Coffee Plant: Origin, Phenology, and Environment-Related Aspects
3. Impacts of Increased Temperature and CO2 on Coffee Growing
4. How Do Genetic and Molecular Components Contribute to the Coffee Plant’s Physiological Responses to Climate Change?
5. The sRNA Characteristics and Their Roles in Plant Stress Mediation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tonietto, Â.; Sato, J.H.; Teixeira, J.B.; de Souza, E.M.; Pedrosa, F.O.; Franco, O.L.; Mehta, A. Proteomic Analysis of Developing Somatic Embryos of Coffea arabica. Plant Mol. Biol. Rep. 2012, 30, 1393–1399. [Google Scholar] [CrossRef]
- Bertrand, B.; Villegas Hincapié, A.M.; Marie, L.; Breitler, J.-C. Breeding for the Main Agricultural Farming of Arabica Coffee. Front. Sustain. Food Syst. 2021, 5, 709901. [Google Scholar] [CrossRef]
- Campuzano-Duque, L.F.; Blair, M.W. Strategies for Robusta Coffee (Coffea canephora) Improvement as a New Crop in Colombia. Agriculture 2022, 12, 1576. [Google Scholar] [CrossRef]
- Breitler, J.-C.; Etienne, H.; Léran, S.; Marie, L.; Bertrand, B. Description of an Arabica Coffee Ideotype for Agroforestry Cropping Systems: A Guideline for Breeding More Resilient New Varieties. Plants 2022, 11, 2133. [Google Scholar] [CrossRef]
- Zaidan, I.R.; Ferreira, A.; Noia, L.R.; Santos, J.G.; de Arruda, V.C.; do Couto, D.P.; Braz, R.A.; de Brites Senra, J.F.; Partelli, F.L.; Azevedo, C.F.; et al. Diversity and Structure of Coffea canephora from Old Seminal Crops in Espírito Santo, Brazil: Genetic Resources for Coffee Breeding. Tree Genet. Genomes 2023, 19, 19. [Google Scholar] [CrossRef]
- Mouen Bedimo, J.A.; Bieysse, D.; Nyassé, S.; Nottéghem, J.L.; Cilas, C. Role of Rainfall in the Development of Coffee Berry Disease in Coffea arabica Caused by Colletotrichum kahawae, in Cameroon. Plant Pathol. 2010, 59, 324–329. [Google Scholar] [CrossRef]
- Venancio, L.P.; Filgueiras, R.; Mantovani, E.C.; do Amaral, C.H.; da Cunha, F.F.; dos Santos Silva, F.C.; Althoff, D.; dos Santos, R.A.; Cavatte, P.C. Impact of Drought Associated with High Temperatures on Coffea canephora Plantations: A Case Study in Espírito Santo State, Brazil. Sci. Rep. 2020, 10, 19719. [Google Scholar] [CrossRef]
- Wagner, S.; Jassogne, L.; Price, E.; Jones, M.; Preziosi, R. Impact of Climate Change on the Production of Coffea arabica at Mt. Kilimanjaro, Tanzania. Agriculture 2021, 11, 53. [Google Scholar] [CrossRef]
- Dinh, T.L.A.; Aires, F.; Rahn, E. Statistical Analysis of the Weather Impact on Robusta Coffee Yield in Vietnam. Front. Environ. Sci. 2022, 10, 820916. [Google Scholar] [CrossRef]
- Lee, J.Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C.; Jones, C.; et al. Chapter 4: Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- DaMatta, F.M.; Grandis, A.; Arenque, B.C.; Buckeridge, M.S. Impacts of Climate Changes on Crop Physiology and Food Quality. Food Res. Int. 2010, 43, 1814–1823. [Google Scholar] [CrossRef]
- Bunn, C.; Läderach, P.; Ovalle Rivera, O.; Kirschke, D. A Bitter Cup: Climate Change Profile of Global Production of Arabica and Robusta Coffee. Clim. Chang. 2015, 129, 89–101. [Google Scholar] [CrossRef]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate Trends and Global Crop Production Since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.P.; Rakotonasolo, F. Six New Species of Coffee (Coffea) from Northern Madagascar. Kew Bull. 2021, 76, 497–511. [Google Scholar] [CrossRef]
- Conab: Companhia Nacional De Abastecimento. Acomp. safra brasileira de café—Safra 2022-Quarto levantamento, n.4, v. 9, Brasília, 2022, p. 1–52. Available online: https://www.icafe.cr/wp-content/uploads/informacion_mercado/reportes_mercado/entidades_cafetaleras/Estimado%20de%20Cosecha%20de%20Brasil.pdf (accessed on 27 September 2023).
- Lashermes, P.; Combes, M.-C.; Robert, J.; Trouslot, P.; D’Hont, A.; Anthony, F.; Charrier, A. Molecular Characterisation and Origin of the Coffea arabica L. Genome. Mol. Genet. Genom. 1999, 261, 259–266. [Google Scholar] [CrossRef]
- Scalabrin, S.; Toniutti, L.; Di Gaspero, G.; Scaglione, D.; Magris, G.; Vidotto, M.; Pinosio, S.; Cattonaro, F.; Magni, F.; Jurman, I.; et al. A Single Polyploidization Event at the Origin of the Tetraploid Genome of Coffea arabica Is Responsible for the Extremely Low Genetic Variation in Wild and Cultivated Germplasm. Sci. Rep. 2020, 10, 4642. [Google Scholar] [CrossRef]
- ICO: International Cofee Organization. Estatísticas Do Comércio; ICO: International Cofee Organization: London, UK, 2022. [Google Scholar]
- Liu, X.; Chu, S.; Sun, C.; Xu, H.; Zhang, J.; Jiao, Y.; Zhang, D. Genome-Wide Identification of Low Phosphorus Responsive microRNAs in Two Soybean Genotypes by High-Throughput Sequencing. Funct. Integr. Genom. 2020, 20, 825–838. [Google Scholar] [CrossRef]
- Tahaei, S.A.; Nasri, M.; Soleymani, A.; Ghooshchi, F.; Oveysi, M. Plant Growth Regulators Affecting Corn (Zea mays L.) Physiology and Rab17 Expression under Drought Conditions. Biocatal. Agric. Biotechnol. 2022, 41, 102288. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, X. Endoplasmic Reticulum Stress-Responsive microRNAs Are Involved in the Regulation of Abiotic Stresses in Wheat. Plant Cell Rep. 2023, 42, 1433–1452. [Google Scholar] [CrossRef]
- Voinnet, O. Origin, Biogenesis, and Activity of Plant microRNAs. Cell 2009, 136, 669–687. [Google Scholar] [CrossRef]
- Tang, J.; Chu, C. MicroRNAs in Crop Improvement: Fine-Tuners for Complex Traits. Nat. Plants 2017, 3, 17077. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Sinha, P.; Singh, V.K.; Kumar, A.; Zhang, Q.; Bennetzen, J.L. 5Gs for Crop Genetic Improvement. Curr. Opin. Plant Biol. 2020, 56, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Habib-ur-Rahman, M.; Ahmad, A.; Raza, A.; Hasnain, M.U.; Alharby, H.F.; Alzahrani, Y.M.; Bamagoos, A.A.; Hakeem, K.R.; Ahmad, S.; Nasim, W.; et al. Impact of Climate Change on Agricultural Production; Issues, Challenges, and Opportunities in Asia. Front. Plant Sci. 2022, 13, 925548. [Google Scholar] [CrossRef] [PubMed]
- Lachaud, M.; Bravo-Ureta, B.E.; Ludena, C.E. Economic Effects of Climate Change on Agricultural Production and Productivity in Latin America and the Caribbean (LAC). Agric. Econ. 2022, 53, 321–332. [Google Scholar] [CrossRef]
- Mutengwa, C.S.; Mnkeni, P.; Kondwakwenda, A. Climate-Smart Agriculture and Food Security in Southern Africa: A Review of the Vulnerability of Smallholder Agriculture and Food Security to Climate Change. Sustainability 2023, 15, 2882. [Google Scholar] [CrossRef]
- Guan, Q.; Lu, X.; Zeng, H.; Zhang, Y.; Zhu, J. Heat Stress Induction of miR398 Triggers a Regulatory Loop That Is Critical for Thermotolerance in Arabidopsis. Plant J. 2013, 74, 840–851. [Google Scholar] [CrossRef]
- Camargo, Â.P.D.; Camargo, M.B.P.D. Definição e esquematização das fases fenológicas do cafeeiro arábica nas condições tropicais do Brasil. Bragantia 2001, 60, 65–68. [Google Scholar] [CrossRef]
- DaMatta, F.M.; Rahn, E.; Läderach, P.; Ghini, R.; Ramalho, J.C. Why Could the Coffee Crop Endure Climate Change and Global Warming to a Greater Extent than Previously Estimated? Clim. Chang. 2019, 152, 167–178. [Google Scholar] [CrossRef]
- DaMatta, F.M.; Ramalho, J.D.C. Impacts of Drought and Temperature Stress on Coffee Physiology and Production: A Review. Braz. J. Plant Physiol. 2006, 18, 55–81. [Google Scholar] [CrossRef]
- Franco, C.M. Influence of Temperature on Growth of Coffee Plant; IBEC Research Institute: New York, NY, USA, 1958. [Google Scholar]
- Dubberstein, D.; Lidon, F.C.; Rodrigues, A.P.; Semedo, J.N.; Marques, I.; Rodrigues, W.P.; Gouveia, D.; Armengaud, J.; Semedo, M.C.; Martins, S.; et al. Resilient and Sensitive Key Points of the Photosynthetic Machinery of Coffea spp. to the Single and Superimposed Exposure to Severe Drought and Heat Stresses. Front. Plant Sci. 2020, 11, 1049. [Google Scholar] [CrossRef]
- Ramalho, J.C.; Pais, I.P.; Leitão, A.E.; Guerra, M.; Reboredo, F.H.; Máguas, C.M.; Carvalho, M.L.; Scotti-Campos, P.; Ribeiro-Barros, A.I.; Lidon, F.J.C.; et al. Can Elevated Air [CO2] Conditions Mitigate the Predicted Warming Impact on the Quality of Coffee Bean? Front. Plant Sci. 2018, 9, 287. [Google Scholar] [CrossRef]
- Chen, L.; Ren, Y.; Zhang, Y.; Xu, J.; Sun, F.; Zhang, Z.; Wang, Y. Genome-Wide Identification and Expression Analysis of Heat-Responsive and Novel microRNAs in Populus Tomentosa. Gene 2012, 504, 160–165. [Google Scholar] [CrossRef]
- Sailaja, B.; Voleti, S.R.; Subrahmanyam, D.; Sarla, N.; Prasanth, V.V.; Bhadana, V.P.; Mangrauthia, S.K. Prediction and Expression Analysis of miRNAs Associated with Heat Stress in Oryza Sativa. Rice Sci. 2014, 21, 3–12. [Google Scholar] [CrossRef]
- Liu, F.; Wang, W.; Sun, X.; Liang, Z.; Wang, F. Conserved and Novel Heat Stress-Responsive microRNAs Were Identified by Deep Sequencing in Saccharina japonica (Laminariales, Phaeophyta). Plant Cell Environ. 2015, 38, 1357–1367. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Wang, Q.; Jiang, F.; Cao, X.; Sun, M.; Liu, M.; Wu, Z. Identification of miRNAs and Their Targets in Wild Tomato at Moderately and Acutely Elevated Temperatures by High-Throughput Sequencing and Degradome Analysis. Sci. Rep. 2016, 6, 33777. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, N.; Yang, X.; Tu, L.; Zhang, X. Small RNA-Mediated Responses to Low- and High-Temperature Stresses in Cotton. Sci. Rep. 2016, 6, 35558. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhang, Y.; Tang, R.; Qu, H.; Duan, X.; Jiang, Y. Banana sRNAome and Degradome Identify microRNAs Functioning in Differential Responses to Temperature Stress. BMC Genom. 2019, 20, 33. [Google Scholar] [CrossRef] [PubMed]
- Loss-Morais, G.; Ferreira, D.C.R.; Margis, R.; Alves-Ferreira, M.; Corrêa, R.L. Identification of Novel and Conserved microRNAs in Coffea canephora and Coffea arabica. Genet. Mol. Biol. 2014, 37, 671–682. [Google Scholar] [CrossRef]
- Chaves, S.S.; Fernandes-Brum, C.N.; Silva, G.F.F.; Ferrara-Barbosa, B.C.; Paiva, L.V.; Nogueira, F.T.S.; Cardoso, T.C.S.; Amaral, L.R.; de Souza Gomes, M.; Chalfun-Junior, A. New Insights on Coffea miRNAs: Features and Evolutionary Conservation. Appl. Biochem. Biotechnol. 2015, 177, 879–908. [Google Scholar] [CrossRef]
- Fernandes-Brum, C.N.; Rezende, P.M.; Ribeiro, T.H.C.; de Oliveira, R.R.; Cunha de Sousa Cardoso, T.; do Amaral, L.R.; de Souza Gomes, M.; Chalfun-Junior, A. A Genome-Wide Analysis of the RNA-Guided Silencing Pathway in Coffee Reveals Insights into Its Regulatory Mechanisms. PLoS ONE 2017, 12, e0176333. [Google Scholar] [CrossRef]
- BIBI, F.; BAROZAI, M.; DIN, M. Bioinformatics Profiling and Characterization of potentialmicroRNAs and Their Targets in the Genus Coffea. Turk. J. Agric. For. 2017, 41, 191–200. [Google Scholar] [CrossRef]
- Ribeiro, T.H.C.; Baldrich, P.; de Oliveira, R.R.; Fernandes-Brum, C.N.; Mathioni, S.M.; Cunha de Sousa Cardoso, T.; de Souza Gomes, M.; do Amaral, L.R.; de Oliveira, K.K.P.; dos Reis, G.L.; et al. The Floral Development of the Allotetraploid Coffea arabica L. Correlates with a Small RNA Dynamic Reprogramming. bioRxiv 2023. [Google Scholar] [CrossRef]
- de Oliveira, K.K.P.; de Oliveira, R.R.; de Campos Rume, G.; Ribeiro, T.H.C.; Fernandes-Brum, C.N.; Kakrana, A.; Mathioni, S.; Meyers, B.C.; de Souza Gomes, M.; Chalfun-Junior, A. Coffee Microsporogenesis and Related Small Interfering RNAs Biosynthesis Have a Unique Pattern among Eudicots Suggesting a Sensitivity to Climate Changes. bioRxiv 2023. [Google Scholar] [CrossRef]
- Davis, A.P.; Govaerts, R.; Bridson, D.M.; Stoffelen, P. An Annotated Taxonomic Conspectus of the Genus Coffea (Rubiaceae). Bot. J. Linn. Soc. 2006, 152, 465–512. [Google Scholar] [CrossRef]
- Aga, E.; Bekele, E.; Bryngelsson, T. Inter-Simple Sequence Repeat (ISSR) Variation in Forest Coffee Trees (Coffea arabica L.) Populations from Ethiopia. Genetica 2005, 124, 213–221. [Google Scholar] [CrossRef]
- Silvestrini, M.; Junqueira, M.G.; Favarin, A.C.; Guerreiro-Filho, O.; Maluf, M.P.; Silvarolla, M.B.; Colombo, C.A. Genetic Diversity and Structure of Ethiopian, Yemen and Brazilian Coffea arabica L. Accessions Using Microsatellites Markers. Genet. Resour. Crop Evol. 2007, 54, 1367–1379. [Google Scholar] [CrossRef]
- Ferwerda, F.P. Coffee. In Evolution of Crop Plants; Longman: London, UK, 1976; pp. 257–260. [Google Scholar]
- Gomez, C.; Dussert, S.; Hamon, P.; Hamon, S.; de Kochko, A.; Poncet, V. Current Genetic Differentiation of Coffea canephoraPierre ex A. Froehn in the Guineo-Congolian African Zone: Cumulative Impact of Ancient Climatic Changes and Recent Human Activities. BMC Evol. Biol. 2009, 9, 167. [Google Scholar] [CrossRef]
- Musoli, P.; Cubry, P.; Aluka, P.; Billot, C.; Dufour, M.; De Bellis, F.; Pot, D.; Bieysse, D.; Charrier, A.; Leroy, T. Genetic Differentiation of Wild and Cultivated Populations: Diversity of Coffea canephora Pierre in Uganda. Genome 2009, 52, 634–646. [Google Scholar] [CrossRef]
- Sakiyama, N.S.; Pereira, A.A.; Zambolim, L. Melhoramento Do Café Arábica. Melhoramento de Espécies Cultivadas; Imprensa Universitária: Viçosa, Brazil, 1999. [Google Scholar]
- Carvalho, A.; Mônaco, L.C.; Campana, M.P. Melhoramento do cafeeiro: XXVII—Ensaio de seleções regionais de Jaú. Bragantia 1964, 23, 129–142. [Google Scholar] [CrossRef]
- Yu, Q.; Guyot, R.; de Kochko, A.; Byers, A.; Navajas-Pérez, R.; Langston, B.J.; Dubreuil-Tranchant, C.; Paterson, A.H.; Poncet, V.; Nagai, C.; et al. Micro-Collinearity and Genome Evolution in the Vicinity of an Ethylene Receptor Gene of Cultivated Diploid and Allotetraploid Coffee Species (Coffea). Plant J. 2011, 67, 305–317. [Google Scholar] [CrossRef]
- Cenci, A.; Combes, M.-C.; Lashermes, P. Genome Evolution in Diploid and Tetraploid Coffea Species as Revealed by Comparative Analysis of Orthologous Genome Segments. Plant Mol. Biol. 2012, 78, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Feschotte, C.; Pritham, E.J. DNA Transposons and the Evolution of Eukaryotic Genomes. Annu. Rev. Genet. 2007, 41, 331–368. [Google Scholar] [CrossRef] [PubMed]
- Mirouze, M.; Vitte, C. Transposable Elements, a Treasure Trove to Decipher Epigenetic Variation: Insights from Arabidopsis and Crop Epigenomes. J. Exp. Bot. 2014, 65, 2801–2812. [Google Scholar] [CrossRef] [PubMed]
- Catlin, N.S.; Josephs, E.B. The Important Contribution of Transposable Elements to Phenotypic Variation and Evolution. Curr. Opin. Plant Biol. 2022, 65, 102140. [Google Scholar] [CrossRef]
- Lv, Y.; Hu, F.; Zhou, Y.; Wu, F.; Gaut, B.S. Maize Transposable Elements Contribute to Long Non-Coding RNAs That Are Regulatory Hubs for Abiotic Stress Response. BMC Genom. 2019, 20, 864. [Google Scholar] [CrossRef]
- Pargana, A.; Musacchia, F.; Sanges, R.; Russo, M.T.; Ferrante, M.I.; Bowler, C.; Zingone, A. Intraspecific Diversity in the Cold Stress Response of Transposable Elements in the Diatom Leptocylindrus Aporus. Genes 2019, 11, 9. [Google Scholar] [CrossRef]
- Anthony, F.; Bertrand, B.; Quiros, O.; Wilches, A.; Lashermes, P.; Berthaud, J.; Charrier, A. Genetic Diversity of Wild Coffee (Coffea arabica L.) Using Molecular Markers. Euphytica 2001, 118, 53–65. [Google Scholar] [CrossRef]
- Guerreiro-Filho, O. Origem e Classificação Botânica Do Cafeeiro. In Cultivares de Café: Origem, Características e Recomendações; Embrapa Café: Brasília, Brazil, 2008; pp. 23–30. [Google Scholar]
- Conagin, C.H.T.M.; Mendes, A.J.T. Pesquisas citológicas e genéticas em três espécies de Coffea: Auto-incompatibilidade em Coffea canephora pierre ex froehner. Bragantia 1961, 20, 788–804. [Google Scholar] [CrossRef]
- Mendes, A.N.G.; Guimarães, R.J.; Souza, C.A.S. Classificação Botânica, Origem e Distribuição Geográfica Do Cafeeiro. In Cafeicultura; UFLA/FAEPE: Lavras, Brazil, 2002; pp. 285–300. [Google Scholar]
- da Eira Aguiar, A.T.; Guerreiro-Filho, O.; Maluf, M.P.; Gallo, P.B.; Fazuoli, L.C. Caracterização de cultivares de Coffea arabica mediante utilização de descritores mínimos. Bragantia 2004, 63, 179–192. [Google Scholar] [CrossRef]
- López, M.E.; Santos, I.S.; de Oliveira, R.R.; Lima, A.A.; Cardon, C.H.; Chalfun-Junior, A.; López, M.E.; Santos, I.S.; de Oliveira, R.R.; Lima, A.A.; et al. An Overview of the Endogenous and Environmental Factors Related to the Coffea arabica Flowering Process. Beverage Plant Res. 2021, 1, 13. [Google Scholar] [CrossRef]
- Cardon, C.H.; de Oliveira, R.R.; Lesy, V.; Ribeiro, T.H.C.; Fust, C.; Pereira, L.P.; Colasanti, J.; Chalfun-Junior, A. Expression of Coffee Florigen CaFT1 Reveals a Sustained Floral Induction Window Associated with Asynchronous Flowering in Tropical Perennials. Plant Sci. 2022, 325, 111479. [Google Scholar] [CrossRef] [PubMed]
- Cheserek, J.J.; Gichimu, B.M. Drought and Heat Tolerance in Coffee: A Review; University of Embu: Embu, Kenya, 2012. [Google Scholar]
- Kimemia, J.K. Effect of Global Warming on Coffee Production. In Proceedings of the Ugandan Coffee Traders Federation Breakfast Fellowship, Kampala, Uganda, 15 June 2010. [Google Scholar]
- Ovalle-Rivera, O.; Läderach, P.; Bunn, C.; Obersteiner, M.; Schroth, G. Projected Shifts in Coffea arabica Suitability among Major Global Producing Regions Due to Climate Change. PLoS ONE 2015, 10, e0124155. [Google Scholar] [CrossRef] [PubMed]
- Läderach, P.; Ramirez–Villegas, J.; Navarro-Racines, C.; Zelaya, C.; Martinez–Valle, A.; Jarvis, A. Climate Change Adaptation of Coffee Production in Space and Time. Clim. Chang. 2017, 141, 47–62. [Google Scholar] [CrossRef]
- Silva, E.A.; DaMatta, F.M.; Ducatti, C.; Regazzi, A.J.; Barros, R.S. Seasonal Changes in Vegetative Growth and Photosynthesis of Arabica Coffee Trees. Field Crops Res. 2004, 89, 349–357. [Google Scholar] [CrossRef]
- Martins, M.Q.; Rodrigues, W.P.; Fortunato, A.S.; Leitão, A.E.; Rodrigues, A.P.; Pais, I.P.; Martins, L.D.; Silva, M.J.; Reboredo, F.H.; Partelli, F.L.; et al. Protective Response Mechanisms to Heat Stress in Interaction with High [CO2] Conditions in Coffea spp. Front Plant Sci. 2016, 7, 947. [Google Scholar] [CrossRef]
- Rodrigues, W.P.; Martins, M.Q.; Fortunato, A.S.; Rodrigues, A.P.; Semedo, J.N.; Simões-Costa, M.C.; Pais, I.P.; Leitão, A.E.; Colwell, F.; Goulao, L.; et al. Long-Term Elevated Air [CO2] Strengthens Photosynthetic Functioning and Mitigates the Impact of Supra-Optimal Temperatures in Tropical Coffea arabica and C. canephora Species. Glob. Chang. Biol. 2016, 22, 415–431. [Google Scholar] [CrossRef] [PubMed]
- Scotti-Campos, P.; Pais, I.P.; Ribeiro-Barros, A.I.; Martins, L.D.; Tomaz, M.A.; Rodrigues, W.P.; Campostrini, E.; Semedo, J.N.; Fortunato, A.S.; Martins, M.Q.; et al. Lipid Profile Adjustments May Contribute to Warming Acclimation and to Heat Impact Mitigation by Elevated [CO2] in Coffea spp. Environ. Exp. Bot. 2019, 167, 103856. [Google Scholar] [CrossRef]
- Carr, M. The Water Relations and Irrigation Requirements of Coffee. Exp. Agric. 2001, 37, 1–36. [Google Scholar] [CrossRef]
- Long, S.P.; Ainsworth, E.A.; Leakey, A.D.B.; Nösberger, J.; Ort, D.R. Food for Thought: Lower-Than-Expected Crop Yield Stimulation with Rising CO2 Concentrations. Science 2006, 312, 1918–1921. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Rogers, A. The Response of Photosynthesis and Stomatal Conductance to Rising [CO2]: Mechanisms and Environmental Interactions. Plant Cell Environ. 2007, 30, 258–270. [Google Scholar] [CrossRef]
- Engineer, C.B.; Hashimoto-Sugimoto, M.; Negi, J.; Israelsson-Nordström, M.; Azoulay-Shemer, T.; Rappel, W.-J.; Iba, K.; Schroeder, J.I. CO2 Sensing and CO2 Regulation of Stomatal Conductance: Advances and Open Questions. Trends Plant Sci. 2016, 21, 16–30. [Google Scholar] [CrossRef]
- Ghini, R.; Neto, A.; Dentzien, A.; Gerreiro-Filho, O.; Jost, R.; Patrício, F.; Marinho-Prado, J.; Thomaziello, R.A.; Bettiol, W.; DaMatta, F. Coffee Growth, Pest and Yield Responses to Free-Air CO2 Enrichment. Clim. Chang. 2015, 132, 307–320. [Google Scholar] [CrossRef]
- Avila, R.; De Almeida, W.; Cavalcante, L.; Machado, K.; Barbosa, M.; Sousa, R.; Martino, P.; Toral, M.; Marçal, D.; Martins, S.; et al. Elevated Air [CO2] Improves Photosynthetic Performance and Alters Biomass Accumulation and Partitioning in Drought-Stressed Coffee Plants. Environ. Exp. Bot. 2020, 177, 104137. [Google Scholar] [CrossRef]
- Semedo, J.N.; Rodrigues, A.P.; Lidon, F.C.; Pais, I.P.; Marques, I.; Gouveia, D.; Armengaud, J.; Silva, M.J.; Martins, S.; Semedo, M.C.; et al. Intrinsic Non-Stomatal Resilience to Drought of the Photosynthetic Apparatus in Coffea spp. Is Strengthened by Elevated Air [CO2]. Tree Physiol. 2021, 41, 708–727. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, I.; Marques, I.; Paulo, O.S.; Batista, D.; Partelli, F.L.; Lidon, F.C.; DaMatta, F.M.; Ramalho, J.C.; Ribeiro-Barros, A.I. Understanding the Impact of Drought in Coffea Genotypes: Transcriptomic Analysis Supports a Common High Resilience to Moderate Water Deficit but a Genotype Dependent Sensitivity to Severe Water Deficit. Agronomy 2021, 11, 2255. [Google Scholar] [CrossRef]
- Marques, I.; Rodrigues, A.P.; Gouveia, D.; Lidon, F.C.; Martins, S.; Semedo, M.C.; Gaillard, J.-C.; Pais, I.P.; Semedo, J.N.; Scotti-Campos, P.; et al. High-Resolution Shotgun Proteomics Reveals That Increased Air [CO2] Amplifies the Acclimation Response of Coffea Species to Drought Regarding Antioxidative, Energy, Sugar, and Lipid Dynamics. J. Plant Physiol. 2022, 276, 153788. [Google Scholar] [CrossRef]
- Bertrand, B.; Bardil, A.; Baraille, H.; Dussert, S.; Doulbeau, S.; Dubois, E.; Severac, D.; Dereeper, A.; Etienne, H. The Greater Phenotypic Homeostasis of the Allopolyploid Coffea arabica Improved the Transcriptional Homeostasis over That of Both Diploid Parents. Plant Cell Physiol. 2015, 56, 2035–2051. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, R.R.; Ribeiro, T.H.C.; Cardon, C.H.; Fedenia, L.; Maia, V.A.; Barbosa, B.C.F.; Caldeira, C.F.; Klein, P.E.; Chalfun-Junior, A. Elevated Temperatures Impose Transcriptional Constraints and Elicit Intraspecific Differences between Coffee Genotypes. Front. Plant Sci. 2020, 11, 1113. [Google Scholar] [CrossRef]
- Brodersen, P.; Sakvarelidze-Achard, L.; Bruun-Rasmussen, M.; Dunoyer, P.; Yamamoto, Y.Y.; Sieburth, L.; Voinnet, O. Widespread Translational Inhibition by Plant miRNAs and siRNAs. Science 2008, 320, 1185–1190. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, C.; Li, G.; Chen, P.; Liu, Y.; Xia, R. Biogenesis of Reproductive PhasiRNAs: Exceptions to the Rules. Plant Biotechnol. J. 2023, 21, 241–243. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, H.; Fang, S.; Kang, Y.; Wu, W.; Hao, Y.; Li, Z.; Bu, D.; Sun, N.; Zhang, M.Q.; et al. NONCODE 2016: An Informative and Valuable Data Source of Long Non-Coding RNAs. Nucleic Acids Res. 2016, 44, D203–D208. [Google Scholar] [CrossRef] [PubMed]
- Budak, H.; Akpinar, B.A. Plant miRNAs: Biogenesis, Organization and Origins. Funct. Integr. Genom. 2015, 15, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Law, J.A.; Jacobsen, S.E. Establishing, Maintaining and Modifying DNA Methylation Patterns in Plants and Animals. Nat. Rev. Genet. 2010, 11, 204–220. [Google Scholar] [CrossRef] [PubMed]
- Axtell, M.J.; Westholm, J.O.; Lai, E.C. Vive La Différence: Biogenesis and Evolution of microRNAs in Plants and Animals. Genome Biol. 2011, 12, 221. [Google Scholar] [CrossRef]
- Margis, R.; Fusaro, A.F.; Smith, N.A.; Curtin, S.J.; Watson, J.M.; Finnegan, E.J.; Waterhouse, P.M. The Evolution and Diversification of Dicers in Plants. FEBS Lett. 2006, 580, 2442–2450. [Google Scholar] [CrossRef]
- Bologna, N.G.; Voinnet, O. The Diversity, Biogenesis, and Activities of Endogenous Silencing Small RNAs in Arabidopsis. Annu. Rev. Plant Biol. 2014, 65, 473–503. [Google Scholar] [CrossRef]
- Ramachandran, V.; Chen, X. Degradation of microRNAs by a Family of Exoribonucleases in Arabidopsis. Science 2008, 321, 1490–1492. [Google Scholar] [CrossRef]
- Park, M.Y.; Wu, G.; Gonzalez-Sulser, A.; Vaucheret, H.; Poethig, R.S. Nuclear Processing and Export of microRNAs in Arabidopsis. Proc. Natl. Acad. Sci. USA 2005, 102, 3691–3696. [Google Scholar] [CrossRef]
- Carthew, R.W.; Sontheimer, E.J. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009, 136, 642–655. [Google Scholar] [CrossRef]
- Debat, H.J.; Ducasse, D.A. Plant microRNAs: Recent Advances and Future Challenges. Plant Mol. Biol. Rep. 2014, 32, 1257–1269. [Google Scholar] [CrossRef]
- Yu, X.; Wang, H.; Lu, Y.; de Ruiter, M.; Cariaso, M.; Prins, M.; van Tunen, A.; He, Y. Identification of Conserved and Novel microRNAs That Are Responsive to Heat Stress in Brassica Rapa. J. Exp. Bot. 2012, 63, 1025–1038. [Google Scholar] [CrossRef] [PubMed]
- Kruszka, K.; Pacak, A.; Swida-Barteczka, A.; Nuc, P.; Alaba, S.; Wroblewska, Z.; Karlowski, W.; Jarmolowski, A.; Szweykowska-Kulinska, Z. Transcriptionally and Post-Transcriptionally Regulated microRNAs in Heat Stress Response in Barley. J. Exp. Bot. 2014, 65, 6123–6135. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Yang, L.; Fan, D.; Li, L.; Hao, Q. Integration Analysis of miRNA-mRNA Pairs between Two Contrasting Genotypes Reveals the Molecular Mechanism of Jujube (Ziziphus jujuba Mill.) Response to High-Temperature Stress; Research Square: Durham, NC, USA, 2023. [Google Scholar]
- Amini, Z.; Salehi, H.; Chehrazi, M.; Etemadi, M.; Xiang, M. miRNAs and Their Target Genes Play a Critical Role in Response to Heat Stress in Cynodon dactylon (L.) Pers. Mol. Biotechnol. 2023, 1–14. [Google Scholar] [CrossRef] [PubMed]
- May, P.; Liao, W.; Wu, Y.; Shuai, B.; McCombie, W.R.; Zhang, M.Q.; Liu, Q.A. The Effects of Carbon Dioxide and Temperature on microRNA Expression in Arabidopsis Development. Nat. Commun. 2013, 4, 2145. [Google Scholar] [CrossRef]
- Giacomelli, J.I.; Weigel, D.; Chan, R.L.; Manavella, P.A. Role of Recently Evolved miRNA Regulation of Sunflower HaWRKY6 in Response to Temperature Damage. New Phytol. 2012, 195, 766–773. [Google Scholar] [CrossRef]
- Nellikunnumal, S.M.; Chandrashekar, A. Computational Identification of Conserved MicroRNA and Their Targets in Coffea canephora by EST Analysis. Dyn. Biochem. Process Biotechnol. Mol. Biol. 2012, 6, 70–76. [Google Scholar]
- Mohanan, S.; Gowda, K.; Kandukuri, S.V.; Chandrashekar, A. Involvement of a Novel Intronic microRNA in Cross Regulation of N-Methyltransferase Genes Involved in Caffeine Biosynthesis in Coffea canephora. Gene 2013, 519, 107–112. [Google Scholar] [CrossRef]
- Akter, A.; Islam, M.M.; Mondal, S.I.; Mahmud, Z.; Jewel, N.A.; Ferdous, S.; Amin, M.R.; Rahman, M.M. Computational Identification of miRNA and Targets from Expressed Sequence Tags of Coffee (Coffea arabica). Saudi J. Biol. Sci. 2014, 21, 3–12. [Google Scholar] [CrossRef]
- Rebijith, K.B.; Asokan, R.; Ranjitha, H.H.; Krishna, V.; Nirmalbabu, K. In Silico Mining of Novel microRNAs from Coffee (Coffea arabica) Using Expressed Sequence Tags. J. Hortic. Sci. Biotechnol. 2013, 88, 325–337. [Google Scholar] [CrossRef]
- Devi, K.J.; Chakraborty, S.; Deb, B.; Rajwanshi, R. Computational Identification and Functional Annotation of microRNAs and Their Targets from Expressed Sequence Tags (ESTs) and Genome Survey Sequences (GSSs) of Coffee (Coffea arabica L.). Plant Gene 2016, 6, 30–42. [Google Scholar] [CrossRef]
- Ivamoto, S.T.; Júnior, O.R.; Domingues, D.S.; dos Santos, T.B.; de Oliveira, F.F.; Pot, D.; Leroy, T.; Vieira, L.G.E.; Carazzolle, M.F.; Pereira, G.A.G.; et al. Transcriptome Analysis of Leaves, Flowers and Fruits Perisperm of Coffea arabica L. Reveals the Differential Expression of Genes Involved in Raffinose Biosynthesis. PLoS ONE 2017, 12, e0169595. [Google Scholar] [CrossRef]
- Parvez Mosharaf, M.; Akond, Z.; Hadiul Kabir, M.; Nurul Haque Mollah, M. Genome-Wide Identification, Characterization and Phylogenetic Analysis of Dicer-like (DCL) Gene Family in Coffea arabica. Bioinformation 2019, 15, 824–831. [Google Scholar] [CrossRef] [PubMed]
- Lemos, S.M.C.; Fonçatti, L.F.C.; Guyot, R.; Paschoal, A.R.; Domingues, D.S. Genome-Wide Screening and Characterization of Non-Coding RNAs in Coffea canephora. Non-Coding RNA 2020, 6, 39. [Google Scholar] [CrossRef]
- Hernández-Castellano, S.; Andrade-Marcial, M.; Aguilar-Méndez, E.D.; Loyola-Vargas, V.M.; de Folter, S.; De-la-Peña, C. MiRNA Expression Analysis during Somatic Embryogenesis in Coffea canephora. Plant Cell Tissue Organ Cult. 2022, 150, 177–190. [Google Scholar] [CrossRef]
- dos Santos, T.B.; Soares, J.D.M.; Lima, J.E.; Silva, J.C.; Ivamoto, S.T.; Baba, V.Y.; Souza, S.G.H.; Lorenzetti, A.P.R.; Paschoal, A.R.; Meda, A.R.; et al. An Integrated Analysis of mRNA and sRNA Transcriptional Profiles in Coffea arabica L. Roots: Insights on Nitrogen Starvation Responses. Funct. Integr. Genom. 2019, 19, 151–169. [Google Scholar] [CrossRef]
- Centomani, I.; Sgobba, A.; D’Addabbo, P.; Dipierro, N.; Paradiso, A.; De Gara, L.; Dipierro, S.; Viggiano, L.; de Pinto, M.C. Involvement of DNA Methylation in the Control of Cell Growth during Heat Stress in Tobacco BY-2 Cells. Protoplasma 2015, 252, 1451–1459. [Google Scholar] [CrossRef]
- Conrath, U. Molecular Aspects of Defence Priming. Trends Plant Sci. 2011, 16, 524–531. [Google Scholar] [CrossRef]
- Santos, A.P.; Serra, T.; Figueiredo, D.D.; Barros, P.; Lourenço, T.; Chander, S.; Oliveira, M.M.; Saibo, N.J.M. Transcription Regulation of Abiotic Stress Responses in Rice: A Combined Action of Transcription Factors and Epigenetic Mechanisms. OMICS J. Integr. Biol. 2011, 15, 839–857. [Google Scholar] [CrossRef]
- Vriet, C.; Hennig, L.; Laloi, C. Stress-Induced Chromatin Changes in Plants: Of Memories, Metabolites and Crop Improvement. Cell. Mol. Life Sci. 2015, 72, 1261–1273. [Google Scholar] [CrossRef]
- Crisp, P.A.; Ganguly, D.; Eichten, S.R.; Borevitz, J.O.; Pogson, B.J. Reconsidering Plant Memory: Intersections between Stress Recovery, RNA Turnover, and Epigenetics. Sci. Adv. 2016, 2, e1501340. [Google Scholar] [CrossRef]
- de Freitas Guedes, F.A.; Nobres, P.; Rodrigues Ferreira, D.C.; Menezes-Silva, P.E.; Ribeiro-Alves, M.; Correa, R.L.; DaMatta, F.M.; Alves-Ferreira, M. Transcriptional Memory Contributes to Drought Tolerance in Coffee (Coffea canephora) Plants. Environ. Exp. Bot. 2018, 147, 220–233. [Google Scholar] [CrossRef]
- Yadava, P.; Tamim, S.; Zhang, H.; Teng, C.; Zhou, X.; Meyers, B.C.; Walbot, V. Transgenerational Conditioned Male Fertility of HD-ZIP IV Transcription Factor Mutant Ocl4: Impact on 21-Nt phasiRNA Accumulation in Pre-Meiotic Maize Anthers. Plant Reprod. 2021, 34, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.; Zhang, H.; Arikit, S.; Huang, K.; Nan, G.-L.; Walbot, V.; Meyers, B.C. Spatiotemporally Dynamic, Cell-Type–Dependent Premeiotic and Meiotic phasiRNAs in Maize Anthers. Proc. Natl. Acad. Sci. USA 2015, 112, 3146–3151. [Google Scholar] [CrossRef] [PubMed]
- Bélanger, S.; Pokhrel, S.; Czymmek, K.; Meyers, B.C. Premeiotic, 24-Nucleotide Reproductive PhasiRNAs Are Abundant in Anthers of Wheat and Barley But Not Rice and Maize. Plant Physiol. 2020, 184, 1407–1423. [Google Scholar] [CrossRef] [PubMed]
- Pokhrel, S.; Meyers, B.C. Heat-responsive microRNAs and Phased Small Interfering RNAs in Reproductive Development of Flax. Plant Direct 2022, 6, e385. [Google Scholar] [CrossRef]
- Morais, H.; Caramori, P.H.; Koguishi, M.S.; de Arruda Ribeiro, A.M. Escala fenológica detalhada da fase reprodutiva de Cooffea arabica. Bragantia 2008, 67, 257–260. [Google Scholar] [CrossRef]
- Wytinck, N.; Manchur, C.L.; Li, V.H.; Whyard, S.; Belmonte, M.F. dsRNA Uptake in Plant Pests and Pathogens: Insights into RNAi-Based Insect and Fungal Control Technology. Plants 2020, 9, 1780. [Google Scholar] [CrossRef]
- Šečić, E.; Kogel, K.-H. Requirements for Fungal Uptake of dsRNA and Gene Silencing in RNAi-Based Crop Protection Strategies. Curr. Opin. Biotechnol. 2021, 70, 136–142. [Google Scholar] [CrossRef]
- Lucena-Leandro, V.S.; Abreu, E.F.A.; Vidal, L.A.; Torres, C.R.; Junqueira, C.I.C.V.F.; Dantas, J.; Albuquerque, É.V.S. Current Scenario of Exogenously Induced RNAi for Lepidopteran Agricultural Pest Control: From dsRNA Design to Topical Application. Int. J. Mol. Sci. 2022, 23, 15836. [Google Scholar] [CrossRef]
- Qiao, L.; Niño-Sánchez, J.; Hamby, R.; Capriotti, L.; Chen, A.; Mezzetti, B.; Jin, H. Artificial Nanovesicles for dsRNA Delivery in Spray-Induced Gene Silencing for Crop Protection. Plant Biotechnol. J. 2023, 21, 854–865. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, K.K.P.; de Oliveira, R.R.; Chalfun-Junior, A. Small RNAs: Promising Molecules to Tackle Climate Change Impacts in Coffee Production. Plants 2023, 12, 3531. https://doi.org/10.3390/plants12203531
de Oliveira KKP, de Oliveira RR, Chalfun-Junior A. Small RNAs: Promising Molecules to Tackle Climate Change Impacts in Coffee Production. Plants. 2023; 12(20):3531. https://doi.org/10.3390/plants12203531
Chicago/Turabian Stylede Oliveira, Kellen Kauanne Pimenta, Raphael Ricon de Oliveira, and Antonio Chalfun-Junior. 2023. "Small RNAs: Promising Molecules to Tackle Climate Change Impacts in Coffee Production" Plants 12, no. 20: 3531. https://doi.org/10.3390/plants12203531
APA Stylede Oliveira, K. K. P., de Oliveira, R. R., & Chalfun-Junior, A. (2023). Small RNAs: Promising Molecules to Tackle Climate Change Impacts in Coffee Production. Plants, 12(20), 3531. https://doi.org/10.3390/plants12203531