Effects of Cadmium, Thallium, and Vanadium on Photosynthetic Parameters of Three Chili Pepper (Capsicum annuum L.) Varieties
Abstract
:1. Introduction
2. Results
2.1. Net Photosynthetic Rate (Pn)
2.2. Transpiration Rate (Tr)
2.3. Stomatal Conductance (Gs)
2.4. Intercellular CO2 Concentration (Ci) in the Leaf
2.5. Instantaneous Water Use Efficiency (instWUE)
2.6. Intrinsic Water Use Efficiency (iWUE)
2.7. Instantaneous Carboxylation Efficiency (Pn/Ci)
3. Discussion
3.1. Net Photosynthetic Rate (Pn)
3.2. Transpiration Rate (Tr)
3.3. Stomatal Conductance (Gs)
3.4. Intercellular CO2 Concentration within the Leaf (Ci)
3.5. Instantaneous Water Use Efficiency (instWUE)
3.6. Intrinsic Water Use Efficiency (iWUE)
3.7. Instantaneous Carboxilation Efficiency (Pn/Ci)
4. Materials and Methods
4.1. Experimental Conditions and Plant Material
4.2. Design of Treatments and Experimental Design
4.3. Gas Exchange Measurements
5. Statistical Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rengel, Z.; Cakmak, I.; White, P. Marschner’s Mineral Nutrition of Plants, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Murtaza, G.; Shehzad, M.T.; Kanwal, S.; Farooqi, Z.U.R.; Owens, G. Biomagnification of potentially toxic elements in animals consuming fodder irrigated with sewage water. Environ. Geochem. Health 2022, 44, 4523–4538. [Google Scholar] [CrossRef] [PubMed]
- Vatansever, D.; Ozyigit, I.I.; Filiz, E. Essential and beneficial trace elements in plants, and their transport in roots: A review. Appl. Biochem. Biotechnol. 2017, 181, 464–482. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Li, M.; Dai, J.; Motelica-Heino, M.; Chen, X.; Wu, J.L.; Zhang, C. Assessment of earthworm activity on Cu, Cd, Pb and Zn bioavailability in contaminated soils using biota to soil accumulation factor and DTPA extraction. Ecotoxicol. Environ. Saf. 2020, 195, 110513. [Google Scholar] [CrossRef]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef] [PubMed]
- OHSA (Occupational Health and Safety Administration). Toxic Metals. United States Department of Labor, 2009. Available online: https://www.osha.gov/SLTC/metalsheavy/ (accessed on 23 April 2022).
- Aslam, R.; Ansari, M.Y.K.; Choudhary, S.; Bhat, T.M.; Jahan, N. Genotoxic effects of heavy metal cadmium on growth, biochemical, cyto-physiological parameters and detection of DNA polymorphism by RAPD in Capsicum annuum L.–An important spice crop of India. Saudi J. Biol. Sci. 2014, 21, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Tom, M.; Fletcher, T.D.; McCarthy, D.T. Heavy metal contamination of vegetables irrigated by urban stormwater: A matter of time? PLoS ONE 2014, 9, e112441. [Google Scholar] [CrossRef]
- Zwolak, A.; Sarzyńska, M.; Szpyrka, E.; Stawarczyk, K. Sources of soil pollution by heavy metals and their accumulation in vegetables: A review. Water Air Soil Pollut. 2019, 230, 164. [Google Scholar] [CrossRef]
- Pajević, S.; Arsenov, D.; Nikolić, N.; Borišev, M.; Orčić, D.; Župunski, M.; Mimica-Dukić, N. Heavy metal accumulation in vegetable species and health risk assessment in Serbia. Environ. Monit. Assess. 2018, 190, 459. [Google Scholar] [CrossRef]
- Afonne, O.J.; Ifediba, E.C. Heavy metals risks in plant foods–need to step up precautionary measures. Curr. Opin. Toxicol. 2020, 22, 1–6. [Google Scholar] [CrossRef]
- Rascio, N.; Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 2011, 180, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Volland, S.; Bayer, E.; Baumgartner, V.; Andosch, A.; Lütz, C.; Sima, E.; Lütz-Meindl, U. Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions. J. Plant Physiol. 2014, 171, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Sheoran, I.S.; Singh, R. Effect of heavy metals on photosynthesis in higher plants. In Photosynthesis: Photoreactions to Plant Productivity; Abrol, Y.P., Mohanty, P., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 1993; pp. 451–468. [Google Scholar]
- Quian, H.; Li, J.; Sun, L.; Chen, W.; Sheng, G.D.; Liu, W.; Fu, Z. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquat. Toxicol. 2009, 94, 56–61. [Google Scholar] [CrossRef]
- Turan, M.; Yildirim, E.; Kitir, N.; Unek, C.; Nikerel, E.; Ozdemir, B.S.; Güneş, A.; Mokhtari, N.E.P. Beneficial role of plant growth-promoting bacteria in vegetable production under abiotic stress. In Microbial Strategies for Vegetable Production; Zaidi, A., Khan, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 151–166. [Google Scholar]
- Arena, C.; Figlioli, F.; Sorrentino, M.C.; Izzo, L.G.; Capozzi, F.; Giordano, S.; Spagnuolo, V. Ultrastructural, protein and photosynthetic alterations induced by Pb and Cd in Cynara cardunculus L., and its potential for phytoremediation. Ecotoxicol. Environ. Saf. 2017, 145, 83–89. [Google Scholar] [CrossRef]
- Figlioli, F.; Sorrentino, M.C.; Memoli, V.; Arena, C.; Maisto, G.; Giordano, S.; Capozzi, F.; Spagnuolo, V. Overall plant responses to Cd and Pb metal stress in maize: Growth pattern, ultrastructure, and photosynthetic activity. Environ. Sci. Pollut. Res. 2019, 26, 1781–1790. [Google Scholar] [CrossRef]
- He, T.; Meng, J.; Chen, W.; Liu, Z.; Cao, T.; Cheng, X.; Huang, Y.; Yang, X. Effects of biochar on cadmium accumulation in rice and cadmium fractions of soil: A three-year pot experiment. BioResources 2017, 12, 622–642. [Google Scholar] [CrossRef]
- Shanying, H.; Xiaoe, Y.; Zhenli, H.; Baligar, V.C. Morphological and physiological responses of plants to cadmium toxicity: A review. Pedosphere 2017, 27, 421–438. [Google Scholar]
- Mazur, R.; Sadowska, M.; Kowalewska, Ł.; Abratowska, A.; Kalaji, H.M.; Mostowska, A.; Garstka, M.; Krasnodębska-Ostręga, B. Overlapping toxic effect of long-term thallium exposure on white mustard (Sinapis alba L.) photosynthetic activity. BMC Plant Biology 2016, 16, 191. [Google Scholar] [CrossRef]
- Altaf, M.A.; Shahid, R.; Ren, M.X.; Khan, L.U.; Altaf, M.M.; Jahan, M.S.; Nawaz, M.A.; Naz, S.; Shahid, S.; Lal, M.K.; et al. Protective mechanisms of melatonin against vanadium phytotoxicity in tomato seedlings: Insights into nutritional status, photosynthesis, root architecture system, and antioxidant machinery. J. Plant Growth Regul. 2022, 41, 3300–3316. [Google Scholar] [CrossRef]
- Henschler, D. The origin of hormesis: Historical background and driving forces. Hum. Exp. Toxicol. 2006, 25, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.J.; Mattson, M.P. How does hormesis impact biology, toxicology, and medicine? NPJ Aging Mech. Dis. 2017, 3, 13. [Google Scholar] [CrossRef] [PubMed]
- Agathokleous, E.; Kitao, M.; Calabrese, E.J. Hormesis: A compelling platform for sophisticated plant science. Trends Plant Sci. 2019, 24, 318–327. [Google Scholar] [CrossRef]
- Sela, A.; Piskurewicz, U.; Megies, C.; Mène-Saffrané, L.; Finazzi, G.; Lopez-Molina, L. Embryonic photosynthesis affects post-germination plant growth. Plant Physiol. 2020, 182, 2166–2181. [Google Scholar] [CrossRef] [PubMed]
- Burzyński, M.; Kłobus, G. Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress. Photosynthetica 2004, 42, 505–510. [Google Scholar] [CrossRef]
- Khan, M.; Nawaz, N.; Ali, I.; Azam, M.; Rizwan, M.; Ahmad, P.; Ali, S. Regulation of photosynthesis under metal stress. In Photosynthesis, Productivity and Environmental Stress; Ahmad, P., Ahanger, M.A., Alyemeni, M.N., Alam, P., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 95–105. [Google Scholar]
- Chandra, R.; Kang, H. Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. Forest Sci. Technol. 2016, 12, 55–61. [Google Scholar] [CrossRef]
- Buendía-Valverde, M.D.L.L.; Trejo-Téllez, L.I.; Corona-Torres, T.; Aguilar-Rincón, V.H. Cadmio, talio y vanadio afectan diferencialmente la germinación y crecimiento inicial de tres variedades de chile. Rev. Int. Contam. Ambie. 2018, 34, 737–749. [Google Scholar] [CrossRef]
- García-Jiménez, A.; Trejo-Téllez, L.I.; Guillén-Sánchez, D.; Gómez-Merino, F.C. Vanadium stimulates pepper plant growth and flowering, increases concentrations of amino acids, sugars and chlorophylls, and modifies nutrient concentrations. PLoS ONE 2018, 13, e0201908. [Google Scholar] [CrossRef] [PubMed]
- Toxqui-Tapia, R.; Peñaloza-Ramírez, J.M.; Pacheco-Olvera, A.; Albarran-Lara, L.; Oyama, K. Genetic diversity and genetic structure of Capsicum annuum L., from wild, backyard and cultivated populations in a heterogeneous environment in Oaxaca, Mexico. Polibotánica 2022, 53, 87–103. [Google Scholar]
- Environmental Health Criteria 134—Cadmium. Available online: https://www.inchem.org/documents/ehc/ehc/ehc134.htm (accessed on 6 October 2023).
- Cadmium. Available online: https://cfpub.epa.gov/ncea/iris_drafts/recordisplay.cfm?deid=12180 (accessed on 6 October 2023).
- Wierzbicka, M.; Szarek-Lukaszewska, G.; Grodzinska, K. Highly toxic thallium in plants from the vicinity of Olkusz (Poland). Ecotox. Environ. Saf. 2004, 59, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Mercado, J.J.; Altamirano-Lozano, M.A. Genetic toxicology of thallium: A review. Drug Chem. Toxicol. 2013, 36, 369–383. [Google Scholar] [CrossRef]
- Chen, L.; Liu, J.r.; Hu, W.f.; Gao, J.; Yang, J.y. Vanadium in soil-plant system: Source, fate, toxicity, and bioremediation. J. Hazard. Mater. 2021, 405, 124200. [Google Scholar] [CrossRef] [PubMed]
- Benavides, M.P.; Gallego, S.M.; Tomaro, M.L. Cadmium toxicity in plants. Braz. J. Plant Physiol. 2005, 17, 21–34. [Google Scholar] [CrossRef]
- Appenroth, K.J. Definition of “heavy metals” and their role in biological systems. In Soil Heavy Metals; Sherameti, I., Varma, A., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 19–29. [Google Scholar]
- Trejo-Téllez, L.I.; Gómez-Merino, F.C. Nutrient solutions for hydroponic systems. In Hydroponics. A Standard Methodology for Plant Biological Researches; Asao, T., Ed.; InTech: Rijeka, Croatia, 2012; pp. 1–22. [Google Scholar]
- Steiner, A. The Universal Nutrient Solution. In Proceedings of the 6th International Congress on Soilless Culture, Lunteren, Netherlands, 29 April–5 May 1984; Secretariat of ISOSC: Wageningen, The Netherlands, 1984; pp. 633–649. [Google Scholar]
- Chen, X.; Wang, J.; Shi, Y.; Zhao, M.Q.; Chi, G.Y. Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. Bot. Stud. 2011, 52, 41–46. [Google Scholar]
- Sharma, R.K.; Agrawal, M.; Agrawal, S.B. Physiological and biochemical responses resulting from cadmium and zinc accumulation in carrot plants. J. Plant Nutr. 2010, 33, 1066–1079. [Google Scholar] [CrossRef]
- Carlson, R.W.; Bazzaz, F.A.; Rolfe, G.L. The effect of heavy metals on plants: II. Net photosynthesis and transpiration of whole corn and sunflower plants treated with Pb, Cd, Ni, and Tl. Environ. Res. 1975, 10, 113–120. [Google Scholar] [CrossRef]
- Pallaghy, C.K. Localization of thallium in stomata is independent of transpiration. Aust. J. Biol. Sci. 1972, 25, 415–418. [Google Scholar] [CrossRef]
- Prasad, M.N.V.; Strzałka, K. Impact of heavy metals on photosynthesis. In Heavy Metal Stress in Plants; Prasad, M.N.V., Hagemeyer, J., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 117–138. [Google Scholar]
- Llamas, A.; Ullrich, C.I.; Sanz, A. Ni2+ toxicity in rice: Effect on membrane functionality and plant water content. Plant Physiol. Biochem. 2008, 46, 905–910. [Google Scholar] [CrossRef]
- Gao, X.; Zou, C.; Wang, L.; Zhang, F. Silicon decreases transpiration rate and conductance from stomata of maize plants. J. Plant Nutr. 2006, 29, 1637–1647. [Google Scholar] [CrossRef]
- Martínez-Ballesta, M.C.; Diaz, R.; Martínez, V.; Carvajal, M. Different blocking effects of HgCl2 and NaCl on aquaporins of pepper plants. J. Plant Physiol. 2003, 60, 1487–1492. [Google Scholar] [CrossRef]
- Vardhini, B.V. Brassinosteroids are potential ameliorators of heavy metal stresses in plants. In Plant Metal Interaction; Ahmad, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 209–237. [Google Scholar]
- Lawson, T.; Blatt, M.R. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol. 2014, 164, 1556–1570. [Google Scholar] [CrossRef]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 5. [Google Scholar] [CrossRef]
- Saxe, H.; Rajagopal, R. Effect of vanadate on bean leaf movement, stomatal conductance, barley leaf unrolling, respiration, and phosphatase activity. Plant Physiol. 1981, 68, 880–884. [Google Scholar] [CrossRef]
- Lawlor, D.W.; Tezara, W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: A critical evaluation of mechanisms and integration of processes. Ann. Bot. 2009, 103, 561–579. [Google Scholar] [CrossRef]
- Schlegel, H.; Godbold, D.L.; Hüttermann, A. Whole plant aspects of heavy metal induced changes in CO2, uptake and water relations of spruce (Picea abies) seedlings. Physiol. Plant. 1987, 69, 265–270. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, L.; Huang, X.; Zhou, Y.; Quan, Q.; Li, Y.; Zhu, X. Response of photosynthesis to different concentrations of heavy metals in Davidia involucrata. PLoS ONE 2020, 15, e0228563. [Google Scholar] [CrossRef] [PubMed]
- Medrano, H.; Bota, J.; Cifre, J.; Flexas, J.; Ribas-Carbó, M.; Gulías, J. Eficiencia en el uso del agua por las plantas. Investig. Geogr. 2007, 43, 63–84. [Google Scholar] [CrossRef]
- Rucińska-Sobkowiak, R. Water relations in plants subjected to heavy metal stresses. Acta Physiol. Plant. 2016, 38, 257. [Google Scholar] [CrossRef]
- Silva, M.A.; Jifon, J.L.; dos Santos, C.M.; Jadoski, C.J.; da Silva, J.A.G. Photosynthetic capacity and water use efficiency in sugarcane genotypes subject to water deficit during early growth phase. Braz. Arch. Biol. Technol. 2013, 56, 735–748. [Google Scholar] [CrossRef]
- Flexas, J.; Díaz-Espejo, A.; Conesa, M.A.; Coopman, R.E.; Douthe, C.; Gago, J.; Gallé, A.; Galmes, J.; Medrano, H.; Ribas-Carbo, M.; et al. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ. 2016, 39, 965–982. [Google Scholar] [CrossRef]
- Gonzaga, M.I.S.; da Silva, P.S.O.; de Jesús Santos, J.C.; de Oliveira Junior, L.F.G. Biochar increases plant water use efficiency and biomass production while reducing Cu concentration in Brassica juncea L. in a Cu-contaminated soil. Ecotoxicol. Environ. Saf. 2019, 183, 109557. [Google Scholar] [CrossRef]
- Song, X.; Yue, X.; Chen, W.; Jiang, H.; Han, Y.; Li, X. Detection of cadmium risk to the photosynthetic performance of hybrid Pennisetum. Front. Plant Sci. 2019, 10, 798. [Google Scholar] [CrossRef] [PubMed]
- Hanus-Fajerska, E.; Wiszniewska, A.; Kamińska, I.A. Dual role of vanadium in environmental systems-beneficial and detrimental effects on terrestrial plants and humans. Plants 2021, 10, 1110. [Google Scholar] [CrossRef]
- Espinosa, F.; Ortega, A.; Espinosa-Vellarino, F.L.; Garrido, I. Effect of thallium(I) on growth, nutrient absorption, photosynthetic pigments, and antioxidant response of Dittrichia plants. Antioxidants 2023, 12, 678. [Google Scholar] [CrossRef]
- da Silva, E.N.; Ribeiro, R.V.; Ferreira-Silva, S.L.; Viégas, R.A.; Silveira, J.A.G. Salt stress induced damages on the photosynthesis of physic nut young plants. Sci. Agric. 2011, 68, 62–68. [Google Scholar] [CrossRef]
- Vymazal, J. Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants. Sci. Total Environ. 2016, 544, 495–498. [Google Scholar] [CrossRef]
- Dos Santos, C.M.; Endres, L.; Ferreira, V.M.; Silva, J.V.; Rolim, E.V.; Wanderley-Filho, H.C.L. Photosynthetic capacity and water use efficiency in Ricinus communis (L.) under drought stress in semi-humid and semi-arid areas. An. Acad. Bras. Ciênc. 2017, 89, 3015–3029. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/STAT Users Guide; Version 9.3; SAS Institute Inc.: Cary, NC, USA, 2011. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buendía-Valverde, M.d.l.L.; Gómez-Merino, F.C.; Corona-Torres, T.; Mateos-Nava, R.A.; Trejo-Téllez, L.I. Effects of Cadmium, Thallium, and Vanadium on Photosynthetic Parameters of Three Chili Pepper (Capsicum annuum L.) Varieties. Plants 2023, 12, 3563. https://doi.org/10.3390/plants12203563
Buendía-Valverde MdlL, Gómez-Merino FC, Corona-Torres T, Mateos-Nava RA, Trejo-Téllez LI. Effects of Cadmium, Thallium, and Vanadium on Photosynthetic Parameters of Three Chili Pepper (Capsicum annuum L.) Varieties. Plants. 2023; 12(20):3563. https://doi.org/10.3390/plants12203563
Chicago/Turabian StyleBuendía-Valverde, María de la Luz, Fernando C. Gómez-Merino, Tarsicio Corona-Torres, Rodrigo Aníbal Mateos-Nava, and Libia I. Trejo-Téllez. 2023. "Effects of Cadmium, Thallium, and Vanadium on Photosynthetic Parameters of Three Chili Pepper (Capsicum annuum L.) Varieties" Plants 12, no. 20: 3563. https://doi.org/10.3390/plants12203563
APA StyleBuendía-Valverde, M. d. l. L., Gómez-Merino, F. C., Corona-Torres, T., Mateos-Nava, R. A., & Trejo-Téllez, L. I. (2023). Effects of Cadmium, Thallium, and Vanadium on Photosynthetic Parameters of Three Chili Pepper (Capsicum annuum L.) Varieties. Plants, 12(20), 3563. https://doi.org/10.3390/plants12203563