Establishment of an Efficient and Rapid Regeneration System for a Rare Shrubby Desert Legume Eremosparton songoricum
Abstract
:1. Introduction
2. Results
2.1. Influence of Growth Regulators on the Assimilated Branches’ Regeneration
2.2. Effect of Growth Regulators on Assimilated Branch Rooting
2.3. E. Songoricum Acclimatization and Transplants
2.4. Influence of Different Auxin and Cytokinin Concentrations on Callus Initiation
2.5. Salinity and Drought Stress Treatments of E. Songoricum Calluses
3. Discussion
3.1. Specificity of Explant Selection for E. Songoricum
3.2. The Effects of Plant Growth Regulator Combinations on the Assimilated Branch Regeneration Rate
3.3. The Effects of Plant Growth Regulator Combinations and Sucrose Concentration on Root Formation
3.4. The Effect of Different Plant Growth Regulators on Callus Formation
4. Materials and Methods
4.1. Plant Material
4.2. Acquisition of Explants
4.3. Screening of Shoot Induction and Proliferation Medium
4.4. Rooting of Assimilated Branches
4.5. Acclimatization and Transplanting
4.6. Callus Induction and Stress Treatments
4.7. Determination of Physiological Indicators
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Statistics and Analysis
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Tao, Y.; Qiu, D.; Zhang, D.; Zhang, Y. Effects of artificial sand fixing on community characteristics of a rare desert shrub. Conserv. Biol. 2013, 27, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, X.; Zhang, D.; Liu, H.; Guan, K. Effects of drought stress on the seed germination and early seedling growth of the endemic desert plant Eremosparton songoricum (Fabaceae). Excli. J. 2013, 12, 89–101. [Google Scholar]
- Li, X.; Zhang, D.; Li, H.; Wang, Y.; Zhang, Y.; Wood, A.J. EsDREB2B, a novel truncated DREB2-type transcription factor in the desert legume Eremosparton songoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco. BMC Plant Biol. 2014, 14, 44. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Abudureheman, B.; Zhang, L.; Baskin, J.M.; Baskin, C.C.; Zhang, D. Seed dormancy-breaking in a cold desert shrub in relation to sand temperature and moisture. AoB Plants. 2017, 9, plx003. [Google Scholar] [CrossRef] [PubMed]
- Li, X.S.; Yang, H.L.; Zhang, D.Y.; Zhang, Y.M.; Wood, A.J. Reference gene selection in the desert plant Eremosparton songoricum. Int. J. Mol. Sci. 2012, 13, 6944–6963. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Haxim, Y.; Liang, Y.; Qiao, S.; Gao, B.; Zhang, D.; Li, X. Genome-wide investigation of AP2/ERF gene family in the desert legume Eremosparton songoricum: Identification, classification, evolution, and expression profiling under drought stress. Front. Plant Sci. 2022, 13, 885694. [Google Scholar] [CrossRef]
- Xu, L.; Li, S.; Shabala, S.; Jian, T.; Zhang, W. Plants Grown in Parafilm-Wrapped Petri Dishes Are Stressed and Possess Altered Gene Expression Profile. Front. Plant Sci. 2019, 10, 637. [Google Scholar] [CrossRef]
- Armas, I.; Pogrebnyak, N.; Raskin, I. A rapid and efficient in vitro regeneration system for lettuce (Lactuca sativa L.). Plant Methods 2017, 13, 58. [Google Scholar] [CrossRef]
- Ke, Q.; Kim, H.S.; Wang, Z.; Ji, C.Y.; Jeong, J.C.; Lee, H.S.; Choi, Y.I.; Xu, B.; Deng, X.; Yun, D.J.; et al. Down-regulation of GIGANTEA-like genes increases plant growth and salt stress tolerance in poplar. Plant Biotechnol. J. 2017, 15, 331–343. [Google Scholar] [CrossRef]
- Soliveres, S.; Eldridge, D.J. Do changes in grazing pressure and the degree of shrub encroachment alter the effects of individual shrubs on understorey plant communities and soil function? Funct. Ecol. 2014, 28, 530–537. [Google Scholar] [CrossRef]
- Wei, F.; Zhao, F.-F.; Tian, B.-M. In vitro regeneration of Populus tomentosa from petioles. J. Forestry Res. 2017, 28, 465–471. [Google Scholar] [CrossRef]
- Vidal, D.; Correia, L.; Matos, E.; Souza, M.; Batista, D.; Costa, M.; Paiva Neto, V.; Xavier, A.; Rogalski, M.; Otoni, W. Wounding and medium formulation affect de novo shoot organogenic responses in hypocotyl-derived explants of annatto (Bixa orellana L.). In Vitro. Cell. Dev. Biol.-Plant 2019, 55, 277–289. [Google Scholar] [CrossRef]
- Song, H.; Mao, W.; Shang, Y.; Zhou, W.; Li, P.; Chen, X. A regeneration system using cotyledons and cotyledonary node explants of Toona ciliata. J. For. Res. 2021, 32, 967–974. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y.; Yu, L.; Zheng, T.; Wang, S.; Yue, Z.; Jiang, J.; Kumari, S.; Zheng, C.; Tang, H.; et al. Genome sequence and evolution of Betula platyphylla. Hortic. Res. 2021, 8, 37. [Google Scholar] [CrossRef]
- Zhang, Y.; Bozorov, T.A.; Li, D.X.; Zhou, P.; Wen, X.J.; Ding, Y.; Zhang, D.Y. An efficient in vitro regeneration system from different wild apple (Malus sieversii) explants. Plant Methods 2020, 16, 56. [Google Scholar] [CrossRef]
- Wang, F.; Yu, Q.; Chai, C.; Wang, Y.; Zhang, H. Tissue culture and plant regeneration of Tamarix elongata. J. Arid. Land Res. Environ. 2021, 35, 176–181. [Google Scholar]
- Hou, W.; Lin, K.; Chen, P.; Jia, Z.; Zhou, Y.; Yu, Y.; Liu, Y. Establishment and Prospect of Efficient Transformation Systems for Soybean. Sci. Agric. Sin. 2014, 47, 4198–4210. [Google Scholar] [CrossRef]
- Ticha, M.; Illesova, P.; Hrbackova, M.; Basheer, J.; Novak, D.; Hlavackova, K.; Samajova, O.; Niehaus, K.; Ovecka, M.; Samaj, J. Tissue culture, genetic transformation, interaction with beneficial microbes, and modern bio-imaging techniques in alfalfa research. Crit. Rev. Biotechnol. 2020, 40, 1265–1280. [Google Scholar] [CrossRef]
- Nolan, K.E.; Rose, R.J.; Gorst, J.R. Regeneration of Medicago truncatula from tissue culture: Increased somatic embryogenesis using explants from regenerated plants. Plant Cell. Rep. 1989, 8, 278–281. [Google Scholar] [CrossRef]
- Wen, L.; Chen, Y.; Schnabel, E.; Crook, A.; Frugoli, J. Comparison of efficiency and time to regeneration of Agrobacterium-mediated transformation methods in Medicago truncatula. Plant Methods 2019, 15, 20. [Google Scholar] [CrossRef]
- Sindhu, M.; Kumar, A.; Yadav, H.; Chaudhary, D.; Jaiwal, R.; Jaiwal, P.K. Current advances and future directions in genetic enhancement of a climate resilient food legume crop, cowpea (Vigna unguiculata L. Walp.). Plant Cell. Tiss. Org. 2019, 139, 429–453. [Google Scholar] [CrossRef]
- Arrillaga, I.; Tobolski, J.J.; Merkle, S.A. Advances in somatic embryogenesis and plant production of black locust (Robinia pseudoacacia L.). Plant Cell. Rep. 1994, 13, 171–175. [Google Scholar] [CrossRef]
- Mellor, K.E.; Hoffman, A.M.; Timko, M.P. Use of ex vitro composite plants to study the interaction of cowpea (Vigna unguiculata L.) with the root parasitic angiosperm Striga gesnerioides. Plant Methods 2012, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.N.; Tee, C.S.; Wong, H.L. Multiple shoot bud induction and plant regeneration studies of Pongamia pinnata. Plant Biotechnol. 2018, 35, 325–334. [Google Scholar] [CrossRef]
- Krishna, G.; Reddy, P.S.; Ramteke, P.W.; Bhattacharya, P.S. Progress of tissue culture and genetic transformation research in pigeon pea [Cajanus cajan (L.) Millsp.]. Plant Cell. Rep. 2010, 29, 1079–1095. [Google Scholar] [CrossRef] [PubMed]
- Ahée, J.; Duhoux, E. Root culturing of Faidherbia=Acacia albida as a source of explants for shoot regeneration. Plant Cell. Tiss. Org. 1994, 36, 219–225. [Google Scholar] [CrossRef]
- Narayana, N.S. Somatic embryogenesis in Mucuna pruriens. Afr. J. Biotechnol. 2009, 8, 6175–6180. [Google Scholar] [CrossRef]
- Zarnadze, N.; Bolkvadze, G.; Jakeli, E.; Dolidze, K. Microclonal Propagation of Crataegus Monogyna Jacq. in Vitro. CBU Int. Conf. Proc. 2019, 7, 1020–1025. [Google Scholar] [CrossRef]
- Cui, J.; Chen, J.; Henny, R.J. Regeneration of Aeschynanthus radicans via direct somatic embryogenesis and analysis of regenerants with flow cytometry. Vitr. Cell. Dev. Biol.-Plant 2009, 45, 34–43. [Google Scholar] [CrossRef]
- Jun-jie, Z.; Yue-sheng, Y.; Meng-fei, L.; Shu-qi, L.; Yi, T.; Han-bin, C.; Xiao-yang, C. An efficient micropropagation protocol for direct organogenesis from leaf explants of an economically valuable plant, drumstick (Moringa oleifera Lam.). Ind. Crops Prod. 2017, 103, 59–63. [Google Scholar] [CrossRef]
- Tashmatova, L.V.; Matsneva, O.V.; Khromova, T.M.; Shakhov, V.V. Influence of different concentrations of 6-benzylaminopurine and thidiazuron on the proliferative activity of apple varieties in in vitro culture. BIO Web Conf. 2021, 36, 03012. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, H.; Zhao, R.; Zhu, Z. Establishing an Efficient Regeneration System for Tissue Culture in Bougainvillea buttiana ‘Miss Manila’. Plants 2022, 11, 2372. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yuan, H.; Du, C.; Liang, L.; Chen, M.; Zou, L. Development of a Highly Efficient Shoot Organogenesis System for an Ornamental Aeschynanthus pulcher (Blume) G. Don Using Leaves as Explants. Plants 2022, 11, 2456. [Google Scholar] [CrossRef]
- Yang, H.; Yang, Y.; Wang, Q.; He, J.; Liang, L.; Qiu, H.; Wang, Y.; Zou, L. Adventitious Shoot Regeneration from Leaf Explants in Sinningia Hybrida ‘Isa’s Murmur’. Plants 2022, 11, 1232. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhang, C.; Yang, H.; Hu, J.; Zou, L. In vitro propagation via organogenesis and formation of globular bodies of Salvia plebeia: A valuable medicinal plant. Vitr. Cell. Dev. Biol.-Plant 2022, 58, 51–60. [Google Scholar] [CrossRef]
- Xu, L.; Cheng, F.; Zhong, Y. Efficient plant regeneration via meristematic nodule culture in Paeonia ostii ‘Feng Dan’. Plant Cell. Tiss. Org. 2022, 149, 599–608. [Google Scholar] [CrossRef]
- Canhoto, J.M.; Lopes, M.L.; Cruz, G.S. Somatic embryogenesis and plant regeneration in myrtle (Myrtaceae). Plant Cell. Tiss. Org. 1999, 57, 13–21. [Google Scholar] [CrossRef]
- Shah, S.; Zamir, R.; Muhammad, T.; Ali, H. Mass propagation of Bougainvillea spectabilis through shoot tip culture. Pak. J. Bot. 2006, 38. [Google Scholar] [CrossRef]
- Al-Shara, B.; Taha, R.M.; Mohamad, J.; Elias, H.; Khan, A. Somatic Embryogenesis and Plantlet Regeneration in the Carica papaya L. cv. Eksotika. Plants 2020, 9, 360. [Google Scholar] [CrossRef]
- Vengadesan, G.; Ganapathi, A.; Amutha, S.; Selvaraj, N. In vitro propagation of Acacia species—A review. Plant Sci. 2002, 163, 663–671. [Google Scholar] [CrossRef]
- Kaur, K.; Kant, U. Clonal propagation of Acacia catechu Willd. by shoot tip culture. Plant Growth Regul. 2000, 31, 143–145. [Google Scholar] [CrossRef]
- Zambre, M.A.; De Clercq, J.; Vranová, E.; Van Montagu, M.; Angenon, G.; Dillen, W. Plant regeneration from embryo-derived callus in Phaseolus vulgaris L. (common bean) and P. acutifolius A. Gray (tepary bean). Plant Cell. Rep. 1998, 17, 626–630. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Xu, Q. Induction of somatic embryogenesis and adventitious shoots from immature leaves of cassava. Plant Cell. Tiss. Org. 2002, 70, 281–288. [Google Scholar] [CrossRef]
- Chen, A.H.; Yang, J.L.; Niu, Y.D.; Yang, C.P.; Liu, G.F.; Yu, C.Y.; Li, C.H. High-frequency somatic embryogenesis from germinated zygotic embryos of Schisandra chinensis and evaluation of the effects of medium strength, sucrose, GA3, and BA on somatic embryo development. Plant Cell. Tiss. Org. 2010, 102, 357–364. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, X.; Zhuang, G.; Wang, S.; Chen, F. Simple hormonal regulation of somatic embryogenesis and/or shoot organogenesis in caryopsis cultures of Pogonatherum paniceum (Poaceae). Plant Cell. Tiss. Org. 2008, 95, 57–67. [Google Scholar] [CrossRef]
- Xie, D.; Hong, Y. In vitro regeneration of Acacia mangium via organogenesis. Plant Cell. Tiss. Org. 2001, 66, 167–173. [Google Scholar] [CrossRef]
- Moon, H.-K.; Kim, Y.-W.; Lee, J.-S.; Choi, Y.-E. Micropropagation of Kalopanax pictus tree via somatic embryogenesis. Vitr. Cell. Dev. Biol.-Plant 2005, 41, 303–306. [Google Scholar] [CrossRef]
- Shen, H.J.; Chen, J.T.; Chung, H.H.; Chang, W.C. Plant regeneration via direct somatic embryogenesis from leaf explants of Tolumnia Louise Elmore ‘Elsa’. Bot. Stud. 2018, 59, 4. [Google Scholar] [CrossRef]
- Yan, C.-J.; Zhao, Q.-H. Callus induction and plantlet regeneration from leaf blade of Oryza sativa L. Subsp. Indica. Plant Sci. Lett. 1982, 25, 187–192. [Google Scholar] [CrossRef]
- Vengadesan, G.; Ganapathi, A.; Prem Anand, R.; Ramesh Anbazhagan, V. In vitro organogenesis and plant formation in Acacia sinuata. Plant Cell. Tiss. Org. 2000, 61, 23–28. [Google Scholar] [CrossRef]
Group | Medium | 6-BA (mg/L) | Growing Status |
---|---|---|---|
1 | MS + 30 g/L Sucrose + 6.0 g/L Agar + 0.1 mg/L NAA | 0.2 | Less dwarf shooting, vitrified callus formed |
2 | 0.3 | Dwarf shooting, vitrified callus | |
3 | 0.4 | More vigorous shooting, callus formed | |
4 | 0.5 | Less and dwarf shooting, vitrified callus | |
5 | 0.6 | Less dwarf shooting, vitrified callus formed |
Group | Medium Components | |||
---|---|---|---|---|
Medium | Sucrose (g/L) | NAA (mg/L) | IBA (mg/L) | |
a | WPM medium | 30 | 0.1 | / |
b | 30 | / | 0.1 | |
c | 30 | / | / | |
d | 25 | 0.1 | / | |
e | 25 | / | 0.1 | |
f | 25 | / | / | |
g | 15 | 0.1 | / | |
h | 15 | / | 0.1 | |
i | 15 | / | / | |
j | MS medium | 30 | 0.1 | / |
k | 30 | / | 0.1 | |
l | 30 | / | / | |
m | 25 | 0.1 | / | |
n | 25 | / | 0.1 | |
o | 25 | / | / | |
p | 15 | 0.1 | / | |
q | 15 | / | 0.1 | |
r | 15 | / | / |
Group | NAA (mg/L) | TDZ (mg/L) | Growing Status |
---|---|---|---|
a | 0.5 | 0.5 | Green, compact |
b | 0.5 | 1 | White, compact |
c | 0.5 | 2 | Milky yellow-greenish, fluffy |
d | 1 | 0.5 | Brown, friable |
e | 1 | 1 | Greenish-yellow, compact |
f | 1 | 2 | Brown, friable |
g | 2 | 0.5 | Brown, vitrified |
h | 2 | 1 | Cream white, friable |
i | 2 | 2 | Red, friable, vitrified |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, S.; Jin, P.; Liu, X.; Liang, Y.; Yang, R.; Bai, W.; Zhang, D.; Li, X. Establishment of an Efficient and Rapid Regeneration System for a Rare Shrubby Desert Legume Eremosparton songoricum. Plants 2023, 12, 3535. https://doi.org/10.3390/plants12203535
Qiao S, Jin P, Liu X, Liang Y, Yang R, Bai W, Zhang D, Li X. Establishment of an Efficient and Rapid Regeneration System for a Rare Shrubby Desert Legume Eremosparton songoricum. Plants. 2023; 12(20):3535. https://doi.org/10.3390/plants12203535
Chicago/Turabian StyleQiao, Siqi, Pei Jin, Xiaojie Liu, Yuqing Liang, Ruirui Yang, Wenwan Bai, Daoyuan Zhang, and Xiaoshuang Li. 2023. "Establishment of an Efficient and Rapid Regeneration System for a Rare Shrubby Desert Legume Eremosparton songoricum" Plants 12, no. 20: 3535. https://doi.org/10.3390/plants12203535
APA StyleQiao, S., Jin, P., Liu, X., Liang, Y., Yang, R., Bai, W., Zhang, D., & Li, X. (2023). Establishment of an Efficient and Rapid Regeneration System for a Rare Shrubby Desert Legume Eremosparton songoricum. Plants, 12(20), 3535. https://doi.org/10.3390/plants12203535