Genetic Variability in Seed Longevity and Germination Traits in a Tomato MAGIC Population in Contrasting Environments
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Variation of the Germination and Longevity Is Explained by Genotype, Maternal Temperatures and GxE Interaction
2.2. QTL Identification for Seed Longevity and Germination Traits
2.3. QTLs of Phenotypic Plasticity of Longevity and Seed Germination (pQTL)
2.4. Identification of Candidate Genes under the QTLs
2.4.1. Candidate Genes under QTL of Longevity
2.4.2. Candidate Genes under QTL of the Germination Traits
2.4.3. Plasticity of Longevity
3. Discussion
3.1. The Polygenic Nature of Seed Longevity in Tomato
3.2. Candidate Genes under the Longevity QTL Reveal Protective Mechanisms Associated with Galactinol Synthesis, DNA Repair, Lipid Polyester Barrier Together with Ethylene and ABA Signaling
3.3. QTL and Candidate Genes Involved in Seed Vigour
4. Materials and Methods
4.1. Plant Material
4.2. Seed Trait Phenotyping
4.3. Statistical Analysis of Phenotypic Traits and Heritability
4.4. QTL Analyses
4.5. Identification of Candidate Genes Located under the QTL
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Finch-Savage, W.E.; Bassel, G.W. Seed Vigour and Crop Establishment: Extending Performance beyond Adaptation. J. Exp. Bot. 2016, 67, 567–591. [Google Scholar] [CrossRef]
- Kazmi, R.H.; Khan, N.; Willems, L.A.J.; Van Heusden, A.W.; Ligterink, W.; Hilhorst, H.W.M. Complex Genetics Controls Natural Variation among Seed Quality Phenotypes in a Recombinant Inbred Population of an Interspecific Cross between Solanum lycopersicum × Solanum pimpinellifolium. Plant Cell Environ. 2012, 35, 929–951. [Google Scholar] [CrossRef]
- Khan, N.; Kazmi, R.H.; Willems, L.A.J.; van Heusden, A.W.; Ligterink, W.; Hilhorst, H.W.M. Exploring the Natural Variation for Seedling Traits and Their Link with Seed Dimensions in Tomato. PLoS ONE 2012, 7, e43991. [Google Scholar] [CrossRef] [PubMed]
- van der Burg, W.J.; Aartse, J.W.; van Zwol, R.A.; Jalink, H.; Bino, R.J. Predicting Tomato Seedling Morphology by X-ray Analysis of Seeds. J. Am. Soc. Hortic. Sci. 1994, 119, 258–263. [Google Scholar] [CrossRef]
- Zinsmeister, J.; Leprince, O.; Buitink, J. Molecular and Environmental Factors Regulating Seed Longevity. Biochem. J. 2020, 477, 305–323. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.A.R.; Afzal, I.; Börner, A. Genetic Aspects and Molecular Causes of Seed Longevity in Plants—A Review. Plants 2022, 11, 598. [Google Scholar] [CrossRef]
- de Souza Vidigal, D.; Willems, L.; van Arkel, J.; Dekkers, B.J.W.; Hilhorst, H.W.M.; Bentsink, L. Galactinol as Marker for Seed Longevity. Plant Sci. 2016, 246, 112–118. [Google Scholar] [CrossRef]
- Clerkx, E.J.M.; Vries, H.B.; Ruys, G.J.; Groot, S.P.C.; Koornneef, M. Genetic Differences in Seed Longevity of Various Arabidopsis Mutants. Physiol. Plant. 2004, 121, 448–461. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Keizer, P.; van Eeuwijk, F.; Smeekens, S.; Bentsink, L. Natural Variation for Seed Longevity and Seed Dormancy Are Negatively Correlated in Arabidopsis. Plant Physiol. 2012, 160, 2083–2092. [Google Scholar] [CrossRef]
- Dekkers, B.J.W.; He, H.; Hanson, J.; Willems, L.A.J.; Jamar, D.C.L.; Cueff, G.; Rajjou, L.; Hilhorst, H.W.M.; Bentsink, L. The Arabidopsis Delay of Germination 1 Gene Affects Abscisic Acid Insensitive 5 (ABI5) Expression and Genetically Interacts with ABI3 during Arabidopsis Seed Development. Plant J. 2016, 85, 451–465. [Google Scholar] [CrossRef]
- Bizouerne, E.; Buitink, J.; Vu, B.L.; Vu, J.L.; Esteban, E.; Pasha, A.; Provart, N.; Verdier, J.; Leprince, O. Gene Co-Expression Analysis of Tomato Seed Maturation Reveals Tissue-Specific Regulatory Networks and Hubs Associated with the Acquisition of Desiccation Tolerance and Seed Vigour. BMC Plant Biol 2021, 21, 124. [Google Scholar] [CrossRef] [PubMed]
- Zinsmeister, J.; Lalanne, D.; Ly Vu, B.; Schoefs, B.; Marchand, J.; Dang, T.T.; Buitink, J.; Leprince, O. ABSCISIC ACID INSENSITIVE 4 Coordinates Eoplast Formation to Ensure Acquisition of Seed Longevity during Maturation in Medicago Truncatula. Plant J. 2023, 113, 934–953. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.; Tegström, C.; Ingvarsson, P.K. Using Association Mapping to Dissect the Genetic Basis of Complex Traits in Plants. Brief Funct. Genom. Proteomic 2010, 9, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Bineau, E.; Diouf, I.; Carretero, Y.; Duboscq, R.; Bitton, F.; Djari, A.; Zouine, M.; Causse, M. Genetic Diversity of Tomato Response to Heat Stress at the QTL and Transcriptome Levels. Plant J. 2021, 107, 1213–1227. [Google Scholar] [CrossRef]
- Pascual, L.; Desplat, N.; Huang, B.E.; Desgroux, A.; Bruguier, L.; Bouchet, J.P.; Le, Q.H.; Chauchard, B.; Verschave, P.; Causse, M. Potential of a Tomato MAGIC Population to Decipher the Genetic Control of Quantitative Traits and Detect Causal Variants in the Resequencing Era. Plant Biotechnol. J. 2015, 13, 565–577. [Google Scholar] [CrossRef]
- Leverett, L.D.; Auge, G.A.; Bali, A.; Donohue, K. Contrasting Germination Responses to Vegetative Canopies Experienced in Pre- vs. Post-Dispersal Environments. Ann. Bot. 2016, 118, 1175–1186. [Google Scholar] [CrossRef]
- He, H.; De Souza Vidigal, D.; Basten Snoek, L.; Schnabel, S.; Nijveen, H.; Hilhorst, H.; Bentsink, L. Interaction between Parental Environment and Genotype Affects Plant and Seed Performance in Arabidopsis. J. Exp. Bot. 2014, 65, 6603–6615. [Google Scholar] [CrossRef]
- Kendall, S.L.; Hellwege, A.; Marriot, P.; Whalley, C.; Graham, I.A.; Penfield, S. Induction of Dormancy in Arabidopsis Summer Annuals Requires Parallel Regulation of DOG1 and Hormone Metabolism by Low Temperature and CBF Transcription Factors. Plant Cell 2011, 23, 2568–2580. [Google Scholar] [CrossRef]
- Nagel, M.; Kranner, I.; Neumann, K.; Rolletschek, H.; Seal, C.E.; Colville, L.; Fernández-Marín, B.; Börner, A. Genome-Wide Association Mapping and Biochemical Markers Reveal That Seed Ageing and Longevity Are Intricately Affected by Genetic Background and Developmental and Environmental Conditions in Barley. Plant Cell Environ. 2015, 38, 1011–1022. [Google Scholar] [CrossRef]
- Singkaew, J.; Miyagawa, S.; Wongs-Aree, C.; Vichitsoonthonkul, T.; Sokaokha, S.; Photchanachai, S. Season, Fruit Maturity, and Storage Affect on the Physiological Quality of F1 Hybrid ‘VTM580′ Tomato Seeds and Seedlings. Hortic. J. 2017, 86, 121–131. [Google Scholar] [CrossRef]
- Geshnizjani, N.; Sarikhani Khorami, S.; Willems, L.A.J.; Snoek, B.L.; Hilhorst, H.W.M.; Ligterink, W. The Interaction between Genotype and Maternal Nutritional Environments Affects Tomato Seed and Seedling Quality. J. Exp. Bot. 2019, 70, 2905–2918. [Google Scholar] [CrossRef]
- Bizouerne, E.; Ly Vu, B.; Ly Vu, J.; Verdier, J.; Buitink, J.; Leprince, O. Dataset for Transcriptome and Physiological Response of Mature Tomato Seed Tissues to Light and Heat during Fruit Ripening. Data Brief 2021, 34, 106671. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, M.; Penfield, S.; Lopez-Molina, L. Parental and Environmental Control of Seed Dormancy in Arabidopsis Thaliana. Annu. Rev. Plant Biol. 2022, 73, 355–378. [Google Scholar] [CrossRef] [PubMed]
- Creff, A.; Brocard, L.; Joubès, J.; Taconnat, L.; Doll, N.M.; Marsollier, A.-C.; Pascal, S.; Galletti, R.; Boeuf, S.; Moussu, S.; et al. A Stress-Response-Related Inter-Compartmental Signalling Pathway Regulates Embryonic Cuticle Integrity in Arabidopsis. PLoS Genet. 2019, 15, e1007847. [Google Scholar] [CrossRef]
- Renard, J.; Bissoli, G.; Planes, M.D.; Gadea, J.; Naranjo, M.Á.; Serrano, R.; Ingram, G.; Bueso, E. Endosperm Persistence in Arabidopsis Results in Seed Coat Fractures and Loss of Seed Longevity. Plants 2023, 12, 2726. [Google Scholar] [CrossRef]
- Lang, L.; Pettkó-Szandtner, A.; Elbasi, H.T.; Takatsuka, H.; Nomoto, Y.; Zaki, A.; Dorokhov, S.; De Jaeger, G.; Eeckhout, D.; Ito, M.; et al. The DREAM Complex Represses Growth in Response to DNA Damage in Arabidopsis. Life Sci. Alliance 2021, 4, e202101141. [Google Scholar] [CrossRef] [PubMed]
- Jalakas, P.; Huang, Y.C.; Yeh, Y.H.; Zimmerli, L.; Merilo, E.; Kollist, H.; Brosché, M. The Role of ENHANCED RESPONSES TO ABA1 (ERA1) in Arabidopsis Stomatal Responses Is beyond ABA Signaling. Plant Physiol. 2017, 174, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Wu, W.; Wang, K.; Zhang, Y.; Hu, Z.; Brosché, M.; Liu, S.; Overmyer, K. Cell Death Regulation but Not Abscisic Acid Signaling Is Required for Enhanced Immunity to Botrytis in Arabidopsis Cuticle-Permeable Mutants. J. Exp. Bot. 2019, 70, 5971–5984. [Google Scholar] [CrossRef]
- Yadav, V.; Molina, I.; Ranathunge, K.; Castillo, I.Q.; Rothstein, S.J.; Reed, J.W. ABCG Transporters Are Required for Suberin and Pollen Wall Extracellular Barriers in Arabidopsis. Plant Cell 2014, 26, 3569–3588. [Google Scholar] [CrossRef]
- Sela, A.; Piskurewicz, U.; Megies, C.; Mène-Saffrané, L.; Finazzi, G.; Lopez-Molina, L. Embryonic Photosynthesis Affects Post-Germination Plant Growth1. Plant Physiol. 2020, 182, 2166–2181. [Google Scholar] [CrossRef]
- Zinsmeister, J.; Lalanne, D.; Terrasson, E.; Chatelain, E.; Vandecasteele, C.; Ly Vu, B.; Dubois-Laurent, C.; Geoffriau, E.; Le Signor, C.; Dalmais, M.; et al. ABI5 Is a Regulator of Seed Maturation and Longevity in Legumes. Plant Cell 2016, 28, 2735–2754. [Google Scholar] [CrossRef] [PubMed]
- Mangino, G.; Arrones, A.; Plazas, M.; Pook, T.; Prohens, J.; Gramazio, P.; Vilanova, S. Newly Developed MAGIC Population Allows Identification of Strong Associations and Candidate Genes for Anthocyanin Pigmentation in Eggplant. Front. Plant Sci. 2022, 13, 847789. [Google Scholar] [CrossRef] [PubMed]
- Penfield, S.; Springthorpe, V. Understanding Chilling Responses in Arabidopsis Seeds and Their Contribution to Life History. Philos. Trans. R. Soc. B: Biol. Sci. 2012, 367, 291–297. [Google Scholar] [CrossRef]
- Diouf, I.; Derivot, L.; Koussevitzky, S.; Carretero, Y.; Bitton, F.; Moreau, L.; Causse, M. Genetic Basis of Phenotypic Plasticity and Genotype × Environment Interactions in a Multi-Parental Tomato Population. J. Exp. Bot. 2020, 71, 5365–5376. [Google Scholar] [CrossRef] [PubMed]
- Nagel, M.; Rosenhauer, M.; Willner, E.; Snowdon, R.J.; Friedt, W.; Bo, A. Seed Longevity in Oilseed Rape (Brassica napus L.)—Genetic Variation and QTL Mapping. Plant Genet. Resour. Charact. Util. 2011, 9, 260–263. [Google Scholar] [CrossRef]
- De Giorgi, J.; Piskurewicz, U.; Loubery, S.; Utz-Pugin, A.; Bailly, C.; Mène-Saffrané, L.; Lopez-Molina, L. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination. PLoS Genet. 2015, 11, e1005708. [Google Scholar] [CrossRef] [PubMed]
- Renard, J.; Niñoles, R.; Martínez-Almonacid, I.; Gayubas, B.; Mateos-Fernández, R.; Bissoli, G.; Bueso, E.; Serrano, R.; Gadea, J. Identification of Novel Seed Longevity Genes Related to Oxidative Stress and Seed Coat by Genome-Wide Association Studies and Reverse Genetics. Plant Cell Environ. 2020, 43, 2523–2539. [Google Scholar] [CrossRef]
- Debeaujon, I.; Léon-Kloosterziel, K.M.; Koornneef, M. Influence of the Testa on Seed Dormancy, Germination, and Longevity in Arabidopsis. Plant Physiol. 2000, 122, 403–413. [Google Scholar] [CrossRef]
- Waterworth, W.M.; Latham, R.; Wang, D.; Alsharif, M.; West, C.E. Seed DNA Damage Responses Promote Germination and Growth in Arabidopsis Thaliana. Proc. Natl. Acad. Sci. USA 2022, 119, e2202172119. [Google Scholar] [CrossRef]
- Takayanagi, K.; Harrington, J.F. Enhancement of Germination Rate of Aged Seeds by Ethylene. Plant Physiol. 1971, 47, 521–524. [Google Scholar] [CrossRef]
- Siriwitayawan, G.; Geneve, R.L.; Bruce Downie, A. Seed Germination of Ethylene Perception Mutants of Tomato and Arabidopsis. Seed Sci. Res. 2003, 13, 303–314. [Google Scholar] [CrossRef]
- Guo, R.; Wen, X.; Zhang, W.; Huang, L.; Peng, Y.; Jin, L.; Han, H.; Zhang, L.; Li, W.; Guo, H. Arabidopsis EIN2 Represses ABA Responses during Germination and Early Seedling Growth by Inactivating HLS1 Protein Independently of the Canonical Ethylene Pathway. Plant J. 2023, 115, 1514–1527. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Li, X.; Song, P.; Wang, Y.; Ma, J. Studies on the Interactions of AFPs and BZIP Transcription Factor ABI5. Biochem. Biophys. Res. Commun. 2022, 590, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, N.; Tsuchiya, W.; Moresco, J.J.; Hayashi, Y.; Satoh, K.; Kaiwa, N.; Irisa, T.; Kinoshita, T.; Schroeder, J.I.; Yates, J.R.; et al. Control of Seed Dormancy and Germination by DOG1-AHG1 PP2C Phosphatase Complex via Binding to Heme. Nat. Commun. 2018, 9, 2132. [Google Scholar] [CrossRef]
- Zhu, H.; Xie, W.; Xu, D.; Miki, D.; Tang, K.; Huang, C. DNA Demethylase ROS1 Negatively Regulates the Imprinting of DOGL4 and Seed Dormancy in Arabidopsis Thaliana. Proc. Natl. Acad. Sci. USA 2018, 115, E9962–E9970. [Google Scholar] [CrossRef]
- Sall, K.; Dekkers, B.J.W.; Nonogaki, M.; Katsuragawa, Y.; Koyari, R.; Hendrix, D.; Willems, L.A.J.; Bentsink, L.; Nonogaki, H. DELAY OF GERMINATION 1-LIKE 4 Acts as an Inducer of Seed Reserve Accumulation. Plant J. 2019, 100, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Geshnizjani, N.; Snoek, B.L.; Willems, L.A.J.; Rienstra, J.A.; Nijveen, H.; Hilhorst, H.W.M.; Ligterink, W. Detection of QTLs for Genotype × Environment Interactions in Tomato Seeds and Seedlings. Plant Cell Environ. 2020, 43, 1973–1988. [Google Scholar] [CrossRef] [PubMed]
- Broman, K.W.; Gatti, D.M.; Simecek, P.; Furlotte, N.A.; Prins, P.; Sen, Ś.; Yandell, B.S.; Churchill, G.A. R/Qtl2: Software for Mapping Quantitative Trait Loci with High-Dimensional Data and Multiparent Populations. Genetics 2019, 211, 495–502. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
Trait | Environment | Parent Range | MAGIC Lines | h2 | ||
---|---|---|---|---|---|---|
Min | Max | Mean | ||||
Longevity (%) | Control | 12–98 | 0 | 100 | 62 | 0.88 |
Heat stress | 0–98 | 0 | 98 | 32 | 0.88 | |
Germination | Control | 65–100 | 9 | 100 | 92 | 0.93 |
(%) | Heat stress | 65–98 | 20 | 100 | 86 | 0.88 |
Germination capacity (%) | Control | 76–100 | 41 | 100 | 95 | 0.86 |
Heat stress | 68–98 | 20 | 100 | 87 | 0.87 | |
t50 (d) | Control | 2.16–4.86 | 1.89 | 6.27 | 3.25 | 0.95 |
Heat stress | 2.65–4.24 | 2.09 | 9.19 | 3.51 | 0.85 | |
t80t20 (d) | Control | 0.32–1.08 | 0.16 | 2.31 | 0.7 | 0.72 |
Heat stress | 0.52–1.14 | 0.16 | 4.9 | 1.16 | 0.57 |
Traits | G | SSq G % | E | SSq E % | GxE | SSq GxE % | SSq Resid % |
---|---|---|---|---|---|---|---|
Longevity (%) | <2 × 10−16 *** | 64.41 | <2 × 10−16 *** | 12.98 | <2 × 10−16 *** | 17.66 | 4.95 |
Germination (%) | <2 × 10−16 *** | 64.78 | <2 × 10−16 *** | 4.38 | <2 × 10−16 *** | 24.75 | 6.09 |
Germ. capacity (%) | <2 × 10−16 *** | 55.60 | <2 × 10−16 *** | 9.11 | <2 × 10−16 *** | 27.13 | 8.16 |
t50 (d) | <2 × 10−16 *** | 70.01 | <2 × 10−16 *** | 1.16 | <2 × 10−16 *** | 22.49 | 6.34 |
t80t20 (d) | <2 × 10−16 *** | 52.01 | <2 × 10−16 *** | 7.73 | <2 × 10−16 *** | 19.43 | 20.82 |
Marker | Trait | Condition | QTL Position according to Genetic Distance | QTL Position according to Physical Distance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
chr | LOD | pos | ci_lo | ci_hi | ci_cM | posMb | ci_loMb | ci_hiMb | ci_Mb | |||
X06_44719903 | germination | stress | 6 | 4.6 | 135.9 | 117 | 141 | 24 | 44.5 | 41.4 | 46 | 4.60 |
X10_62014380 | germination | stress | 10 | 5.2 | 101.2 | 54.4 | 102.2 | 47.8 | 62 | 59.5 | 62.6 | 3.10 |
X11_504246 | germination | plasticity | 11 | 7.1 | 15 | 0 | 30.1 | 30.1 | 1.1 | 0 | 2 | 2.00 |
X06_33306736 | germ capacity | control | 6 | 4.9 | 20.4 | 12.5 | 30.4 | 17.9 | 33.4 | 31.9 | 33.7 | 1.80 |
X07_62159652 | germ capacity | control | 7 | 4.5 | 161.6 | 141.6 | 182.7 | 41.1 | 62.1 | 58.4 | 63.9 | 5.50 |
X11_7241787 | germ capacity | control | 11 | 5.5 | 97.6 | 88.1 | 101.7 | 13.6 | 5.5 | 5 | 26.9 | 21.90 |
X04_12083701 | germ capacity | stress | 4 | 6.1 | 61.8 | 57 | 86.4 | 29.4 | 17 | 5.3 | 56.5 | 51.20 |
X11_1987728 | germ capacity | stress | 11 | 4.7 | 30.1 | 19.8 | 167.5 | 147.7 | 2 | 1.4 | 53 | 51.60 |
X02_36220609 | longevity | control | 2 | 5.59 | 97.02 | 68.99 | 108.70 | 39.71 | 36.22 | 34.03 | 36.39 | 2.35 |
X02_39125317 | longevity | control | 2 | 4.71 | 135.22 | 124.29 | 159.14 | 34.85 | 39.74 | 38.74 | 44.26 | 5.52 |
X09_1759444 | longevity | control | 9 | 4.32 | 15.62 | 6.39 | 56.54 | 50.15 | 2.10 | 1.19 | 4.03 | 2.83 |
X01_78925532 | longevity | stress | 1 | 4.15 | 134.89 | 124.94 | 138.48 | 13.54 | 78.78 | 78.20 | 79.99 | 1.80 |
X02_45506212 | longevity | stress | 2 | 4.45 | 168.43 | 153.10 | 193.05 | 39.96 | 45.76 | 43.05 | 47.50 | 4.45 |
X09_1062246 | longevity | stress | 9 | 5.67 | 5.36 | 0.71 | 6.62 | 5.90 | 1.12 | 0.59 | 1.24 | 0.64 |
X02_44814312 | longevity | plasticity | 2 | 4.27 | 161.82 | 158.64 | 178.77 | 20.13 | 44.52 | 43.94 | 46.35 | 2.42 |
X05_4985019 | longevity | plasticity | 5 | 4.56 | 42.10 | 37.90 | 55.31 | 17.41 | 4.97 | 4.32 | 5.89 | 1.56 |
X06_39119433 | longevity | plasticity | 6 | 4.50 | 103.37 | 59.04 | 131.27 | 72.23 | 39.12 | 35.33 | 43.67 | 8.33 |
X07_51090892 | longevity | plasticity | 7 | 4.98 | 77.46 | 56.21 | 79.37 | 23.16 | 51.09 | 3.08 | 53.09 | 50.01 |
X11_5520602 | longevity | plasticity | 11 | 5.64 | 97.56 | 59.01 | 104.45 | 45.45 | 7.24 | 4.15 | 29.34 | 25.19 |
X12_64391888 | longevity | plasticity | 12 | 5.76 | 178.20 | 159.25 | 186.18 | 26.92 | 64.29 | 63.49 | 65.48 | 1.99 |
X02_35922016 | t50.1 | control | 2 | 5.47 | 92.59 | 68.99 | 108.7 | 39.71 | 35.92 | 34.03 | 36.39 | 2.35 |
X02_43477320 | t50.2 | control | 2 | 5.15 | 158.64 | 149.75 | 161.82 | 12.07 | 43.84 | 42.4 | 44.52 | 2.12 |
X04_60240094 | t50 | control | 4 | 5.29 | 138.73 | 132.88 | 151.95 | 19.07 | 60.24 | 59.6 | 60.96 | 1.37 |
X07_2671204 | t50 | control | 7 | 4.43 | 47.53 | 20.04 | 56.21 | 36.17 | 2.67 | 0.85 | 3.08 | 2.23 |
X09_61268966 | t50 | control | 9 | 4.67 | 113.9 | 79.09 | 162.3 | 83.21 | 61.27 | 4.55 | 64.61 | 60.06 |
X11_50118788 | t50 | control | 11 | 5.05 | 130.7 | 119.79 | 141.67 | 21.88 | 50.12 | 49.51 | 50.91 | 1.4 |
X12_8722237 | t50 | control | 12 | 6.4 | 69.06 | 54.89 | 85.34 | 30.45 | 5.27 | 4.19 | 46.23 | 42.05 |
X01_78197981 | t50 | stress | 1 | 5.01 | 124.94 | 110.81 | 135.54 | 24.73 | 78.18 | 77.33 | 79.3 | 1.97 |
X02_35852446 | t50 | stress | 2 | 4.65 | 88.66 | 68.99 | 159.14 | 90.15 | 35.85 | 34.03 | 44.26 | 10.22 |
X04_62201077 | t50 | stress | 4 | 5.11 | 178.84 | 138.73 | 192.21 | 53.49 | 62.13 | 60.24 | 62.83 | 2.59 |
X09_30052623 | t50 | stress | 9 | 6.04 | 98.14 | 88.03 | 108.25 | 20.23 | 23.38 | 8.33 | 59.31 | 50.98 |
X10_2344795 | t50 | stress | 10 | 4.97 | 27.96 | 20.36 | 35.15 | 14.79 | 2.34 | 2.22 | 3.59 | 1.37 |
X04_59595681 | t50.1 | plasticity | 4 | 5.38 | 132.88 | 119.51 | 142.51 | 22.99 | 59.6 | 58.87 | 60.43 | 1.56 |
X04_62339583 | t50.2 | plasticity | 4 | 5.7 | 180.94 | 175.38 | 192.21 | 16.83 | 62.23 | 62.12 | 62.83 | 0.71 |
X11_2573606 | t50 | plasticity | 11 | 4.89 | 38.93 | 0 | 141.67 | 141.67 | 2.57 | 0.01 | 50.91 | 50.9 |
X02_44746073 | t80t20 | control | 2 | 4.86 | 161.82 | 158.64 | 165.73 | 7.09 | 44.52 | 43.94 | 44.89 | 0.95 |
X03_60247504 | t80t20 | control | 3 | 4.99 | 189.68 | 172.43 | 198.13 | 25.7 | 60.25 | 58.5 | 60.98 | 2.47 |
X12_5047381 | t80t20 | control | 12 | 4.47 | 67.99 | 45.52 | 81.58 | 36.06 | 5.05 | 3.67 | 44.68 | 41.01 |
X08_57563157 | t80t20 | plasticity | 8 | 4.58 | 79.49 | 67.22 | 100.91 | 33.69 | 57.87 | 56.71 | 59.97 | 3.26 |
Marker | Trait | Chr | ci_Mb | Nb Gene | Nb pol | Filtered nb CG | Filtered nb CP | Seed exp CG | Seed exp CP |
---|---|---|---|---|---|---|---|---|---|
X01_78197981 | t50_S | 1 | 1.97 | 238 | 24,566 | 238 | 10,979 | 174 | 8496 |
X01_78925532 | longevity_S | 1 | 1.97 | 213 | 20,457 | 141 | 687 | 108 | 570 |
X02_35922016 | t50.1_C | 2 | 2.35 | 278 | 22,018 | 277 | 16,611 | 222 | 13,788 |
X02_36220609 | longevity_C | 2 | 2.35 | 293 | 37,679 | 231 | 3033 | 185 | 2542 |
X02_43477320 | t50.2_C | 2 | 2.12 | 278 | 18,239 | 228 | 2427 | 197 | 2095 |
X02_44746073 | t80t20_C | 2 | 0.95 | 141 | 7106 | 123 | 1339 | 76 | 190 |
X02_44814312 | longevity_P | 2 | 2.42 | 354 | 31,866 | 236 | 1596 | 199 | 1374 |
X03_60247504 | t80t20_C | 3 | 2.47 | 332 | 23,667 | 284 | 2698 | 230 | 2274 |
X04_59595681 | t50.1_P | 4 | 1.56 | 145 | 20,401 | 73 | 219 | 65 | 208 |
X04_60240094 | t50_C | 4 | 1.37 | 151 | 18,014 | 10 | 16 | 6 | 12 |
X04_62201077 | t50_S | 4 | 2.59 | 333 | 24,049 | 23 | 36 | 17 | 28 |
X04_62339583 | t50.2_P | 4 | 0.71 | 97 | 4402 | 18 | 32 | 14 | 27 |
X05_4985019 | longevity_P | 5 | 1.56 | 162 | 30,192 | 155 | 4608 | 117 | 3581 |
X06_33306736 | germC_C | 6 | 1.8 | 132 | 27,051 | 98 | 451 | 76 | 354 |
X07_2671204 | t50_C | 7 | 2.23 | 218 | 14,125 | 176 | 1070 | 147 | 813 |
X09_1062246 | longevity_S | 9 | 0.64 | 88 | 8951 | 30 | 97 | 28 | 85 |
X09_1759444 | longevity_C | 9 | 2.83 | 308 | 45,197 | 226 | 6398 | 181 | 5033 |
X10_2344795 | t50_S | 10 | 1.37 | 121 | 2257 | 76 | 498 | 54 | 270 |
X11_50118788 | t50_C | 11 | 1.4 | 156 | 10,643 | 24 | 123 | 20 | 115 |
X11_504246 | germination_P | 11 | 2 | 283 | 23,523 | 203 | 1406 | 166 | 1180 |
X12_64391888 | longevity_P | 12 | 1.99 | 332 | 22,890 | 241 | 1434 | 173 | 1025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bizouerne, E.; Ly Vu, J.; Ly Vu, B.; Diouf, I.; Bitton, F.; Causse, M.; Verdier, J.; Buitink, J.; Leprince, O. Genetic Variability in Seed Longevity and Germination Traits in a Tomato MAGIC Population in Contrasting Environments. Plants 2023, 12, 3632. https://doi.org/10.3390/plants12203632
Bizouerne E, Ly Vu J, Ly Vu B, Diouf I, Bitton F, Causse M, Verdier J, Buitink J, Leprince O. Genetic Variability in Seed Longevity and Germination Traits in a Tomato MAGIC Population in Contrasting Environments. Plants. 2023; 12(20):3632. https://doi.org/10.3390/plants12203632
Chicago/Turabian StyleBizouerne, Elise, Joseph Ly Vu, Benoît Ly Vu, Isidore Diouf, Frédérique Bitton, Mathilde Causse, Jérôme Verdier, Julia Buitink, and Olivier Leprince. 2023. "Genetic Variability in Seed Longevity and Germination Traits in a Tomato MAGIC Population in Contrasting Environments" Plants 12, no. 20: 3632. https://doi.org/10.3390/plants12203632
APA StyleBizouerne, E., Ly Vu, J., Ly Vu, B., Diouf, I., Bitton, F., Causse, M., Verdier, J., Buitink, J., & Leprince, O. (2023). Genetic Variability in Seed Longevity and Germination Traits in a Tomato MAGIC Population in Contrasting Environments. Plants, 12(20), 3632. https://doi.org/10.3390/plants12203632