Apple CRISPR-Cas9—A Recipe for Successful Targeting of AGAMOUS-like Genes in Domestic Apple
Abstract
:1. Introduction
Crop Species | Gene(s) Targeted | Outcome | References |
---|---|---|---|
Proof-of-concept studies | |||
apple | PDS | Albino and sectored explants | [22] |
apple | PDS | Albino and sectored explants | [16] |
apple | PDS | Target gene changes | [23] |
apple | DIPM-1, DIPM-2, DIPM-4 | Target gene changes | [19] |
banana | PDS1, PDS2 | Albino and variegated explants | [18] |
banana | PDS | Albino and pale green explants | [20] |
blueberry | PDS | Albino and sectored explants | [26] |
chestnut | PDS | Albino explants | [24] |
citrus—Carrizo citrange | PDS | Albino and sectored explants | [28] |
citrus—grapefruit | PDS | Target gene changes | [17] |
citrus—mini-citrus | PDS | Albino and sectored explants | [29] |
citrus—mini-citrus | CCD4 | Target gene changes | [29] |
coffee | PDS | Albino explants | [30] |
grape | IdnDH | Target-site changes | [23] |
grape | PDS | Variegated explants | [21] |
grape | PDS | Albino explants | [25] |
grape | MLO-7 | Target gene changes | [19] |
kiwi | PDS | Albino explants | [27] |
pomegranate | PgUGTs | Target-site changes | [31] |
Applied work—improved disease resistance | |||
apple | MdDIPM4 | Resistance to fire blight | [40] |
banana | eBSV (viral gene) | Resistance to banana streak virus | [41] |
cacao | TcNPR3 | Resistance to Phytophthora tropicalis | [37] |
citrus—grapefruit | CsLOB1 | Resistance to citrus canker | [38] |
citrus—Wanjincheng orange | CsLOB1 (promoter) | Resistance to citrus canker | [39] |
citrus—Wanjincheng orange | CsWRKY22 | Resistance to citrus canker | [43] |
grape | VvMLO3 | Resistance to powdery mildew | [42] |
grape | VvWRKY52 | Resistance to Botrytis cinerea | [44] |
Applied work—shortened juvenile period | |||
apple | TFL1 | Early flowering | [16] |
pear | TFL1 | Early flowering | [16] |
Applied work—plant form | |||
banana | MaGA20ox2 | Semi-dwarf size | [46] |
Applied work—fruit shelf life | |||
banana | MaACO1 | Increased shelf life | [47] |
Applied work—altered metabolite content | |||
apple | MdPGT1 | Reduced phloridzin levels | [49] |
grape | IdnDH | Reduced tartaric acid levels | [48] |
Applied work—increased shoot regeneration | |||
apple | MdSPL6 | Increased shoot regeneration | [33] |
2. Results
2.1. Analysis of Transformation Efficacy
2.2. Mutation Types and Frequency in Target Genes
3. Discussion
4. Materials and Methods
- Construct assembly
- Apple transformation and event validation
- Target-site cloning and analysis
- Colony analysis
- Plasmid Extraction and Digestion
- DNA Sequencing and Peptide Prediction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. World Food and Agriculture—Statstical Yearbook; FAO: Rome, Italy, 2022. [Google Scholar]
- Lobato-Gomez, M.; Hewitt, S.; Capell, T.; Christou, P.; Dhingra, A.; Giron-Calva, P.S. Transgenic and genome-edited fruits: Background, constraints, benefits, and commercial opportunities. Hortic. Res. 2021, 8, 166. [Google Scholar] [CrossRef] [PubMed]
- Penna, S.; Jain, S.M. Fruit Crop Improvement with Genome Editing, In Vitro and Transgenic Approaches. Horticulturae 2023, 9, 58. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D. The development of fruit-based functional foods targeting the health and wellness market: A review. Int. J. Food Sci. Technol. 2011, 46, 899–920. [Google Scholar] [CrossRef]
- Godoy, F.; Olivos-Hernandez, K.; Stange, C.; Handford, M. Abiotic Stress in Crop Species: Improving Tolerance by Applying Plant Metabolites. Plants 2021, 10, 186. [Google Scholar] [CrossRef]
- Ofori, K.F.; Antoniello, S.; English, M.M.; Aryee, A.N.A. Improving nutrition through biofortification-A systematic review. Front. Nutr. 2022, 9, 1043655. [Google Scholar] [CrossRef]
- Ristaino, J.B.; Anderson, P.K.; Bebber, D.P.; Brauman, K.A.; Cunniffe, N.J.; Fedoroff, N.V.; Finegold, C.; Garrett, K.A.; Gilligan, C.A.; Jones, C.M.; et al. The persistent threat of emerging plant disease pandemics to global food security. Proc. Natl. Acad. Sci. USA 2021, 118, e2022239118. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.T.; Zhou, Y.F.; Wang, Y.Y.; Wu, Y.M.; Ye, X.; Guo, J.X.; Chen, L.S. Magnesium Deficiency Induced Global Transcriptome Change in Citrus sinensis Leaves Revealed by RNA-Seq. Int. J. Mol. Sci. 2019, 20, 3129. [Google Scholar] [CrossRef]
- Volz, R.K.; Oraguzie, N.C.; Whitworth, C.J.; How, N.; ChagnÃ, D.; Carlisle, C.M.; Gardiner, S.E.; Rikkerink, E.H.A.; Lawrence, T. Breeding for Red Flesh Colour in Apple: Progress and Challenges; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2009; pp. 337–342. [Google Scholar]
- Espley, R.V.; Bovy, A.; Bava, C.; Jaeger, S.R.; Tomes, S.; Norling, C.; Crawford, J.; Rowan, D.; McGhie, T.K.; Brendolise, C.; et al. Analysis of genetically modified red-fleshed apples reveals effects on growth and consumer attributes. Plant Biotechnol. J. 2013, 11, 408–419. [Google Scholar] [CrossRef]
- Willits, M.G.; Kramer, C.M.; Prata, R.T.; De Luca, V.; Potter, B.G.; Steffens, J.C.; Graser, G. Utilization of the genetic resources of wild species to create a nontransgenic high flavonoid tomato. J. Agric. Food Chem. 2005, 53, 1231–1236. [Google Scholar] [CrossRef]
- Butelli, E.; Titta, L.; Giorgio, M.; Mock, H.P.; Matros, A.; Peterek, S.; Schijlen, E.G.; Hall, R.D.; Bovy, A.G.; Luo, J.; et al. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 2008, 26, 1301–1308. [Google Scholar] [CrossRef]
- Firoozbady, E.; Young, T.R. Pineapple Plant Named Rosé; Del Monte Fresh Produce: Coral Gables, FL, USA, 2015. [Google Scholar]
- Li, Q.; Sapkota, M.; van der Knaap, E. Perspectives of CRISPR/Cas-mediated cis-engineering in horticulture: Unlocking the neglected potential for crop improvement. Hortic. Res. 2020, 7, 36. [Google Scholar] [CrossRef]
- Sharma, P.; Pandey, A.; Malviya, R.; Dey, S.; Karmakar, S.; Gayen, D. Genome editing for improving nutritional quality, post-harvest shelf life and stress tolerance of fruits, vegetables, and ornamentals. Front. Genome. Ed. 2023, 5, 1094965. [Google Scholar] [CrossRef]
- Charrier, A.; Vergne, E.; Dousset, N.; Richer, A.; Petiteau, A.; Chevreau, E. Efficient Targeted Mutagenesis in Apple and First Time Edition of Pear Using the CRISPR-Cas9 System. Front. Plant. Sci. 2019, 10, 40. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Wang, N. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE 2014, 9, e93806. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Alok, A.; Shivani; Kaur, N.; Pandey, P.; Awasthi, P.; Tiwari, S. CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Funct. Integr. Genom. 2018, 18, 89–99. [Google Scholar] [CrossRef]
- Malnoy, M.; Viola, R.; Jung, M.H.; Koo, O.J.; Kim, S.; Kim, J.S.; Velasco, R.; Nagamangala Kanchiswamy, C. DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins. Front. Plant Sci. 2016, 7, 1904. [Google Scholar] [CrossRef]
- Naim, F.; Dugdale, B.; Kleidon, J.; Brinin, A.; Shand, K.; Waterhouse, P.; Dale, J. Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9. Transgenic Res. 2018, 27, 451–460. [Google Scholar] [CrossRef]
- Nakajima, I.; Ban, Y.; Azuma, A.; Onoue, N.; Moriguchi, T.; Yamamoto, T.; Toki, S.; Endo, M. CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS ONE 2017, 12, e0177966. [Google Scholar] [CrossRef] [PubMed]
- Nishitani, C.; Hirai, N.; Komori, S.; Wada, M.; Okada, K.; Osakabe, K.; Yamamoto, T.; Osakabe, Y. Efficient Genome Editing in Apple Using a CRISPR/Cas9 system. Sci. Rep. 2016, 6, 31481. [Google Scholar] [CrossRef]
- Osakabe, Y.; Liang, Z.; Ren, C.; Nishitani, C.; Osakabe, K.; Wada, M.; Komori, S.; Malnoy, M.; Velasco, R.; Poli, M.; et al. CRISPR-Cas9-mediated genome editing in apple and grapevine. Nat. Protoc. 2018, 13, 2844–2863. [Google Scholar] [CrossRef]
- Pavese, V.; Moglia, A.; Corredoira, E.; Martinez, M.T.; Torello Marinoni, D.; Botta, R. First Report of CRISPR/Cas9 Gene Editing in Castanea sativa Mill. Front. Plant Sci. 2021, 12, 728516. [Google Scholar] [CrossRef]
- Ren, F.; Ren, C.; Zhang, Z.; Duan, W.; Lecourieux, D.; Li, S.; Liang, Z. Efficiency Optimization of CRISPR/Cas9-Mediated Targeted Mutagenesis in Grape. Front. Plant Sci. 2019, 10, 612. [Google Scholar] [CrossRef] [PubMed]
- Vaia, G.; Pavese, V.; Moglia, A.; Cristofori, V.; Silvestri, C. Knockout of phytoene desaturase gene using CRISPR/Cas9 in highbush blueberry. Front. Plant Sci. 2022, 13, 1074541. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, S.; Li, D.; Zhang, Q.; Li, L.; Zhong, C.; Liu, Y.; Huang, H. Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit. Plant Biotechnol. J. 2018, 16, 1424–1433. [Google Scholar] [CrossRef]
- Zhang, F.; LeBlanc, C.; Irish, V.F.; Jacob, Y. Rapid and efficient CRISPR/Cas9 gene editing in Citrus using the YAO promoter. Plant Cell Rep. 2017, 36, 1883–1887. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Zheng, X.; Huang, Y.; Ye, J.; Chen, P.; Zhang, C.; Zhao, F.; Xie, Z.; Zhang, S.; Wang, N.; et al. Genome sequencing and CRISPR/Cas9 gene editing of an early flowering Mini-Citrus (Fortunella hindsii). Plant Biotechnol. J. 2019, 17, 2199–2210. [Google Scholar] [CrossRef]
- Breitler, J.-C.; DeChamp, E.; Campa, C.; Rodriguez, L.A.Z.; Guyot, R.; Marraccini, P.; Etienne, H. CRISPR/Cas9-mediated efficient targeted mutagenesis has the potential to accelerate the domestication of Coffea canephora. Plant Cell Tissue Organ. Cult. 2018, 134, 383–394. [Google Scholar] [CrossRef]
- Chang, L.; Wu, S.; Tian, L. Effective genome editing and identification of a regiospecific gallic acid 4-O-glycosyltransferase in pomegranate (Punica granatum L.). Hortic. Res. 2019, 6, 123. [Google Scholar] [CrossRef]
- Bapat, V.A.; Jagtap, U.B.; Ghag, S.B.; Ganapathi, T.R. Molecular Approaches for the Improvement of Under-Researched Tropical Fruit Trees: Jackfruit, Guava, and Cusard Apple. Int. J. Fruit Sci. 2020, 20, 233–281. [Google Scholar] [CrossRef]
- Li, H.; Sun, H.; Dong, H.; Wang, S.; Fan, X.; Li, Y.; Cheng, L.; Zhang, Z.; Wang, Y.; Zhang, X.; et al. Genome editing of apple SQUAMOSA PROMOTER BINDNG PROTEIN-LIKE 6 enhances adventitious shoot regeneration. Plant Physiol. 2023, 191, 840–843. [Google Scholar] [CrossRef]
- Richard, B.; Qi, A.; Fitt, B.D. Control of crop diseases through Integrated Crop Management to deliver climate-smart farming systems for low- and high- input crop production. Plant Pathol. 2021, 71, 187–206. [Google Scholar] [CrossRef]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Youssef, K.; Ippolito, A.; Roberto, S.R. Editorial: Post-harvest Diseases of Fruit and Vegetable: Methods and Mechanisms of Action. Front. Microbiol. 2022, 13, 900060. [Google Scholar] [CrossRef]
- Fister, A.S.; Landherr, L.; Maximova, S.N.; Guiltinan, M.J. Transient Expression of CRISPR/Cas9 Machinery Targeting TcNPR3 Enhances Defense Response in Theobroma cacao. Front. Plant Sci. 2018, 9, 268. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, Y.; Orbovic, V.; Xu, J.; White, F.F.; Jones, J.B.; Wang, N. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol. J. 2017, 15, 817–823. [Google Scholar] [CrossRef]
- Peng, A.; Chen, S.; Lei, T.; Xu, L.; He, Y.; Wu, L.; Yao, L.; Zou, X. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. J. 2017, 15, 1509–1519. [Google Scholar] [CrossRef]
- Pompili, V.; Dalla Costa, L.; Piazza, S.; Pindo, M.; Malnoy, M. Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system. Plant Biotechnol. J. 2020, 18, 845–858. [Google Scholar] [CrossRef]
- Tripathi, J.N.; Ntui, V.O.; Ron, M.; Muiruri, S.K.; Britt, A.; Tripathi, L. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun. Biol. 2019, 2, 46. [Google Scholar] [CrossRef]
- Wan, D.Y.; Guo, Y.; Cheng, Y.; Hu, Y.; Xiao, S.; Wang, Y.; Wen, Y.Q. CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera). Hortic. Res. 2020, 7, 116. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, S.; Peng, A.; Xie, Z.; He, Y.; Zou, Z. CRISPR/Cas9-mediated editing of CsWRKY22 reduces susceptibility to Xanthomonas citri subsp. citri in Wanjincheng orange (Citrus sinensis (L.) Osbeck). Plant Biotechnol. Rep. 2019, 13, 501–510. [Google Scholar] [CrossRef]
- Wang, X.; Tu, M.; Wang, D.; Liu, J.; Li, Y.; Li, Z.; Wang, Y.; Wang, X. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol. J. 2018, 16, 844–855. [Google Scholar] [CrossRef] [PubMed]
- Dash, P.K.; Rai, R. Translating the “Banana Genome” to Delineate Stress Resistance, Dwarfing, Parthenocarpy and Mechanisms of Fruit Ripening. Front. Plant Sci. 2016, 7, 1543. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Wu, S.; Dou, T.; Zhu, H.; Hu, C.; Huo, H.; He, W.; Deng, G.; Sheng, O.; Bi, F.; et al. Using CRISPR/Cas9 genome editing system to create MaGA20ox2 gene-modified semi-dwarf banana. Plant Biotechnol. J. 2020, 18, 17–19. [Google Scholar] [CrossRef]
- Hu, C.; Sheng, O.; Deng, G.; He, W.; Dong, T.; Yang, Q.; Dou, T.; Li, C.; Gao, H.; Liu, S.; et al. CRISPR/Cas9-mediated genome editing of MaACO1 (aminocyclopropane-1-carboxylate oxidase 1) promotes the shelf life of banana fruit. Plant Biotechnol. J. 2021, 19, 654–656. [Google Scholar] [CrossRef]
- Ren, C.; Liu, X.; Zhang, Z.; Wang, Y.; Duan, W.; Li, S.; Liang, Z. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci. Rep. 2016, 6, 32289. [Google Scholar] [CrossRef] [PubMed]
- Miranda, S.; Piazza, S.; Nuzzo, F.; Li, M.; Lagreze, J.; Mithofer, A.; Cestaro, A.; Tarkowska, D.; Espley, R.; Dare, A.; et al. CRISPR/Cas9 genome-editing applied to MdPGT1 in apple results in reduced foliar phloridzin without impacting plant growth. Plant J. 2023, 113, 92–105. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Volz, R.; Alspach, P.; Bus, V. Development of a recurrent apple breeding programme in New Zealand: A synthesis of results, and a proposed revised breeding strategy. Euphytica 2010, 173, 207–222. [Google Scholar] [CrossRef]
- Laurens, F.; Durel, C.E.; Patocchia, A.; Peil, A.; Salvi, S.; Tartarini, S.; Velasco, R.; van de Weg, E. Review on apple genetics and breeding programmes and presentation of a new European initiative to increase fruit breeding efficiency. J. Fruit Sci. 2011, 27, 102–107. [Google Scholar]
- Cusin, R.; Revers, L.F.; Maraschin, F.S. New biotechnological tools to accelerate scab-resistance trait transfer to apple. Genet. Mol. Biol. 2017, 40 (Suppl. S1), 305–311. [Google Scholar] [CrossRef]
- Yamagishi, N.; Sasaki, S.; Yamagata, K.; Komori, S.; Nagase, M.; Wada, M.; Yamamoto, T.; Yoshikawa, N. Promotion of flowering and reduction of a generation time in apple seedlings by ectopical expression of the Arabidopsis thaliana FT gene using the Apple latent spherical virus vector. Plant Mol. Biol. 2011, 75, 193–204. [Google Scholar] [CrossRef]
- Flachowsky, H.; Peil, A.; Sopanen, T.; Elo, A.; Hanke, V. Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus × domestica Borkh.). Plant Breed. 2007, 126, 137–145. [Google Scholar] [CrossRef]
- Trankner, C.; Lehmann, S.; Hoenicka, H.; Hanke, M.V.; Fladung, M.; Lenhardt, D.; Dunemann, F.; Gau, A.; Schlangen, K.; Malnoy, M.; et al. Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 2010, 232, 1309–1324. [Google Scholar] [CrossRef]
- Flachowsky, H.; Szankowski, I.; Waidmann, S.; Peil, A.; Trankner, C.; Hanke, M.V. The MdTFL1 gene of apple (Malus × domestica Borkh.) reduces vegetative growth and generation time. Tree Physiol. 2012, 32, 1288–1301. [Google Scholar] [CrossRef]
- Flachowsky, H.; Le Roux, P.M.; Peil, A.; Patocchi, A.; Richter, K.; Hanke, M.V. Application of a high-speed breeding technology to apple (Malus × domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytol. 2011, 192, 364–377. [Google Scholar] [CrossRef] [PubMed]
- Schlatholter, I.; Jansch, M.; Flachowsky, H.; Broggini, G.A.L.; Hanke, M.V.; Patocchi, A. Generation of advanced fire blight-resistant apple (Malus × domestica) selections of the fifth generation within 7 years of applying the early flowering approach. Planta 2018, 247, 1475–1488. [Google Scholar] [CrossRef]
- Smolka, A.; Li, X.Y.; Heikelt, C.; Welander, M.; Zhu, L.H. Effects of transgenic rootstocks on growth and development of non-transgenic scion cultivars in apple. Transgenic Res. 2010, 19, 933–948. [Google Scholar] [CrossRef] [PubMed]
- Flachowsky, H.; Szankowski, I.; Fischer, T.C.; Richter, K.; Peil, A.; Hofer, M.; Dorschel, C.; Schmoock, S.; Gau, A.E.; Halbwirth, H.; et al. Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight. Planta 2010, 231, 623–635. [Google Scholar] [CrossRef] [PubMed]
- APHIS. Questions and Answer: Arctic Apple Deregulation; APHIS: Washington, DC, USA, 2015.
- Velasco, R.; Zharkikh, A.; Affourtit, J.; Dhingra, A.; Cestaro, A.; Kalyanaraman, A.; Fontana, P.; Bhatnagar, S.K.; Troggio, M.; Pruss, D.; et al. The genome of the domesticated apple (Malus × domestica Borkh.). Nat. Genet. 2010, 42, 833–839. [Google Scholar] [CrossRef]
- Klocko, A.L.; Borejsza-Wysocka, E.; Brunner, A.M.; Shevchenko, O.; Aldwinckle, H.S.; Strauss, S.H. Transgenic Suppression of AGAMOUS Genes in Apple Reduces Fertility and Increases Floral Attractiveness. PLoS ONE 2016, 11, e0159421. [Google Scholar] [CrossRef]
- Culley, T.M.; Hardiman, N.A. The Beginning of a New Invasive Plant: A History of the Ornamental Callery Pear in the United States. BioScience 2007, 57, 956–964. [Google Scholar] [CrossRef]
- Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef] [PubMed]
- Ireland, H.S.; Tomes, S.; Hallet, I.C.; Karunairetnam, S.; David, K.M.; Yao, J.L.; Schaeffer, R.J. Coreless apples generated by the suppression of carpel genes and hormone-induced fruit set. Fruit Res. 2021, 1, 2. [Google Scholar] [CrossRef]
- Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281–2308. [Google Scholar] [CrossRef] [PubMed]
- Elorriaga, E.; Klocko, A.L.; Ma, C.; Strauss, S.H. Variation in Mutation Spectra among CRISPR/Cas9 Mutagenized Poplars. Front. Plant Sci. 2018, 9, 594. [Google Scholar] [CrossRef]
- Malabarba, J.; Chevreau, E.; Dousset, N.; Veillet, F.; Moizan, J.; Vergne, E. New Strategies to Overcome Present CRISPR/Cas9 Limitations in Apple and Pear: Efficient Dechimerization and Base Editing. Int. J. Mol. Sci. 2020, 22, 319. [Google Scholar] [CrossRef]
- Norris, S.R.; Barrette, T.R.; DellaPenna, D. Genetic dissection of carotenoid synthesis in arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell 1995, 7, 2139–2149. [Google Scholar] [CrossRef]
- Chen, Y.H.; Sharma, S.; Bewg, W.P.; Xue, L.J.; Gizelbach, C.R.; Tsai, C.J. Multiplex Editing of the Nucleoredoxin1 Tandem Array in Poplar: From Small Indels to Translocations and Complex Inversions. CRISPR J. 2023, 6, 339–349. [Google Scholar] [CrossRef]
- Elorriaga, E.; Klocko, A.L.; Ma, C.; du Plessis, M.; An, X.; Myburg, A.A.; Strauss, S.H. Genetic containment in vegetatively propagated forest trees: CRISPR disruption of LEAFY function in Eucalyptus gives sterile indeterminate inflorescences and normal juvenile development. Plant Biotechnol. J. 2021, 19, 1743–1755. [Google Scholar] [CrossRef]
- USDA National Institute of Food and Agriculture. Apple Rootstock Info: M.26. Available online: https://apples.extension.org/apple-rootstock-info-m-26/ (accessed on 22 May 2023).
- Ten Hove, H.W. Apple Tree—Royal Gala Variety; Stark Brothers Nurseries & Orchards Company: Louisiana, MO, USA, 1977. [Google Scholar]
- Borejsza-Wysocka, E.; Norelli, J.L.; Ko, K.; Aldwinckle, H.S. Transformation of authentic M26 for enhanced resistance to fire blight. Acta Hortic. 1999, 489, 259–266. [Google Scholar] [CrossRef]
- Ko, K.; Reynoird, J.-P.; Aldwinckle, H.S.; Brown, S.K. T4 lysozyme and attacin genes enhance resistance of transgenic ‘Galaxy’ apple against Erwinia amylorvora. J. Am. Soc. Hortic. Sci. 2002, 127, 515–519. [Google Scholar] [CrossRef]
- Norelli, J.L.; Aldwinckle, H.S.; Beer, S.V. Leaf wounding increases efficiency of Agrobacterium-mediated transformation of apple. Phytopath 1988, 78, 1292–1297. [Google Scholar] [CrossRef]
- Bolar, J.P.; Hanke, V.; Norelli, J.L.; Aldwinckle, H.S. An efficient method for rooting and acclimation of micropropagated apple cultivars. HortSci 1998, 33, 1251–1252. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Soding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef] [PubMed]
Construct | Cultivar | Transformed Events |
---|---|---|
Cas9 | ‘M.26’ | 5 |
Cas9 | ‘Royal Gala’ | 1 |
Total Cas9 events | Both | 6 |
sgRNA1 sgRNA2 | ‘M.26’ | 8 |
sgRNA 1 sgRNA2 | ‘Royal Gala’ | 1 |
sgRNA15 sgRNA3 | ‘M.26’ | 6 |
sgRNA15 sgRNA3 | ‘Royal Gala’ | 1 |
sgRNA3 sgRNA2 | ‘M.26’ | 8 |
sgRNA3 sgRNA2 | ‘Royal Gala’ | 0 |
sgRNA22 sgRNA3 | ‘M.26’ | 13 |
sgRNA22 sgRNA3 | ‘Royal Gala’ | 1 |
Total CRISPR events ‘M.26’ | ‘M.26’ | 35 |
Total CRISPR events ‘Royal Gala’ | ‘Royal Gala’ | 3 |
Total CRISPR events | Both | 38 |
Total transgenic events (Cas9 and CRISPR) | Both | 44 |
Outcome Per Gene | Events (Number and %) | |
---|---|---|
MADS15 | MADS221 | |
WT | WT | 4 (11%) |
WT | het | 2 (5%) |
het | WT | 3 (8%) |
WT | Dual-edited | 3 (8%) |
Dual-edited | WT | 0 (0%) |
het | het | 4 (11%) |
Het | Dual-edited | 5 (13%) |
Dual-edited | het | 3 (8%) |
Dual-edited | Dual-edited | 14 (37%) |
Fully WT | 4 (11%) | |
Mix of WT and edited | 20 (53%) | |
Fully edited | 14 (37%) |
sgRNA | Total Sites | Targeting (Number and %) |
---|---|---|
Dual-gene targeting | ||
sgRNA1 | 36 | 17 (47%) |
sgRNA2 | 68 | 26 (38%) |
sgRNA3 | 116 | 79 (68%) |
MADS15 specific | ||
sgRNA15 | 14 | 10 (71%) |
MADS221 specific | ||
sgRNA22 | 28 | 17 (61%) |
All guide RNAs | ||
sgRNA1, sgRNA2, sgRNA3, sgRNA15, sgRNA22 | 262 | 149 (57%) |
Construct | Number of Transformation Events | Number of Edited Events | % Editing |
---|---|---|---|
Cas9 control | 6 | 0 | 0 |
sgRNA1 sgRNA2 | 9 | 8 | 89 |
sgRNA2 sgRNA3 | 8 | 6 | 75 |
sgRNA15 sgRNA3 | 7 | 7 | 100 |
sgRNA22 sgRNA3 | 14 | 13 | 93 |
Construct | Total Events (N) | Total Alleles (N) | Total Edited Alleles (N) % | Large Deletion (N) % | Small Deletion (N) % | Small Insertion (N) % | Mix of Small Indels (N) % |
---|---|---|---|---|---|---|---|
sgRNA1 sgRNA2 | 9 | 36 | 17 (47%) | 14 (82%) | 3 (18%) | 0 (0%) | 0 (0%) |
sgRNA2 sgRNA3 | 8 | 32 | 16 (50%) | 10 (63%) | 3 (19%) | 3 (19%) | 0 (0%) |
sgRNA15 sgRNA3 | 7 | 28 | 22 (79%) | 14 (50%) | 3 (11%) | 5 (18%) | 0 (0%) |
sgRNA22 sgRNA3 | 14 | 56 | 43 (77%) | 20 (36%) | 12 (21%) | 4 (7%) | 7 (13%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacobson, S.; Bondarchuk, N.; Nguyen, T.A.; Canada, A.; McCord, L.; Artlip, T.S.; Welser, P.; Klocko, A.L. Apple CRISPR-Cas9—A Recipe for Successful Targeting of AGAMOUS-like Genes in Domestic Apple. Plants 2023, 12, 3693. https://doi.org/10.3390/plants12213693
Jacobson S, Bondarchuk N, Nguyen TA, Canada A, McCord L, Artlip TS, Welser P, Klocko AL. Apple CRISPR-Cas9—A Recipe for Successful Targeting of AGAMOUS-like Genes in Domestic Apple. Plants. 2023; 12(21):3693. https://doi.org/10.3390/plants12213693
Chicago/Turabian StyleJacobson, Seth, Natalie Bondarchuk, Thy Anh Nguyen, Allison Canada, Logan McCord, Timothy S. Artlip, Philipp Welser, and Amy L. Klocko. 2023. "Apple CRISPR-Cas9—A Recipe for Successful Targeting of AGAMOUS-like Genes in Domestic Apple" Plants 12, no. 21: 3693. https://doi.org/10.3390/plants12213693
APA StyleJacobson, S., Bondarchuk, N., Nguyen, T. A., Canada, A., McCord, L., Artlip, T. S., Welser, P., & Klocko, A. L. (2023). Apple CRISPR-Cas9—A Recipe for Successful Targeting of AGAMOUS-like Genes in Domestic Apple. Plants, 12(21), 3693. https://doi.org/10.3390/plants12213693