Morphological Characteristics, Ultrastructure, and Chemical Constituents of the Endotesta in Ginkgo (Ginkgo biloba L.)
Abstract
:1. Introduction
2. Results
2.1. Development of the Endotesta of Ginkgo biloba
2.1.1. Morphological Observations of Ginkgo biloba Endotesta during Development
2.1.2. Microstructure of the Endotesta during Development
2.1.3. Ultrastructure of the Endocarp during Development
2.2. Structure of the Endotesta
2.2.1. Apparent Structure
2.2.2. X-ray 3D Micro CT Imaging
2.2.3. Scanning Electron Microscope Observation
2.3. Main Components of the Endotesta
2.3.1. Basic Chemical Composition Analysis
2.3.2. Analysis of Amino Acid Composition
Flavor and Functional Amino Acids
Nutritional Evaluation of Amino Acids
2.3.3. Fatty Acid Composition and Content
2.3.4. Analysis of Vitamin Content
2.3.5. Inorganic Element Content Analysis
2.3.6. Nutritional Evaluation of Vitamins and Inorganic Elements
2.3.7. Correlation Analysis of Nutrient Composition
3. Discussion
3.1. Developmental Origin of the Endotesta
3.2. Structural Characteristics of the Endotesta
3.3. Main Components of the Endotesta
4. Materials and Methods
4.1. Specimen Collection
4.2. Transmission Electron Microscopy
4.3. Scanning Electron Microscopy
4.4. Micro-Computed Tomography
4.5. Determination of the Main Components in the Endotesta
4.6. Methodology for Assessing Nutritional Value of Amino Acids
4.7. Methodology for the Evaluation of Vitamins and Mineral Elements
4.8. Data Processing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Major, R.T. The Ginkgo, the most ancient living tree. Science 1967, 157, 1270–1273. [Google Scholar] [CrossRef] [PubMed]
- Friedman, W.; Gifford, E.M. Division of generative cell and late development in the male gametophyte of Ginkgo biloba. Am. J. Bot. 1988, 75, 1434–1442. [Google Scholar] [CrossRef]
- Brown, R.C.; Lemmon, B.E. Microtubules in early development of the megagametophyte of Ginkgo biloba. J. Plant Res. 2008, 121, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, D.; Lin, M.; Lu, Y.; Jiang, X.X.; Jin, B. An embryological study and systematic significance of the primitive gymnosperm Ginkgo biloba. J. Syst. Evol. 2011, 49, 353–361. [Google Scholar] [CrossRef]
- Kelley, D.R.; Gasser, C.S. Ovule development: Genetic trends and evolutionary considerations. Sex. Plant Reprod. 2009, 22, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Singh, H. Embryology of Gymnosperms, Handbuch der Pflanzen Anatomie. Band X. Teil 2; Gebrüder Borntraeger: Berlin, Germany, 1978. [Google Scholar]
- Schmid, R. On cornerian and other terminology of angiospermous and gymnospermous seed coats: Historical perspective and terminological recommendations. Taxon 1986, 35, 476–491. [Google Scholar] [CrossRef]
- Takaso, T.; Bouman, F. Ovule and seed ontogeny in Gnetum gnemon L. Bot. Mag. 1986, 99, 241–266. [Google Scholar] [CrossRef]
- Nixon, K.; Crepet, W.; Stevenson, D.; Friis, E.M. A reevaluation of seed plant phylogeny. Ann. Mo. Bot. Gard. 1994, 81, 484–533. [Google Scholar] [CrossRef]
- Tinoco, M.Y.; Engleman, E. Seed coat anatomy of Ceratozamia mexicana (Cycadales). Bot. Rev. 2004, 70, 24–38. [Google Scholar] [CrossRef]
- Sánchez-Tinoco, M.Y.; Kock, S.D.; Engleman, E.M. The vascularization of the seed of Ceratozamia mexicana (Zamiaceae). Mem. N. Y. Bot. Gard. 2007, 97, 223–235. [Google Scholar] [CrossRef]
- Scott, D.H. Morphology of Gymnosperms. Nature 1911, 87, 171–172. [Google Scholar] [CrossRef]
- O., F.W. Gymnosperms: Structure and Evolution. Nature 1935, 136, 278–279. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhang, Y.Q. The main active constituents and detoxification process of Ginkgo biloba seeds and their potential use in functional health foods. J. Food Compost. Anal. 2019, 83, 103247. [Google Scholar] [CrossRef]
- Klimko, M.; Korszun, S.; Kolasiński, M. Seed coat microsculpturing in Gingko biloba L. cultivars. Steciana 2016, 20, 97–101. [Google Scholar] [CrossRef]
- Zumajo-Cardona, C.; Frangos, S.; Stevenson, D. Seed anatomy and development in Cycads and Ginkgo, keys for understanding the evolution of seeds. Flora 2021, 285, 151951. [Google Scholar] [CrossRef]
- Carothers, I.E. Development of ovule and female gametophyte in Ginkgo biloba L. Bot. Gaz. 1907, 43, 116–130. [Google Scholar] [CrossRef]
- Favre-Duchartre, M. Ginkgo, an oviparous plant. Phytomorphology 1958, 8, 377–390. [Google Scholar]
- Takaso, T. A developmental study of the integument in gymnosperms I. Ginkgo biloba L. J. Jpn. Bot. 1980, 55, 33–48. [Google Scholar] [CrossRef]
- Singh, S.K.; Srivastav, S.R.; Castellani, J.; Plascencia-Villa, G.; Perry, G. Neuroprotective and antioxidant effect of Ginkgo biloba extract against AD and other neurological disorders. Neurotherapeutics 2019, 16, 666–674. [Google Scholar] [CrossRef]
- Cui, N.; Zhang, L.; Quan, M.; Xu, J. Profile of the main bioactive compounds and in vitro biological activity of different solvent extracts from Ginkgo biloba exocarp. RSC Adv. 2020, 10, 45105–45111. [Google Scholar] [CrossRef]
- Wang, H.; Shi, M.; Cao, F.; Su, E. Ginkgo biloba seed exocarp: A waste resource with abundant active substances and other components for potential applications. Food Res. Int. 2022, 160, 111637. [Google Scholar] [CrossRef]
- Friedman, M. Nutritional value of proteins from different food sources. A review. J. Agric. Food Chem. 1996, 44, 6–29. [Google Scholar] [CrossRef]
- Givnish, T.J. Ecological constraints on the evolution of breeding systems in seed plants: Dioecy and dispersal in Gymnosperms. Evolution 1980, 34, 959–972. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Kaur, P.; Gopichand; Singh, R.; Ahuja, P. Biology and chemistry of Ginkgo biloba. Fitoterapia 2008, 79, 401–418. [Google Scholar] [CrossRef] [PubMed]
- Nigris, S.; D’Apice, G.; Moschin, S.; Ciarle, R.; Baldan, B. Fleshy structures associated with ovule protection and seed dispersal in gymnosperms: A systematic and evolutionary overview. CRC Crit. Rev. Plant Sci. 2021, 40, 285–302. [Google Scholar] [CrossRef]
- Laurain, D.; Chénieux, J.C.; Trémouillaux-Guiller, J. Direct embryogenesis from female haploid protoplasts of Ginkgo biloba L., a medicinal woody species. Plant Cell Rep. 1993, 12, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Nakao, Y.; Kawase, K.; Shiozaki, S.; Ogata, T.; Horiuchi, S. The growth of pollen and female reproductive organs of ginkgo between pollination and fertilization. Engei Gakkai Zasshi 2001, 70, 21–27. [Google Scholar] [CrossRef]
- Douglas, A.W.; Stevenson, D.W.; Little, D.P. Ovule development in Ginkgo biloba L., with emphasis on the collar and nucellus. Int. J. Plant Sci. 2007, 168, 1207–1236. [Google Scholar] [CrossRef]
- Jin, B.; Wang, D.; Lu, Y.; Zhang, M.; Wang, L. Structure and function of the tentpole in the reproductive process of Ginkgo biloba L. Plant Signal. Behav. 2012, 7, 1330–1336. [Google Scholar] [CrossRef]
- Zhang, Z.; Clayton, S.C.; Cui, K.; Lee, C. Developmental synchronization of male and female gametophytes in Ginkgo biloba and its neck mother cell division prior to fertilization. Physiol. Plant. 2013, 147, 541–552. [Google Scholar] [CrossRef]
- Stevenson, D.W. Gymnosperms. In Annual Plant Reviews; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; Volume 45, pp. 141–161. [Google Scholar] [CrossRef]
- Zumajo-Cardona, C.; Little, D.P.; Stevenson, D.; Ambrose, B.A. Expression analyses in Ginkgo biloba provide new insights into the evolution and development of the seed. Sci. Rep. 2021, 11, 21995. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Liang, Y. Discrete levels of desiccation sensitivity in various seeds as determined by the equilibrium dehydration method. Seed Sci. Res. 2001, 11, 317–332. [Google Scholar] [CrossRef]
- Guo, W.; Grewe, F.; Fan, W.; Young, G.J.; Knoop, V.; Palmer, J.D.; Mower, J.P. Ginkgo and Welwitschia mitogenomes reveal extreme contrasts in gymnosperm mitochondrial evolution. Mol. Biol. Evol. 2016, 33, 1448–1460. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, X.; Wang, G.; Cui, P.; Wu, S.; Ai, C.; Hu, N.; Li, A.; He, B.; Shao, X.; et al. The nearly complete genome of Ginkgo biloba illuminates gymnosperm evolution. Nat. Plants 2021, 7, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Chen, W.; Wu, C.; Kou, X.; Fan, G.; Li, T.; Wu, Z. Preservation of Ginkgo biloba seeds by coating with chitosan/nano-TiO2 and chitosan/nano-SiO2 films. Int. J. Biol. Macromol. 2019, 126, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zou, M.; Wang, Y.; Cao, F.; Su, E. Ginkgo seed proteins: Characteristics, functional properties and bioactivities. Plant Foods Hum. Nutr. 2021, 76, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Hao, W.; Zhang, X.; Zhao, Y.; Xu, Y.; Luo, J.; Liu, Q.; Liu, Q.; Wang, L.; Zhang, C. Comparative study of physicochemical properties and starch granule structure in seven Ginkgo kernel flours. Foods 2021, 10, 1721. [Google Scholar] [CrossRef] [PubMed]
- Sado, T.; Nakata, S.; Tsuno, T.; Sato, M.; Misawa, Y.; Yamauchi, S.; Inaba, Y.; Kobayashi, D.; Wada, K. Concentrations of various forms of vitamin B6 in ginkgo seed poisoning. Brain Dev. 2019, 41, 292–295. [Google Scholar] [CrossRef]
- Zheng, Y.; Ma, A.-G.; Zheng, M.-C.; Wang, Q.-Z.; Liang, H.; Han, X.-X.; Schouten, E.G. B Vitamins can reduce body weight gain by increasing metabolism-related enzyme activities in rats fed on a high-fat diet. Curr. Med. Sci. 2018, 38, 174–183. [Google Scholar] [CrossRef]
- Stephenson, A.; Mamo, J.C.L.; Takechi, R.; Hackett, M.J.; Lam, V. Genetic, environmental and biomarker considerations delineating the regulatory effects of vitamin D on central nervous system function. Br. J. Nutr. 2020, 123, 41–58. [Google Scholar] [CrossRef]
- Ren, X.J.; Yang, Z.B.; Ding, X.; Yang, C.W. Effects of Ginkgo biloba leaves (Ginkgo biloba) and Ginkgo biloba extract on nutrient and energy utilization of broilers. Poult. Sci. 2018, 97, 1342–1351. [Google Scholar] [CrossRef]
- Schulz, N.; Güssow, A.; Bauer, N.; Moritz, A. Magnesium in dogs and cats-physiology, analysis, and magnesium disorders. Tierärztliche Prax. Kleintiere 2018, 46, 21–32. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Liu, G.; Zhao, L.; Gao, X.; Shen, Z.; Cao, F.; Guo, Q. Morphological Characteristics, Ultrastructure, and Chemical Constituents of the Endotesta in Ginkgo (Ginkgo biloba L.). Plants 2023, 12, 3560. https://doi.org/10.3390/plants12203560
Li F, Liu G, Zhao L, Gao X, Shen Z, Cao F, Guo Q. Morphological Characteristics, Ultrastructure, and Chemical Constituents of the Endotesta in Ginkgo (Ginkgo biloba L.). Plants. 2023; 12(20):3560. https://doi.org/10.3390/plants12203560
Chicago/Turabian StyleLi, Fangdi, Ganping Liu, Linying Zhao, Xiaoge Gao, Zhuolong Shen, Fuliang Cao, and Qirong Guo. 2023. "Morphological Characteristics, Ultrastructure, and Chemical Constituents of the Endotesta in Ginkgo (Ginkgo biloba L.)" Plants 12, no. 20: 3560. https://doi.org/10.3390/plants12203560
APA StyleLi, F., Liu, G., Zhao, L., Gao, X., Shen, Z., Cao, F., & Guo, Q. (2023). Morphological Characteristics, Ultrastructure, and Chemical Constituents of the Endotesta in Ginkgo (Ginkgo biloba L.). Plants, 12(20), 3560. https://doi.org/10.3390/plants12203560